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Multivariate pattern recognition methods are increasingly being used to identify multiregional brain activity
patterns that collectively discriminate one cognitive condition or experimental group from another, using
fMRI data. The performance of these methods is often limited because the number of regions considered in
the analysis of fMRI data is large compared to the number of observations (trials or participants). Existing
methods that aim to tackle this dimensionality problem are less than optimal because they either over-fit the
data or are computationally intractable. Here, we describe a novel method based on logistic regression using
a combination of L1 and L2 norm regularization that more accurately estimates discriminative brain regions
across multiple conditions or groups. The L1 norm, computed using a fast estimation procedure, ensures a
fast, sparse and generalizable solution; the L2 norm ensures that correlated brain regions are included in the
resulting solution, a critical aspect of fMRI data analysis often overlooked by existing methods. We first
evaluate the performance of our method on simulated data and then examine its effectiveness in
discriminating between well-matched music and speech stimuli. We also compared our procedures with
other methods which use either L1-norm regularization alone or support vector machine-based feature
elimination. On simulated data, our methods performed significantly better than existing methods across a
wide range of contrast-to-noise ratios and feature prevalence rates. On experimental fMRI data, our methods
were more effective in selectively isolating a distributed fronto-temporal network that distinguished
between brain regions known to be involved in speech and music processing. These findings suggest that our
method is not only computationally efficient, but it also achieves the twin objectives of identifying relevant
discriminative brain regions and accurately classifying fMRI data.
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Introduction

Multivariate pattern recognition (MPR) methods are rapidly
becoming a popular tool for analyzing fMRI data (Cox and Savoy,
2003; De Martino et al., 2008; Haynes et al., 2007; Kriegeskorte et al.,
2006; Mourao-Miranda et al., 2005; Pereira et al., 2009). These
methods use fMRI data to detect activity patterns in brain regions that
collectively discriminate one cognitive condition or participant group
from another. Most fMRI studies that use MPR methods restrict the
analysis to specific brain regions of interest (ROI) (Cox and Savoy,
2003; Haynes et al., 2007), however this approach is problematic if
the ROIs are not known a priori. In these cases, a data-driven approach
that incorporates multiple brain regions is desirable for several
reasons. For one, it is possible that no single brain region can
accurately discriminate given a set of experimental stimuli, task
conditions or participant groups, and simultaneously incorporating
multiple brain regions may be necessary to describe the distributed
networks sub serving differential brain processes. Therefore, the MPR
method used in fMRI data analysis should, ideally, consider activity
patterns in all brain regions, and identify the subset of regions that
discriminates between experimental conditions in an unbiased
manner. Hereafter, we refer to MPR methods that include activity
patterns across the entire brain as “whole-brain classifiers.”

Designing a whole-brain classifier presents a number of technical
challenges since the number of regions considered in the analysis of
fMRI data (“features”) is large compared to the number of observa-
tions (trials or participants). Typically, this results in over-fitting of
the data, leading to high classification accuracies for data used in
designing the classifier, but poor classification accuracies for inde-
pendent “test” data. Furthermore, a common characteristic of fMRI
data is that the number of brain regions involved in a given cognitive
classification of fMRI data, NeuroImage (2010),
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task is typically small relative to the total number of brain regions.
Selecting the brain regions that are most relevant in discriminating
cognitive tasks/condition overcomes the problem of over-fitting and
improves the generalization performance of the classifier. Further-
more, identifying these relevant regions is also critical for under-
standing which brain regions can discriminate between stimulus
conditions. Taken together, the problem of whole-brain classification
can be distilled to two key problems: (1) feature selection, or selection
of only those relevant regions that discriminate between cognitive
conditions, and (2) designing a classifier using these selected regions.

The problem of feature selection has been extensively studied by
the machine learning community (Kohavi, 1997). The overall goal of
feature selection is to identify subsets of features that are most useful
in discriminating two ormore conditions of interest. Existingmethods
for feature selection can be grouped in two categories: filter and
wrapper (Guyon, 2003; Kohavi, 1997). In the filter strategy, features
are selected independent of classification, and the selected features
are then used in designing the classifier. The features are ranked based
on univariate scores such as correlation or mutual information
between a feature and an experimental manipulation. This strategy
has been implemented in a number of fMRI studies (Haynes and Rees,
2005; Mitchell et al., 2004; Mourao-Miranda et al., 2006). A limitation
of the filter strategy is that this method applies only univariate
measures and therefore does not consider the relationships between
features while selecting them. This is a major limitation since fMRI
data is inherently multivariate, with strong spatial correlation
between neighboring voxels. Furthermore, this method does not
consider classifier performance in selecting features. In contrast, the
wrapper strategy utilizes methods in which features are selected that
maximize the performance of the classifier. The selected features are
then used in designing the classifier, as in the support vectormachine-
based recursive feature elimination algorithm (SVM-RFE) developed
by Guyon et al. (2002) and Guyon (2003). This method has been
applied for feature selection and classification of fMRI data by De
Martino et al. (2008). A weakness of this approach is that thresholds
used to select features are arbitrary and different datasets may require
different settings of thresholds (De Martino et al., 2008).

An alternative strategy was recently proposed to simultaneously
address the problem of feature selection and classifier design
(Krishnapuram et al., 2005; Tipping, 2001; Zou and Hastie, 2005). In
this strategy, feature selection is included as part of the classifier
design, ensuring efficient use of data and faster computation time
since the classifier does not need to be repeatedly trained during
feature selection. In this approach, regularization is used to prevent
over-fitting of the data and thereby improve generalizability of the
classifier. Regularization-based approaches have been successfully
applied to problems such as EEG/MEG source localization (Phillips et
al., 2002), classification of multi sensor EEG data (van Gerven et al.,
2009) and gene selection in micro data analysis (Zou and Hastie,
2005). Moreover, these approaches are well-suited for the analysis of
fMRI data which, as mentioned earlier, is characterized by a large
number of features and limited training data. SVM based feature
selection using L1, L2 or L0 regularization methods was also proposed
in the literature (Bi et al., 2003; Perkins et al., 2003; Weston et al.,
2003).

Here, we present a novel method LR12, based on logistic
regression with a combination of L1 and L2 norm regularization to
accurately estimate discriminative brain regions from whole-brain
fMRI data. The use of L1 norm regularization results in sparse
solutions, thereby helping in feature selection. However, when
features are highly correlated, as in fMRI data, using only L1 norm
regularization selects only a subset of relevant features. Using L2 norm
regularization in addition to L1 helps in selecting all correlated and
relevant voxels. Furthermore, our method uses a novel and fast
component-wise update procedure to estimate discriminative brain
regions; this procedure is used to maximize the logistic regression
Please cite this article as: Ryali, S., et al., Sparse logistic regression
doi:10.1016/j.neuroimage.2010.02.040
cost function that includes L1 and L2 norm regularization (Krishna-
puram et al., 2005). The L1 norm and fast estimation procedure ensure
rapid computation and a generalizable solution. The L2 norm provides
additional benefit by including correlated brain regions in the
solution, a critical step often overlooked by existing methods. We
first evaluate the performance of our LR12 method, on simulated data
and then examine its effectiveness in discriminating between well-
matchedmusic and speech stimuli. We also compared our procedures
with other logistic regression methods and SVM-RFE.

