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Autism spectrum disorders (ASDs) are characterized by social
impairments alongside cognitive and behavioral inflexibility. While
social deficits in ASDs have extensively been characterized, the
neurobiological basis of inflexibility and its relation to core clinical
symptoms of the disorder are unknown. We acquired functional neu-
roimaging data from 2 cohorts, each consisting of 17 children with
ASDs and 17 age- and IQ-matched typically developing (TD) children,
during stimulus-evoked brain states involving performance of social
attention and numerical problem solving tasks, as well as during in-
trinsic, resting brain states. Effective connectivity between key
nodes of the salience network, default mode network, and central
executive network was used to obtain indices of functional organ-
ization across evoked and intrinsic brain states. In both cohorts ex-
amined, a machine learning algorithm was able to discriminate
intrinsic (resting) and evoked (task) functional brain network config-
urations more accurately in TD children than in children with ASD.
Brain state discriminability was related to severity of restricted and
repetitive behaviors, indicating that weak modulation of brain states
may contribute to behavioral inflexibility in ASD. These findings
provide novel evidence for a potential link between neurophysiologic-
al inflexibility and core symptoms of this complex neurodevelopmen-
tal disorder.
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Introduction

The ability to flexibly switch between different modes of
thought is a critical feature of several aspects of human cogni-
tion. Cognitive flexibility is the readiness with which one can
selectively switch between mental processes to appropriately
respond to environmental stimuli (Scott 1962), and is thought
to rely on distributed networks involving lateral prefrontal,
posterior parietal, anterior cingulate, and anterior insular corti-
ces (Dosenbach et al. 2007; Uddin et al. 2011; Cole et al. 2013).
Cognitive “inflexibility” is a hallmark of autism spectrum disor-
ders (ASDs), neurodevelopmental disorders characterized by
social communication deficits, fixated interests, and repetitive
behaviors. Measures of flexibility are predictive of symptom se-
verity for repetitive behaviors in individuals with ASDs (Lopez
et al. 2005; Van Eylen et al. 2011). At present, little is known re-
garding the neurobiological basis of this inflexibility.

Recent work has identified several core large-scale brain net-
works involved in coordinating flexible behaviors. Among
these are (1) a fronto-parietal central executive network (CEN)
comprised of the dorsolateral prefrontal cortex (DLPFC) and

posterior parietal cortex (PPC), involved in the maintenance
and manipulation of information and decision-making in the
context of goal-directed behavior; (2) a default mode network
(DMN) including the ventromedial prefrontal cortex (VMPFC)
and posterior cingulate cortex (PCC), associated with self-
related and social cognition; and (3) a salience network (SN)
with key nodes in the right fronto-insular cortex (rFIC) and an-
terior cingulate cortex (ACC), involved in interoceptive, affect-
ive, attention, and control processes (Sridharan et al. 2008). An
important function of the SN is to identify relevant internal and
extrapersonal stimuli to guide flexible behavior (Seeley et al.
2007). It has recently been demonstrated that children with
ASD exhibit intrinsic functional hyperconnectivity within the
SN, CEN, and DMN (Uddin, Supekar, Lynch, et al. 2013) as
well as other neural systems (Supekar, Uddin, et al. 2013). This
within-network intrinsic hyperconnectivity in ASD may result
in “network isolation” during task-evoked states, limiting
dynamic interactions between brain networks that are neces-
sary for flexible and adaptive cognition and behavior (Cole
et al. 2013). The hypothesis that an intrinsically hypercon-
nected brain may result in aberrant dynamic processing during
task-evoked states can be tested by examining causal interac-
tions between brain regions.

Decades of studies using animal models suggest that hyper-
excitability during critical periods for neural development can
lead to highly undifferentiated brain states in later life (Ruben-
stein and Merzenich 2003). Yet, the role of brain state differen-
tiation in human brain function is largely unknown. In
addition, implications of these findings for typical and atypical
human brain development have not been fully explored. In
particular, no previous studies have explored the extent to
which brain states are differentiated in ASD. It is unknown
whether such mechanisms contribute to impairments in
dynamic interactions between large-scale brain networks that
might underlie cognitive and behavioral inflexibility in the
disorder.

Both intrinsic and task-induced functional connectivity have
widely been investigated in the human brain using fMRI
(Biswal et al. 1995; Greicius et al. 2003; Schipul et al. 2012).
Functional connectivity is a measure of temporal correlations
between remote neurophysiological events, and effective con-
nectivity is a measure of the influence one neural system exerts
over another (Friston 1994; Seth 2010). An emerging literature
suggests that, in young children with ASD, intrinsic functional
hyperconnectivity can be observed across both cortical and
subcortical systems (Di Martino et al. 2011; Keown et al. 2013;
Supekar, Uddin, et al. 2013; Uddin, Supekar, Menon 2013).
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Previous effective connectivity studies of ASDs have revealed
reductions in causal connectivity between social brain regions
in adolescents and adults with the disorder (Wicker et al. 2008;
Deshpande et al. 2013; Hanson et al. 2013).