Methods

Logistic regression with regularization

Logistic regression fits a separating hyper plane that is a linear
function of input features between two conditions or classes. Here, we
interchangeably use the terms conditions and class labels. Given a set
of training data, the goal is (1) to estimate the hyper plane that
accurately predicts the class label of a new example and (2) identify a
subset of the features that is most informative about the class
distinction. Let x=[x1,x2,…,xp]t∈Rp be a vector of input features
(voxels) and y (y is a binary variable which is either 0 or 1) be its class
label. Let D={(xi,yi)}, i=1,2,…,N be a set of N training examples.
Under the logistic regression framework, the probability that the i-th
example belongs to class-1 is defined as

P yi = 1 jxi; θ
� �

= hθ x
i

� �
ð1Þ

where, hθ(x) is a logistic function given by
1

exp −θtx
� � and θϵRp is a

vector of weights associated with each feature. These weights are
estimated from the training data D by using the maximum likelihood
method wherein the following log-likelihood is maximized

L θð Þ = ∑N
i = 1 log P yi jxi; θ

� �
: ð2Þ

The above cost function results in a solution that accurately
predicts the class label of a new example. In the context of fMRI
analysis, the prediction accuracy of this solution is limited because the
number of features (voxels) is far greater than the number of
observations (p≫N). To overcome this problem, regularization can
be applied by assuming a prior on the weights. In an ideal case, the
regularization should force the weights to be large for features which
are sensitive to class labels and exactly zero for other features. Such a
constraint achieves the twin objectives of classifier design with good
prediction accuracy and the automatic detection of relevant features,
which is very important for interpreting brain imaging data.

A commonly used Gaussian prior on weights lead to L2
regularization and the corresponding cost function to bemaximized is

Lg θð Þ = ∑
N

i=1
log P yi jxi; θ

� �
−γθtθ ð3Þ

where, γ controls the degree of regularization. Maximizing this cost
function results in a regularized solution wherein the magnitudes of
weights corresponding to irrelevant features are reduced to small
values but not exactly to zero. This cost function is also concave, which
can be optimized using the conventional iterated readjusted weighted
least squares (IRWLS). Another commonly used prior is the Laplacian,
a sparsity promoting prior, which has been used successfully in
regression analysis (Tibshirani, 1996). This prior makes weights
corresponding to irrelevant features to be exactly zero. The cost
function that needs to be maximized in this case is

Lι θð Þ = ∑
N

i=1
log P yi jxi; θ

� �
−γjθj1 ð4Þ
for whole-brain classification of fMRI data, NeuroImage (2010),
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jθj1 = ∑
p

k=1
jθ kð Þj ð5Þ

where, the operator | | returns the absolute value of |θ(k)|. This cost
function is also concave, but cannot be optimized using IRWLS since it
is not differentiable at the origin. Optimizing this cost function results
in a sparse solution when the features are uncorrelated. In the case of
correlated features, which are the case in fMRI data wherein the
adjacent voxels are highly correlated, only a subset of these correlated
features is selected. However in the context of fMRI, we require all the
regions (or features) to be selected which differentiate the two class
conditions. This grouping effect can be introduced by combining L1
and L2 regularizations (Zou and Hastie, 2005). The required cost
function to be maximized in this case is now

Lιg θð Þ = ∑
N

i=1
log P yi jxi; θ

� �
−y1jθj1−γ2θ

tθ ð6Þ

where the parameters γ1 and γ2 respectively control the degrees of L1
and L2 norm regularization. Maximizing this cost function results in a
sparse solution even when the features are correlated. In the
following section, we describe a novel bound optimization method
we developed to maximize Lιg(θ). This bound optimization method
does not require computing the inverse of the Hessian matrix at each
iteration and has been applied successfully to maximize both Lg(θ)
and Lι(θ) (Krishnapuram et al., 2005). It can be easily scaled to
applications such as whole-brain classification where the feature
dimension is very high.

Bound optimization

Let L(θ) be the cost function to be maximized. In the bound
optimization approach, L(θ) is optimized by iteratively maximizing a
surrogate function Q,

θ̂k + 1
= arg maxQ θ j θ̂k

� �
ð7Þ

where, θ̂k is the solution at k-th iteration. This procedure monoton-
ically increases the cost function at each iteration if Q satisfies the
condition that L(θ)−Q(θ=θ̂k) attains its minimum at θ|θ̂k (Krishna-
puram et al., 2005).

When L(θ) is concave, surrogate function Q(θ=θ̂k) can be
constructed by using a bound on the Hessian matrix H(θ). If there
exists a nonnegative matrix B such that H(θ)−B is nonnegative then
it can be shown that

Q θ j θ̂k
� �

= θt g θ̂k
� �

−Bθ̂k
� �

−1
2
θtBθ ð8Þ

is a valid surrogate function. g(θ) denotes the gradient of L(θ) with
respect to θ. The matrix B is given by (Krishnapuram et al., 2005)

B = −0:25 ∑
N

i=1
xix

t
i

� �
ð9Þ

The component-wise update procedure can be used to maximize
Q. Specifically, the surrogate function Q is maximized with respect to
one of the components of θwhile fixing the remaining components to
their current values. This procedure avoids the inversion of the
Hessian matrix. Since the cost function is concave in parameters, the
global optimal solution is guaranteed. Most importantly, this
approach can be used for both L1 and L2 regularizations and the
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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combination of both. For joint regularization of L1 and L2, the
surrogate cost function of Lιg (θ) to be maximized is

Q θ j θ̂k
� �

= θt g θ̂k
� �

−Bθ̂
k� �

+
1
2
θtBθ−γ1jθj1−γ2θ

tθ: ð10Þ

The update rule for the m-th component of θ is given by

θ̂k + 1
m = soft

Bmm

Bmm−γ2
θ̂km−

g
m θ̂k
� �

Bmm−γ2
;

−γ1

Bmm−γ2

 !
: ð11Þ

Here, only the m-th component of θ is updated while all other
components are held at their values in the previous iteration. Bmm

denotes them-th diagonal entry of B, gm(θk̂) is them-th element of the
gradient vector, g(θ̂k), and

soft α; δð Þ = sign αð Þmax 0; jαj−δf g ð12Þ

is a soft threshold function. This update equation ensures that the
value of Q is non-decreasing at each iteration and is sufficient to
guarantee monotonicity of the procedure.

Choice of γ1 and γ2

In Eq. (10), the parameters γ1 and γ2 respectively control the
degree of L1 and L2 regularizations. The performance of the classifier
and selection of features depends on the choice of these parameters.
These parameters were derived from the data using a combination of
grid search and a three-way cross validation procedure. This
procedure consists of two nested loops. In the outer loop, the data
was split into N1 (N1=10) folds. One fold was used as test data for
estimating the generalizability of the classifier and was involved
neither in determining the weights of the classifier nor in the
estimation of the parameters. In the inner loop, the remaining N1–1
folds were further divided into N2 (N2=10) folds. N2–1 folds were
used as the training data and the remaining fold was used as the
validation data. For each combination of γ1 and γ2, we obtained the
discriminative weights using the training data and estimate the class
labels of the validation data. We repeated the above procedure N2

times by leaving a different fold as validation and the remaining folds
as the train data. We obtained the average classification accuracy of
the classifier across the N2 folds for every combination of γ1 and γ2.
We chose that combination of γ1 and γ2 for which this accuracy was
maximum. We then obtained the discriminative weights by training
the classifier using all the N2 folds with the optimal parameters
obtained above. We estimated the class labels of the test data which
was left out in the outer loop using these discriminative weights. We
repeated the above procedure N1 times by leaving a different fold as
the test data. We estimated class labels of the test data at each of the
N1 folds and computed average classification accuracy obtained at
each fold, termed here as the cross validation accuracy (CVA). We
then computed the final discriminative weights using all the data with
average parameters obtained in N1 folds and evaluated the perfor-
mance metrics such as sensitivity, false positive rates and accuracy in
feature selection, described below, based on these weights. In the gird
search, the value of γ1 was varied logarithmically from 2−2 to 25 in
steps of 2 and γ2 is varied logarithmically between 10−1 to 104 in
steps of 10. The optimal values are searched in a logarithmical grid to
cover a wide range of values.

Feature selection using SVM (SVM-RFE)

Feature selection using SVM based recursive feature elimination
was developed by Guyon et al. (2002). This method was applied for
feature selection in fMRI by (De Martino et al., 2008). Feature
selection and generalizability of this approach was estimated using
for whole-brain classification of fMRI data, NeuroImage (2010),
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the two-level cross validation procedure described in (De Martino et
al., 2008). In this procedure, the data was divided in to N1 (N1=10)
folds. One fold was used as test data which was used only to estimate
the generalizability of the classifier and does not influence the
computation of discriminative maps. The remaining N1−1 folds were
used as the training data. This training data was further divided into
N2 (N2=5) splits. The discriminative weights were obtained by
training the linear SVM classifier using N2−1 splits leaving out one
split. The above procedure was repeated N2 times by leaving out one
split at a time. Average absolute discriminative weights were then
computed using the N2 discriminative weights obtained above.
Recursive feature elimination (RFE) was performed R (R=10) times
based on these average weights. At each feature selection level, voxels
corresponding to the smallest rankings were discarded and the
remaining voxels were used to train the classifier at next level. In our
implementation we discarded 10% of the lowest ranking weights at
each RFE level. The generalization performance at this feature
selection was assessed using the test data which was left out. The
entire procedure was repeated N1 times by leaving out different fold
as test data. Final generalization performances and discriminative
maps of each RFE level were obtained as the average over N1 folds. We
selected the RFE level for which the generalization performance
(CVA) was highest. To compute the performance metrics such as
sensitivity, false positive rates and accuracy in feature selection, we
used the discriminating weights computed in the following twoways.
In the first approach, we used the average discriminative maps
obtained as the average overN1 folds at the RFE level at which the CVA
was highest. This approachwas also taken in (DeMartino et al., 2008).
Here, we refer to this approach as SVM-RFE1. In the second approach,
we retrain the classifier using the entire dataset and obtain the
discriminating weights by applying RFE up to the level at which CVA
was maximum. We refer to the performance evaluation by this
approach as SVM-RFE2. This approach of obtaining discriminating
maps is similar to the one employed in sparse logistic regression
method. We have reported the results obtained by this approach in
addition to the first approach to have a fair comparison with sparse
logistic regression methods.

Initial voxel reduction

De Martino et al. (2008) reported that cross validation accuracy
improved with initial voxel reduction, particularly at lower CNRs (De
Martino et al., 2008). To further examine this issue, we used a similar
voxel reduction method and selected a subset of the most activated
voxels in both classes. We applied this procedure to examine how the
performance of these methods improves with respect to the case where
no initial voxel reduction is applied. For initial voxel reduction,weapplied
the same univariate activation based method used by De Martino et al.
(2008)). In this method, the voxels were sorted independently using a
scoring function and the union of top N′ voxels per class were selected.
The score for v-th voxel in i-th class (Si(ν)) is defined as:

Si νð Þ = μi νð Þffiffiffiffiffiffi
σ2
i

ni

s ð13Þ

where, µi(ν) and σi
2 are themean and variance of v-th voxel computed

across ni observations in i-th class. Note that this initial voxel
reduction was performed only on the training data in the cross
validation procedure and no test data was used in this step.

Evaluation of classifier performance

The performance of the classifier on simulated datasets in selecting
relevant features was assessed by computing the sensitivity, false
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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positive rate, accuracy in feature selection and the 10-fold cross
validation accuracy (CVA) based on the optimal parameters γ1 and γ2

in sparse logistic regression method and the best feature elimination
level in SVM-RFE method. The performance metrics such as
sensitivity, false positive rate and accuracy were computed as follows:

sensitivity =
TP

TP + FN
ð14Þ

false positive rate =
FP

TN + FP
ð15Þ

accuracy =
TP + TN

TP + FP + FN + TN
ð16Þ

where, TP is the number of true positives, TN is the number of true
negatives, FN is the number of false negatives and FP is the number of
false positives. TP, FP, TN and FN were determined as follows:

(a) TP: By counting the number of non-zero discriminative weights
in the discriminative regions of the simulated data.

(b) FP: By counting the number of non-zero discriminative weights
in the non-discriminative regions of the simulated data.

(c) TN: By counting the number of discriminative weights which
are exactly zero in the non-discriminative regions of the
simulated data.

(d) FN: By counting the number of discriminative weights which
are exactly zero in the discriminative regions of the simulated
data.

In single subject analysis, CVA accuracy can be evaluated by
training a classifier over several experimental runs. In group-level
analysis, CVA can be evaluated across subjects performing two
different experiments. The latter procedure was used in this study.
Here we refer to logistic regression with L1-norm regularization as
LR1 and logistic regression with both L1 and L2 norms as LR12. We
also use a special case of LR12 where the parameter γ2 is set to a high
value (10,000) and the optimal value of γ1 is found using the above
cross validation procedure. We refer to this method as universal soft
thresholding (LR12-UST) for reasons discussed elsewhere (Grosenick
et al., 2008; Zou and Hastie, 2005).

Simulated data

The performance of LR12, LR12-UST, LR1 and SVM-RFE were
assessed using simulated datasets. This data consists of two
discriminating regions responding to two conditions but with
different amplitudes. Simulated datasets were constructed by creating
summary statistics (Z-scores) of fMRI time-series data and then
adding signals in multiple predefined regions using procedures
similar to those described by De Martino et al. (2008) and Wang
(2009). The datasets were created at various contrast-to-noise ratios
(CNRs) and prevalence rates.