Here we used effective connectivity between nodes of the
CEN, DMN, and SN in children with ASD and also in typically
developing (TD) children as indices of network configuration
across intrinsic and evoked brain states. We tested the hypoth-
esis that intrinsic network hyperconnectivity recently docu-
mented in this population (Uddin, Supekar, Lynch, et al. 2013)
is associated with reduced flexibility between intrinsic and
evoked brain states. Additionally, we assessed whether these
measures of brain state differentiation could be used to predict
severity of behavioral impairment in children with ASD.

Materials and Methods

Participants
Participants were recruited in the San Francisco Bay Area through ad-
vertisements in school and local newspapers and fliers. Children with
ASDs were also recruited from the Stanford Autism Clinic and the
Lucille Packard Children’s Hospital at the Stanford Medical Center.
Data were collected from 2 cohorts, each consisting of children with
ASD and TD children. Diagnosis of ASD was established using the
Autism Diagnostic Interview (ADI-R; Lord et al. 1994) and the Autism
Diagnostic Observation Schedule (ADOS, module 3; Lord et al. 2000)
administered by assessors supervised by a research-reliable clinician
(J.P.) (Table 1). Participants gave written informed assent, and parents
or guardians gave written informed consent. The study was approved
by the Stanford University Institutional Review Board.

MRI Data Acquisition
Task and resting-state fMRI data were acquired from the 2 cohorts of
participants to allow for comparison of brain network dynamics
between intrinsic and evoked states (Fig. 1A). The first experiment was
an attention-demanding task with no social processing requirement.
Children were asked to indicate whether visually presented single-digit
arithmetic problems were correct or incorrect. The second experiment
was an attention-demanding task using faces as stimuli, thus invoking
social processing. This task used a visual oddball paradigm (Crottaz-
Herbette et al. 2005) to elicit attention to social objects (e.g., faces).
Tasks were chosen so as to require attention but not be overly difficult
for children in this age range, to minimize group differences in behav-
ioral performance.

Arithmetic Task and Rest
The first cohort of MRI data was collected from 17 children with ASD
and 17 TD children matched on age and IQ. This cohort consisted of

16 male and 1 female participants in each group. Functional images
were acquired on a 3-T GE Signa scanner (General Electric, Milwaukee,
WI, USA) using a custom-built head coil (Glover and Lai 1998). Head
movement was minimized during scanning by small cushions. A total
of 29 axial slices (4.0 mm thickness and 0.5 mm skip) parallel to the
AC–PC line and covering the whole brain were imaged using a T2*-
weighted gradient-echo spiral in-out pulse sequence (Glover and Law
2001) with the following parameters: time repetition (TR) = 2000 ms,
echo time (TE) = 30 ms, flip angle = 80°, 1 interleave, for the duration
of a 6 : 32 min task scan, and a 6-min resting-state scan. The field of
view was 20 cm, and the matrix size was 64 × 64, providing an in-plane
spatial resolution of 3.125 mm. To reduce blurring and signal loss
arising from field inhomogeneities, an automated high-order shim-
ming method based on spiral acquisitions was used before acquiring
functional scans.

For the arithmetic verification task, 52 arithmetic problems were
presented in a jittered event-related design along with “rest” or “null”
trials in which participants passively viewed a cross on the screen. In
the arithmetic trials, participants were presented with an equation in-
volving 2 addends and a resultant and were asked to indicate via a
button box whether the resultant was correct or incorrect. Half the add-
ition trials consisted of problems with addends different from “1” (e.g.,
3 + 4 = 7). One operand ranged from 2 to 9, the other from 2 to 5 (tie
problems, such as “5 + 5 = 10,” were excluded), and resultants were
correct in 50% of the trials. Incorrect answers deviated by ±1 or ±2
from the correct sum. The remaining addition trials had the same
format but one addend was “1” (e.g., 5 + 1 = 7). Stimuli were displayed
for 5 s with an intertrial interval of 500 ms followed by a blank screen
for 500 ms and an intertrial jitter that varied between 0 and 3500 ms
with an average duration of 1814 ms. Details of the experimental
design are described in previous studies (Supekar and Menon 2012).

For the 6-min resting-state scan, participants viewed the following
instructions prior to beginning: “Relax. Please keep your eyes closed
but do not go to sleep.”