In this simulated dataset, we create two classes (or conditions)
with two non-overlapping discriminatory regions. This simulation
method is similar to that used in (DeMartino et al., 2008) but with the
following extensions:

(a) We directly simulate summary statistics (Z-scores) rather than
voxel time-series.

(b) We generated datasets with several different prevalence rates,
rather than using just one rate.

(c) We introduce spatial correlations in both discriminating as is
typically the case in fMRI data.

(d) The distribution of voxels within the “activated” regions was
simulated with spatially contiguous correlations. In typical
fMRI data, clusters of contiguous voxels respond to a condition.
for whole-brain classification of fMRI data, NeuroImage (2010),
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Therefore, we simulate the voxels responding to these condi-
tions as spatially correlated contiguous voxels.

We created discriminative regions in the following way: In region-
1, the level of activations in class-1 is greater than that in class-2. In
region-2, the levels of activation in class-1 are less than that in class-2.
The differences between the levels are simulated in such a way that a
fixed contrast-to-noise ratio is satisfied. Since in actual fMRI data,
adjacent active voxels are spatially correlated, in our simulations we
introduced spatial correlations among the discriminating voxels.

We simulated high spatial correlation (Pearson correlation
coefficient ρ=0.7) for voxels in region-1, class-1; medium correlation
(ρ=0.5) in region-1, class-2. Conversely, high spatial correlation
(ρ=0.7) for voxels in region-2, class-2; medium correlation (ρ=0.5)
in region-2, class-1. The other non-discriminating voxels in both
classes have no spatial correlation.

More specifically, for class-1, region-1, s-th observation for i-th
feature Xi

(s) was simulated as follows:

X sð Þ
i = Z1 + εi i = 1…p1;s = 1…25 ð17Þ

where, Z1 is chosen as 1 and p1 is the number of discriminating
features in class-1, region-1. εi, i=1,….p1 were generated using
Matlab's mvnrnd function where in the correlation between εi′s was
set to 0.7 and variance of each εi was set to 1.

For class-2, region-1, s-th observation for i-th feature Xi
(s) was

simulated as follows:

X sð Þ
i = Z2 + εi i = 1…p1;s = 1…25 ð18Þ

where, Z2 is chosen such that certain CNR is satisfied. Here, CNR is
defined as

CNR =
jZ1−Z2j

σ
ð19Þ

where, σ is noise variance which is set to 1. In class-2, εi′s were
generated such that the spatial correlation between themwas 0.5 and
variance was 1. In non-discriminating regions, data was generated
such that there is no correlation between voxels.

X sð Þ
i = �i; s = 1…50 ð20Þ

ϵi∼N 0;1ð Þ: ð21Þ

Data was generated similarly in region-2 in both classes but with
the difference that the spatial correlations and activation levels in
region-2, class-2 was greater than that in region-1, class-1 as
mentioned earlier. We chose to introduce different spatial correla-
tions in the same region across two classes in order to simulate
spatially discriminative patterns in the data in addition to the
discriminative features with respect to activation levels. We gener-
ated 25 observations (s=25) in each class.

The datasets were generated with CNR=0.1, 0.3, 0.5, 0.75, 1, and
1.5 and for each CNR we generated datasets with feature prevalence
rates of 0.5%, 1%, 2.5%, 5%, 10% 20%, 30%, 40% and 50%. The total
number of voxels for each dataset was 40,000. Here, we define
prevalence rate as the percentage of discriminating voxels in both
regions compared to actual number of voxels.

Experimental data

We examined the performance of each method on fMRI data
acquired from 20 participants during an auditory experiment
involving music and speech stimuli. Music stimuli consisted of three
familiar and three unfamiliar symphonic excerpts composed during
the Classical or Romantic period, and speech stimuli were familiar and
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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unfamiliar speeches (e.g., Martin Luther King, President Roosevelt)
selected from a compilation of famous speeches of the 20th century
(Various, 1991). All music and speech stimuli were digitized at
22,050 Hz sampling rate in 16-bit. A pilot study in a separate group of
participants was used to select music and speech samples that were
matched for emotional content, attention, memory, subjective
interest, level of arousal, and familiarity (Abrams et al., submitted
for publication).

Each music and speech excerpt was 22–30 s in length. To present
the stimuli to the participants in the scanner, we programmed two
runs (one each formusic, and speech) into Eprime V1.0 (Psychological
Software Tools, 2002). We counterbalanced and randomized the
order of the individual excerpts.

Participants were instructed to press a button on a magnetic
scanner-compatible button box whenever a sound excerpt ended.
Response times were measured from the beginning of the experiment
and the beginning of the excerpt. The button box malfunctioned in
eight of the scans and recorded no data, but because themain purpose
of the button press was to ensure that participants were paying
attention, we retained those scans, and they were not statistically
different from the other scans. All participants reported listening
attentively to the music and speech stimuli.

Images were acquired on a 3 T GE Signa scanner using a standard
GE whole-head coil (software Lx 8.3). Images were acquired every 2 s
in two runs, each lasting 8 min, 4 s. A custom-built head holder was
used to prevent head movement during the scan. Twenty-eight axial
slices (4.0 mm. thick, 1.0 mm skip) parallel to the AC/PC line and
covering the whole brain were imaged with a temporal resolution of
2 s using a T2*-weighted gradient-echo spiral in-out pulse sequence
(TR=2000 ms, TE=30 ms, flip angle=80°, 262 time frames and 224
time frames, respectively, and 2 interleaves). The field of view was
200×200 mm, and the matrix size was 64×64, providing an in-plane
spatial resolution of 3.125 mm. To reduce blurring and signal loss
arising from field in homogeneities, an automated high-order
shimming method based on spiral in-out acquisitions was used
before acquiring functional MRI scans (Kim et al., 2000). Images were
reconstructed, by gridding interpolation and inverse Fourier trans-
form, for each time point into 64×64×28 image matrices (voxel size
3.125×3.125×5.0 mm). A linear shim correction was applied sepa-
rately for each slice during reconstruction using a magnetic field map
acquired automatically by the pulse sequence at the beginning of the
scan (Glover and Lai, 1998).

To aid in localization of the functional data, a high-resolution T1-
weighted spoiled grass gradient recalled (SPGR) inversion-recovery
3D MRI sequence was used with the following parameters:
TR=35 ms; TE=6.0 ms; flip angle=45 °; 24 cm field of view; 124
slices in coronal plane; 256×192 matrix; 2 averages, acquired
resolution=1.5×0.9×1.1 mm. The images were reconstructed as a
124×256×256 matrix with a 1.5×0.9×0.9-mm spatial resolution.
Structural and functional images were acquired in the same scan
session.

Data were pre-processed using SPM5 (www.fil.ion.ucl.ac.uk/spm).
Images were corrected for movement using least squares minimiza-
tion without higher order corrections for spin history, and were then
normalized to stereotaxic MNI coordinates using nonlinear transfor-
mations (Friston et al., 1996). Images were then resampled every
2 mm using sinc interpolation and smoothed with a 4-mm Gaussian
kernel to reduce spatial noise. T-scores (T-maps) for the contrasts
[Music−Rest] and [Speech−Rest] were computed for each subject
using a general linear model. The T-maps computed for these two
contrasts were then used for classification.

Results

We first compare the performance of LR12, LR12-UST, LR1, and
SVM-RFE on simulated datasets by evaluating the sensitivity, false
for whole-brain classification of fMRI data, NeuroImage (2010),
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positive rate, accuracy in feature selection and cross validation
accuracy provided by each of these methods at various CNRs and
feature prevalence rates. We then compare these methods on
experimental data.

Performance on simulated dataset

Fig. 1 shows 10-fold cross validation accuracies obtained using
LR12, LR12-UST, LR1, SVM-RFE1 and SVM-RFE2 methods. For CNRs of
0.1 and 0.3, the CVAs obtained by these methods are only about
chance level (0.5). The classification accuracies obtained by these
methods improve for CNRs of 0.5 and above and are comparable.

Fig. 2 shows the accuracies in feature selection obtained by LR12,
LR12-UST, LR1, SVM-RFE1 and SVM-RFE2 methods. Accuracies of
LR12, LR12-UST and LR1 improved with the increase in CNRs. For
CNRs of 0.5 and above, LR12 performed better than LR12-UST, LR1 and
SVM-RFE at most of the prevalence rates. Between the two SVM-RFE
methods, accuracies obtained by SVM-RFE2 were better than that
achieved by SVM-RFE1.

Figs. 3 and 4 respectively show sensitivities and false positive rates
obtained by each of the methods. For low CNRs of 0.1 and 0.3, the
sensitivities obtained by all methods are poor. SVM-RFE1 shows
higher sensitivity but with very high false positive rates as shown in
Fig. 4. For CNRs of 0.5 and above, sparse logistic regression methods
Fig. 1. 10-fold, 3-way, cross validation accuracy (CVA) obtained using LR12, LR12-UST, LR1, S
0.5. CVAs are above chance level for only CNRs of 0.5 and above. CVAs obtained by all meth
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(LR12, LR12-UST and LR1) performed better than SVM-RFE1 and
SVM-RFE2. Among the logistic regression methods, LR12 has higher
overall performance with respect to accuracies in voxel selection as
shown in Fig. 2. Between the two SVM-RFE methods, SVM-RFE1
resulted in higher sensitivities compared to SVM-RFE2 as shown in
Fig. 3 but at the cost of higher false positives (Fig. 4).

Univariate methods based on general linear models are generally
used to analyze fMRI data. These methods take only differences in
activation levels in voxels between conditions while multivariate
methods presented here consider both spatial and activation level
differences in the data. In order to examine whether the conventional
univariate approach is sensitive in finding discriminative voxels, we
applied two-sample T-test on the simulated data at a p-value of 0.05,
corrected for multiple comparisons using false discovery rate. The
sensitivity of univariate two-sample T-test was poor compared to
other methods at CNRs of 0.75 and below as shown in Fig. 3.
Effects of initial voxel reduction

We applied a voxel reduction step in conjunction with LR12 and
SVM-RFE at a prevalence rate of 0.5%, identical to the rate used by De
Martino et al. (2008). We selected a union of top 2000 voxels,
corresponding to 10 times the number of discriminating voxels.
VM-RFE1 and SVM-RFE2 at different CNRs and feature prevalence rates. Chance level is
ods are comparable.

for whole-brain classification of fMRI data, NeuroImage (2010),
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Fig. 2. Accuracy of feature selection obtained using LR12, LR12-UST, LR1, SVM-RFE1 and SVM-RFE2. LR12 has better accuracy compared to other methods for most CNRs and feature
prevalence rates.
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Table 1 compares the performance of thesemethodswith andwithout
voxel reduction step.

Table 1A shows that CVA improved with voxel reduction step for
both LR12 and SVM-RFE at 0.5% prevalence rate, particularly at low
CNRs (0.1–0.5). The improvement is more significant for LR12 at
lower CNRs. The CVAs achieved by LR12 are higher than that of SVM-
RFE with and without voxel reduction. Table 1B, C and D shows
accuracies, sensitivity and false positive rates in voxel selection with
and without voxel reduction step at 0.5% prevalence rate. In this case,
the performance of SVM-RFE1 and SVM-RFE2 in voxel selection
accuracy improved at both low and high CNRs (Table 1B) with voxel
reduction. However, the sensitivity in voxel selection achieved by
LR12 after voxel reduction is better than that of SVM-RFE1 and SVM-
RFE2 (Table 1C) but at marginally higher false positives (Table 1D) for
CNRs above 0.5. Although the false positive rates of SVM-RFE1 and
SVM-RFE2 reduced with the initial voxel reduction (Table 1D) but
their sensitivities decreased (Table 1C) compared to the case where
there was no voxel reduction.

Performance on experimental fMRI data

We examined the performance of the four classification
approaches on fMRI data from an auditory experiment examining
neural processing of global acoustical differences between music and
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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speech. Using the four classification methods, we quantified the cross
validation accuracies for the Music versus Speech conditions. In
addition to performing whole-brain analyses, we also performed the
exact same analyses using a mask as a means of excluding deactivated
voxels and including only those voxels which showed increased signal
levels during music and/or speech stimuli (Supplemental Fig. S1).

LR12 and LR12-UST methods
LR12 and LR12-UST classified a distributed cortical network in the

frontal, temporal, and parietal and occipital lobes, as shown in Figs. 5A
and B, respectively. LR12 and LR12-UST methods identified nearly
identical voxels throughout these cortical structures, with LR12-UST
indentifying a slightly larger extent of voxels relative to LR12.
Temporal lobe structures identified using these methods included
large portions of bilateral anterior and posterior divisions of the
middle and superior temporal gyri and temporal poles, as well as
right-hemisphere planum temporale. Both methods also identified
bilateral parahippocampal gyri, left-hemisphere hippocampus, amyg-
dala, and putamen, as well as right-hemisphere insula. Frontal lobe
structures identified using LR12 and LR12-UST methods included
bilateral frontal orbital cortex (BA 47), frontal poles, and post-central
gyri. In the parietal lobe, LR12 and LR12-UST methods identified
bilateral angular gyri as well as a number of occipital cortical regions,
including the occipital pole and inferior and superior lateral occipital
for whole-brain classification of fMRI data, NeuroImage (2010),
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Fig. 3. Sensitivity of feature selection obtained using LR12, LR12-UST, LR1, SVM-RFE1, SVM-RFE2 and univariate T-test. LR12 has better sensitivity compared to other methods for
most CNRs (in particular for high CNRs) and feature prevalence rates. The sensitivity of univariate T-test (at p-value of 0.05, FDR corrected) is poor for CNRs below 0.75 compared to
other methods.
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cortex bilaterally. Finally, discriminating voxels were also found in
anterior and posterior cingulate and paracingulate cortex in the left-
hemisphere as well as the cerebellum and brainstem. The cross
validation accuracies obtained by LR12 and LR12-UST were 58.67%
and 58.33% respectively in classifying music versus speech.