Social Attention Task and Rest
The second cohort of MRI data was collected from 17 children with
ASD and 17 TD children matched on age and IQ. In this cohort, the
ASD sample consisted of 16 male and 1 female participants, and the
TD group consisted of 15 male and 2 female participants. The TD
groups for the arithmetic and social attention task did not contain any
overlapping participants. There was one participant with ASD who
participated in both the arithmetic and social attention tasks separated
by a 2-year gap between studies; the remaining 16 ASD participants in
each study were nonoverlapping.

Functional images were acquired on a 3-T GE Signa scanner
(General Electric) using a custom-built head coil. Head movement was
minimized during scanning by small cushions. A total of 31 axial slices
(4.0 mm thickness and 0.5 mm skip) parallel to the AC–PC line and
covering the whole brain were imaged using a T2*-weighted gradient-
echo spiral in-out pulse sequence with the following parameters:

Table 1
Participant demographics

Arithmetic task and rest data Social attention task and rest data

ASD (n= 17) TD (n= 17) P-value ASD (n= 17) TD (n= 17) P-value

Age 9.9 ± 0.4 9.8 ± 0.4 0.89 10.5 ± 0.3 9.6 ± 0.4 0.20
Gender 16M:1F 16M:1F 16M:1F 15M:2F
Full-scale IQ 119.6 ± 3.9 119.6 ± 3.7 0.99 108.5 ± 3.8 116.4 ± 3.3a 0.13
Handedness 14R:3L 14R:3L 17R 17R
ADOS Social 8.6 ± 0.4b 9.1 ± 0.5b

ADOS Comm 3.4 ± 0.4b 3.7 ± 0.4b

ADI-A 19.3 ± 1.4 19.6 ± 1.6b

ADI-B 15.1 ± 1.4 15.8 ± 1.3b

ADI-C 5.8 ± 0.8 6.8 ± 0.6b

R, right; L, left; A, ambidextrous.
aScore missing for 1 participant.
bScore missing for 2 participants.

2 Brain Basis of Inflexibility in Autism • Uddin et al.

 at Stanford U
niversity on July 30, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


TR = 2000 ms, TE = 30 ms, flip angle = 80°, 1 interleave, for the dur-
ation of a 4-min task scan, and a 6-min resting-state scan.

A visual oddball attention task was used to assess brain responses to
deviant stimuli. The oddball task is a simple paradigm that involves
processing a sequence of events to detect a “target” deviant stimulus
embedded in a stream of repetitive standard “nontarget” stimuli and
measures orienting of attention and reflects an individual’s ability to
monitor the environment for change and decide on a course of action
(Crottaz-Herbette and Menon 2006). For the current study, social visual
stimuli (faces) were used. In an event-related design, each trial lasted
2 s, and each visual stimulus was presented for 250 ms. The intertrial
interval was fixed at 2 s, and the interdeviant interval was 10 s with a
standard deviation of 8 s. A total of 100 stimuli were presented. Two
types of stimuli were presented: 80% of trials presented the “standard”
stimulus (a female individual with a neutral expression) and 20% of
trials presented the “deviant” stimulus (a different female individual
with a neutral expression). The identity of the standard and deviant
faces was counterbalanced across participants. Face stimuli were ob-
tained from the NimStim Face Stimulus Set (http://www.macbrain.org/
resources.htm; Tottenham et al. 2009). Participants were asked to
press a button on a handheld response box with the right index finger
in response to all standard stimuli, and to press another button with
the right middle finger in response to the deviant stimuli.

As with the other cohort, for the 6-min resting-state scan, partici-
pants viewed the following instructions prior to beginning: “Relax.
Please keep your eyes closed but do not go to sleep.”

Structural MRI
For each subject, a high-resolution T1-weighted spoiled grass gradient
recalled inversion recovery 3D MRI sequence was acquired [inversion
time (TI) = 300 ms, TR = 8.4 ms; TE = 1.8 ms; flip angle = 15°; 22 cm
field of view; 132 slices in coronal plane; 256 × 192 matrix; 2 number
of excitations, acquired resolution = 1.5 × 0.9 × 1.1 mm].