LR1 method
Brain regions that LR1 discriminated were extremely focal

(Fig. 5C). This method revealed an extremely small collection of
voxels in the left-hemisphere posterior middle temporal gyrus,
inferior lateral occipital cortex, and cerebellum. Discriminated voxels
in the left-hemisphere were sparse, where fewer than 5 voxels were
selected in each of these left-hemisphere brain regions; LR1 did not
identify any voxels in the right-hemisphere. This method revealed
substantially fewer voxels than any of the other classification
methods. The cross validation accuracy in classifying music versus
speech by this method was 51.66%.

SVM-RFE method
The SVM-RFE1 (Fig. 5D) and SVM-RFE2 (Fig. 5E) methods were

considerably less selective compared to the other methods. Not
only did SVM-RFE1 and SVM-RFE2 identify all of the cortical and
subcortical structures revealed using both LR12 and LR12-UST
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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methods, they also identified a large number of additional voxels
throughout the brain. The additional structures identified by SVM-
RFE1 and SVM-RFE2 covered a large extent of the cortex, including
many voxels in white matter areas of the brain. Compared to L1, LR12
and LR12-UST methods, the SVM-RFE methods were far less specific.
The cross validation accuracy in classifying music versus speech by
these methods was 54%. Note that CVAs obtained by SVM-RFE1 and
SVM-RFE2 were exactly the same. They differ only with respect to the
discriminative map computations.

LR1, LR12, LR12-UST and SVM-RFE methods using a functional mask
In addition to performing whole-brain analyses, we also per-

formed the exact same analyses using a functional mask as a means of
excluding deactivated voxels and including only those voxels which
showed increased signal levels during music and/or speech stimuli
(Supplemental Fig. S1). Similar to results from the whole-brain
analysis, results varied considerably among the classification meth-
ods, with LR1 showing a relatively sparse collection of voxels, LR12
and LR12-UST methods showing intermediate specificity, and SVM-
RFE1 and SVM-RFE2 showing less specificity compared to the other
methods. Between SVM-RFE1 and SVM-RFE2 methods, SVM-RFE2
wasmore specific, while SVM-RFE1 showed nearly every voxel within
the masked brain regions as discriminating voxels. Furthermore, the
for whole-brain classification of fMRI data, NeuroImage (2010),
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Fig. 4. False positive rates in feature selection obtained using LR12, LR12-UST, SVM-RFE1 and SVM-RFE2. False positive rates of LR12 are lower compared to other methods for most
CNRs and prevalence rates.
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LR12-UST method again showed a slightly larger extent of voxels
compared to LR12. Both LR12 and LR12-UST methods indentified
voxels in bilateral superior and middle temporal cortex, medial
temporal lobe structures, frontal orbital cortex (BA 47) and frontal
pole, and the cerebellum and brainstem. The cross validation
accuracies provided by LR12, LR12-UST, LR1 and SVM-RFE were
respectively 67.33%, 62.6%, 70.67% and 70% (again, CVAs obtained by
SVM-RFE1 and SVM-RFE2 were exactly the same).

Discussion

We developed a novel whole-brain classification algorithm based
on logistic regression for analysis of functional imaging data. Our LR12
method incorporates L1 and L2 norm regularization to achieve
optimal feature selection in the presence of highly correlated features.
This method provides three key improvements over existing
methods: first, LR12 method can be scaled to whole-brain analysis;
second, the method provides a data-driven mechanism to eliminate
voxels which do not discriminate between two classes, while
retaining voxels which can distinguish between the two classes of
stimuli; and third, LR12 does not depend on any preset parameters.
Critically, comparison of our classification algorithm with LR12-UST,
LR1 and SVM-RFE on simulated datasets revealed superior perfor-
mance in terms of accuracy of feature selection at various CNRs and
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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feature prevalence rates. On the experimental data, LR12 was more
effective in selectively isolating a distributed fronto-temporal net-
work that distinguished between brain regions known to be involved
in speech and music processing.

Advantages of LR12 method for classification of fMRI data

We used the bound optimization strategy along with the
component-wise update procedure employed in Krishnapuram et al.
(2005) in order to achieve computationally feasible whole-brain
classification. This approach could be applied to LR12-, LR12-UST- and
LR1-based methods. In comparison, existing methods that use the
IRWLS optimization on small ROI data (Yamashita et al., 2008) cannot
be scaled for whole-brain analysis. The reason IRWLS cannot be scaled
is that it requires computation and inversion of a Hessian matrix,
whose size is the same as the number of voxels at each iteration. This
is computationally intractable. Our simulations show, for the first
time, that using bound optimization along with component-wise
update procedure is highly suited for fMRI data classification.

Our LR12 method incorporates both L1 and L2 norm regulariza-
tions. This combination of L1 and L2 norm regularization helps in
determining the spatially correlated regions in the brain which
discriminate between conditions. The degrees of these regularizations
(γ1 and γ2) that need to be used for achieving this purpose is
for whole-brain classification of fMRI data, NeuroImage (2010),
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Table 1
Cross validation accuracy (CVA) (A) and accuracy (B) and sensitivity (C) and false rate positive (D) in voxel selection obtained using LR12, SVM-RFE1 and SVM-RFE2 with and
without an initial reduction step at a prevalence rate of 0.5%. Note that CVAs obtained by SVM-RFE1 and SVM-RFE2 were exactly the same. They differ only with respect to the
discriminative map computations.

(A) Cross validation accuracy (CVA)

No voxel reduction Voxel reduction

CNR LR12 SVM-RFE1/2 LR12 SVM-RFE1/2

0.1 0.42 0.26 0.66 0.5
0.3 0.56 0.24 0.66 0.5
0.5 0.6 0.4 0.74 0.62
0.75 0.78 0.48 0.78 0.56
1.0 0.82 0.52 0.8 0.62
1.5 0.92 0.7 0.94 0.86

No voxel reduction Voxel reduction

CNR LR12 SVM-RFE1 SVM-RFE2 LR12 SVM-RFE1 SVM-RFE2

(B) Accuracy
0.1 0.99 0.75 0.81 0.92 0.92 0.9
0.3 0.99 0.005 0.37 0.92 0.9 0.93
0.5 0.99 0.11 0.53 0.92 0.96 0.95
0.75 0.68 0.58 0.74 0.93 0.96 0.94
1.0 0.91 0.76 0.82 0.93 0.96 0.96
1.5 0.97 0.76 0.82 0.93 0.97 0.96

(C) Sensitivity
0.1 0 0.19 0.11 0.03 0.02 0.025
0.3 0 1.0 0.915 0.07 0.075 0.055
0.5 0.04 0.93 0.755 0.4 0.17 0.245
0.75 1.0 1.0 1.0 0.94 0.44 0.825
1 0.99 0.99 0.99 0.96 0.54 0.755
1.5 1.0 1.0 1.0 1.0 0.8 0.99

(D) False positive rate (FPR)
0.1 5.03E−05 0.25 0.2 0.08 0.07 0.1
0.3 0.004 0.99 0.9 0.08 0.1 0.07
0.5 0.001 0.89 0.6 0.07 0.04 0.05
0.75 0.32 0.43 0.3 0.07 0.03 0.06
1.0 0.08 0.24 0.2 0.07 0.03 0.04
1.5 0.03 0.24 0.2 0.068 0.028 0.03
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estimated directly from the data using a combination of grid search
and cross validation procedure. Therefore, unlike the other methods,
this approach does not require any arbitrary preset parameters for
feature selection.

Another advantage of the LR12 algorithm is that it allows the user
to select useful priors during whole-brain analysis. For example, we
can incorporate spatial priors to account for neighborhood informa-
tion and correlated activity around each voxel. By introducing such
priors, we can avoid isolated features and noise which are frequently
encountered in approaches that use the search-light algorithm or
even the general linear model. Such spatial constraints can easily be
incorporated in our framework by modifying the cost function in
Eq. (10).

Comparison with LR1 and LR12-UST

Performance comparison
LR1 and LR12-UST are special cases of LR12. In LR1 γ2=0 and in

LR12-UST γ2 is set to 104 while in LR12, both the parameters (γ1 and
γ2) are optimized. LR12 resulted in higher overall accuracy in feature
selection at most of the prevalence rates, and for CNRs of 0.5 and
above. For low CNRs (0.1 and 0.3), all three sparse logistic regression
methods and SVM-RFE resulted in CVAs at or below chance level (0.5).
In the case of LR1, the sensitivity of feature selection is not consistent,
as shown in Fig. 3. On the other hand, LR12-UST resulted in high
sensitivity in voxel selection (Fig. 3) but false positive rates were also
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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higher (Fig. 4). The performance of thesemethods can be attributed to
inclusion or exclusion of L2-norm penalty. When the discriminating
voxels are spatially correlated, LR1, which did not include L2-norm,
selected only a subset of these voxels, resulting in decreased
sensitivity. LR12-UST, which uses a fixed L2-norm regularization,
resulted in higher sensitivity as well as higher false positive rates since
the regularization parameter (γ2) was not optimized in this case. On
the other hand, LR12 resulted in higher accuracy in selecting relevant
features compared to LR1 and LR12-UST because it optimizes both L1
and L2 norm regularization parameters.

Our findings are consistent with evidence from previous linear
regression literature (Zou and Hastie, 2005), LR1 yielded sparse
solutions with variable sensitivity. This can be explained by the fact
that L1 norm regularization facilitates sparse solutions and serves as a
powerful method for feature selection when features are uncorrelat-
ed. However, for datasets in which features are correlated, such as
fMRI data, methods based on L1 norm regularization select only a
subset of correlated features. This phenomenon was first observed in
Lasso (least absolute shrinkage and selection operator) (Tibshirani,
1996), which is an L1 regularized method for linear regression
methods. Zou and Hastie (2005) developed a method called Elastic-
net, an extension of Lasso that introduces a combination of L1 and L2
norm regularization. It was shown that the Elastic-net method is
effective in selecting an entire group of relevant and highly correlated
features and that introducing L2 norm regularization is crucial for the
selection of relevant features. Carroll et al. (2009) used Elastic-net for
for whole-brain classification of fMRI data, NeuroImage (2010),
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Fig. 5. Brain areas that discriminated between speech and music stimuli using LR12, LR12-UST, LR1, SVM-RFE1 and SVM-RFE2 methods (rows A–E). Surface renderings (left and
rightmost columns) and sections are shown for each method. Note the increasing spatial extent of brain voxels that discriminated across conditions. SVM-RFE1 was highly non-
selective in the sense that many voxels were chosen by the classifier.
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fMRI data analysis. Our method extends Elastic-net, which was
designed for regression analysis, to classification problems.
Comparison with SVM-RFE

Performance comparison
The cross validation accuracies obtained by SVM-RFE and sparse

logistic regression methods are comparable. For low CNRs of 0.1 and
0.3, all the classification methods resulted in CVAs at or below chance
levels. For CNRs of 0.5 and above, both LR12 and SVM-RFE resulted in
CVAs above chance level (Fig. 1). The poor CVAs achieved by the
classification methods at low CNRs can be attributed to the small
differences between discriminating regions across the conditions.
Under such conditions, the data is difficult to classify because of which
all the methods resulted in below chance level CVAs. At CNRs of 0.5
and above, the discriminability of the spatial patterns between the
classes improved thereby facilitating the classification of the data
better.

In terms of accuracy, sensitivity and false positive rates in feature
selection, LR12 performed better than SVM-RFE methods as shown in
Figs. 2–4. The sensitivity of feature selection by SVM-RFE1 and SVM-
RFE2 (Fig. 3) is greater than that of LR12 at low CNRs (0.1 and 0.3) but
this is accompanied by more false positives (Fig. 4). As a result, the
accuracy of feature selection is better in LR12 compared to SVM-RFE1
and SVM-RFE2 (Fig. 2). At CNRs of 0.5 and above, the overall accuracy
of LR12 feature selection is higher than that of SVM-RFE1 and SVM-
RFE2. The sensitivity of SVM-RFE1 and SVM-RFE2 decreases with an
increase in prevalence rates as shown in Fig. 3, particularly at high
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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CNRs; at the same time, false positive rates are greater in SVM-RFE1
and SVM-RFE2 compared to LR12 (Fig. 4).

Among SVM-RFEmethods, SVM-RFE1 resulted in better sensitivity
than SVM-RFE2 but the false positive rates obtained by SVM-RFE1 are
higher than that of SVM-RFE2. This can be attributed to the way the
final discriminative weights are computed. In SVM-RFE1 method, the
final discriminative weights were computed as the average of
discriminative weights obtained in each fold. In SVM-RFE2 method,
the final discriminative weights were computed using the entire
dataset by applying RFE at level at which CVA is maximum. The
discriminating maps obtained at each fold may have false positives
occurring at different locations. Therefore, averaging across folds
inflates the false positive rate and therefore the results obtained by
this approach are difficult to interpret. We also observed this fact
when we applied this procedure of averaging of discriminative
weights across folds on our sparse logistic regression methods (data
not shown). Moreover, it is a very common practice in the machine
learning literature, to obtain the discriminative weights on the entire
dataset after having estimated the unknown parameters with a cross
validation procedure (Hastie et al., 2001). Accordingly, the final
discriminative weights in ourmethodwere computed using the entire
dataset.

Critically, however, false positive rates in SVM-RFE1 and SVM-
RFE2 are higher compared to LR12. This can be attributed to L1-norm
regularization used in LR12which drives the small magnitudeweights
to exactly zero. However, the SVM-RFE method drives the weights
corresponding to non-discriminative voxels to small values but not
exactly to zero. Therefore, additional thresholding of weights is
required to prune out these false positives. In general, it is not
for whole-brain classification of fMRI data, NeuroImage (2010),
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straightforward to choose optimal thresholds without impairing the
performance of the classifier.

Issue of free parameters in SVM-RFE
In our simulations with SVM-RFE, we removed 10% of the smallest

weights at each recursive step. This is an arbitrary threshold but one
that is necessary for any implementation of SVM-RFE (De Martino et
al., 2008). The choice of this threshold may influence the performance
of SVM-RFE and similar methods. Our analysis suggests that this
thresholdmay not be optimal formany CNRs and prevalence rates. For
example, the sensitivity of SVM-RFE1 and SVM-RFE2 decreased with
the increase in prevalence rate even at the higher CNRs (1.0 and 1.5).
This performance may be improved if this threshold is chosen
appropriately for each prevalence rate. For these reasons, LR12
methods developed here may be preferable to methods with free
parameters.

Initial voxel reduction
Previous studies have suggested that the performance of SVM-RFE

improves with initial feature selection (De Martino et al., 2008). This
is typically implemented by retaining voxels having high-level
activations. Specifically, top N′ (=10×discriminative voxels) voxels
rank ordered according to scoring function are retained in our
analysis. We examined how the performance of LR12 and SVM-RFE
was affected by feature selection. Here we chose to describe the
comparative results at 0.5% prevalence rate because at higher
prevalence rates (N0.5%) the number of voxels retained post voxel
reduction is comparatively high; thereby making the voxel reduction
less effective (De Martino et al., 2008). We found that classification
accuracies (CVAs) and accuracy in feature selection improved with
voxel reduction in both LR12 and SVM-RFE, as shown in Table 1. This
improvement maybe due to the fact that the number of discriminative
voxels, compared to the non-discriminative voxels was low (preva-
lence rate=0.5%) and the voxel reduction step removes a large
number of non-discriminative voxels. Notably, the SVM-RFE accuracy
values showed significant improvement (Table 1B). However, the
sensitivity in voxel selection achieved by LR12 after voxel reduction is
better than that of SVM-RFE1 and SVM-RFE2 after voxel reduction
(Table 1C) but at marginally higher false positives (Table 1D) for CNRs
above 0.3. Surprisingly, the sensitivity of both SVM-RFE1 and SVM-
RFE2 decreased with voxel reduction (Table 1C), although the false
positive rates reduced with this step (Table 1D). Among the SVM-RFE
methods, the decrease in sensitivity of SVM-RFE1 is greater than that
of SVM-RFE2. This result is puzzling because one would expect SVM-
RFE1 to achieve higher sensitivity because of the way the discrimi-
nating weights were computed. The reasons for this behavior of SVM-
RFE1 with initial voxel reduction need to be investigated further. In
contrast, the sensitivity of LR12 improved marginally for CNRs of 0.1,
0.3 and 0.5 and remained almost the same for CNRs of 0.75, 1 and 1.5
(Table 1C) with the initial voxel reduction. Therefore, these results
suggest that the SVM-RFE approach, unlike LR12, is sensitive to the
selection of initial voxels. Another critical limitation of this approach
is that the number of voxels to be used in the classification must be
chosen on the basis of an arbitrary threshold. However, the main
objective of our study was to develop a fully multivariate feature
selection method without the need for ad hoc procedures for feature
selection. Moreover, in actual fMRI data, the number of voxels that can
be discarded in such an initial voxel reduction step is clearly not
known a priori. Furthermore, the discriminating features do not
necessarily have to be the most highly strongly activated voxels.

Performance on experimental fMRI data

We applied LR12, LR12-UST, LR1 and SVM-RFE (SVM-RFE1 and
SVM-RFE2) methods to an fMRI data involving well-matched speech
and music stimuli. We hypothesized that music and speech stimuli
Please cite this article as: Ryali, S., et al., Sparse logistic regression
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would be distinguished by discrete but distributed structures largely
confined to the temporal and frontal lobes which have previously
been implicated in speech and music processing (Formisano et al.,
2008; Friederici et al., 2003; Koelsch et al., 2002; Levitin and Menon,
2003; Tervaniemi et al., 2006). LR12 revealed distributed clusters in
temporal and frontal lobe regions previously implicated in speech and
music processing; LR12-UST results were nearly identical to the LR12
results, with the addition of a small number of voxels extending
beyond those identified by LR12; LR1 showed a sparse pattern with an
extremely small number of discriminatory voxels; both SVM-RFE
methods exhibited very little specificity, and revealed a diffuse
network of cortical and subcortical structures underlying speech
and music acoustics.

While the ground truth in this data set is not known, these
classification results are consistent with findings from our simula-
tions. Results on both datasets demonstrate a continuum of
anatomical specificity across the four classification methods with
LR1 being themost anatomically specific and SVM-RFEmethods being
themost anatomically diffuse. Furthermore, results from the LR12 and
LR12-UST methods are consistent with our knowledge of the auditory
system and differential processing of speech andmusic stimuli as they
identified a number of key auditory structures thought to be sensitive
to both acoustical differences in the posterior temporal cortex
(Formisano et al., 2008; Tervaniemi et al., 2006), as well as areas
within the anterior temporal (Humphries et al., 2005; Rogalsky and
Hickok, 2008) and prefrontal (Levitin and Menon, 2003; Tervaniemi
et al., 2006) cortex thought to be sensitive to phrase- and sentence-
level processing of music and speech stimuli. Our data suggest that
methods based on LR12 and LR12-UST achieve a balance between
sparse and diffuse discriminatory classification of auditory stimuli.
The LR12 algorithms developed here are also highly computationally
efficient compared to search-light algorithms (Haynes et al., 2007;
Kriegeskorte et al., 2006) that can take several days to classify whole-
brain data on a standard lab computer: analysis using the LR12
algorithm typically takes only about 3–4 h for a sample size of 20
subjects. The LR12-UST algorithm is even faster and it typically takes
less than an hour to classify whole-brain data.

Conclusions

We developed a new method for whole-brain classification based
on a combination of L1 and L2 norm regularization. Our method
provides a completely data-driven and computationally efficient
approach for both accurate feature selection and classification of
whole-brain fMRI data. Critically, it does not require user-specified
thresholds for feature selection as in recursive feature elimination
method. In the case of fMRI data, where voxels are spatially correlated,
the combination of L1 and L2 norm regularization provides a reliable
feature selection. The identification of correlated features that
discriminate between the experimental manipulations of interest is
very important for the interpretability of the fMRI classification
results. More importantly, extensive simulations indicated that
methods based on LR12 had significantly higher accuracy in feature
selection than other methods for a wide range of CNRs and feature
prevalence rates. On experimental fMRI data, LR12 was more effective
in selectively isolating a distributed fronto-temporal network that
distinguished between brain regions known to be involved in speech
and music processing.
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