MRI Data Preprocessing
A linear shim correction was applied separately for each slice during
reconstruction using a magnetic field map acquired automatically by
the pulse sequence at the beginning of the scan. Functional MRI data
were then analyzed using the SPM8 analysis software (http://www.fil.
ion.ucl.ac.uk/spm). Images were realigned to correct for motion, cor-
rected for errors in slice-timing, spatially transformed to standard
stereotaxic space [based on the Montreal Neurologic Institute (MNI) co-
ordinate system], resampled every 2 mm using sinc interpolation, and
smoothed with a 6-mm full-width half-maximum Gaussian kernel to

Figure 1. Effective connectivity between network nodes. (A) Social attention and arithmetic verification tasks were used to probe task-evoked brain states. (B) GCA of the 6 key
nodes of the salience (blue), central executive (green), and default mode (yellow) networks in TD children and children with ASD during the arithmetic task, social attention task,
and resting state. ROIs within the SN, right CEN, and DMN were based on a previous publication which identified these nodes using ICA of resting-state fMRI data (Uddin et al.
2011). Network nodes were based on 8-mm radius spheres created around coordinates from the previous study. ACC, anterior cingulate cortex; FIC, fronto-insular cortex; DLPFC,
dorsolateral prefrontal cortex; PPC, posterior parietal cortex; VMPFC, ventromedial prefrontal cortex; PCC, posterior cingulate cortex. Figures were created using BrainNet Viewer
(http://www.nitrc.org/projects/bnv/).

Cerebral Cortex 3

 at Stanford U
niversity on July 30, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
http://cercor.oxfordjournals.org/


decrease spatial noise prior to statistical analysis. Translational move-
ment in millimeters (x, y, and z) and rotational motion in degrees
(pitch, roll, and yaw) were calculated based on the SPM parameters for
motion correction of the functional images in each subject. Motion
parameters did not differ between children with ASD and TD children
(Table 2).

Region of Interest Selection
We defined functional regions of interest (ROIs) in 6 key nodes of the
SN, CEN, and DMN based on our recent previously published coordi-
nates delineating these regions in an independent dataset (Uddin et al.
2011). In that study, independent component analysis (ICA) was used
to identify the SN, DMN, and CEN in a combined group of children and
adults. Functionally defined ROIs in key nodes of the SN, CEN, and
DMN were based on the peaks of the ICA clusters. ROIs were selected
from group ICA maps as follows: in the rFIC and ACC (on the SN ICA
map); in the rDLPFC and rPPC (on the CEN ICA map); and in the
VMPFC and PCC (on the DMN ICA map). After selecting voxels with
the highest Z scores within each cluster on the functional map, the
final ROIs were constructed by drawing spheres with centers as the
seed-point and a radius of 8 mm (Table 3).

Effective Connectivity: Multivariate Granger Causal Analysis
Multivariate Granger causal analysis (GCA) was performed in accord-
ance with the methods of Seth (2010). First, the mean time course from
each ROI was extracted for all subjects. Each time series was then de-
trended and its temporal mean was removed. GCA was performed to
test for causal influences between ROIs. The order of the vector autore-
gressive (VAR) model used for computation of the influence measure
was selected using Bayesian information criterion (BIC). The model

order as determined by BIC was 2 for all datasets analyzed. Differen-
cing was not applied because the majority of data in each group was
covariance stationary. We proceeded to construct group-wise causal
connectivity graphs from these raw F-values as described next. We per-
formed statistical inferencing on the causal connections using non-
parametric analyses. Empirical null distributions of influence terms
(F-values) and their differences were estimated nonparametrically by
generating surrogate datasets under the null hypothesis that there are
no causal interactions between the regions. To generate an instance of
surrogate data, a Fourier transform was applied to each regional time
series and the phase of the transformed signal was randomized.
Inverse Fourier transform was then applied to generate one instance of
surrogate data. This procedure ensures that the magnitude spectrum of
the data is preserved while any causal interactions between various
regions are eliminated. Test statistics were then computed by fitting the
VAR model to the surrogate data. This procedure was repeated for
several instances of surrogate data (n = 500) to obtain the null distribu-
tion of F-values and their differences. Those directed connections
whose mean (across subjects in the group) was significantly different
from the mean of the null (F-value) distribution were identified using
statistical tests and a stringent threshold [P < 0.01, false discovery rate
(FDR) corrected for multiple comparisons]. The stringent threshold
was chosen to avoid potentially spurious causal links introduced by
the low temporal resolution and hemodynamic blurring in the fMRI
signal. In addition, a difference of influence (doi) term (Fx→ y− Fy→ x)
was used to assess links that showed a dominant direction of influence;
the difference term further limits potentially spurious links caused by
hemodynamic blurring. Again, these dominant links were those
wherein the mean of the difference of influence term significantly dif-
fered from the empirically constructed null distribution (P < 0.01, FDR
corrected for multiple comparisons).

Classification Analysis: Discriminating Evoked Versus
Intrinsic Connectivity Patterns
To assess the extent to which brain network patterns in evoked versus
intrinsic states could be discriminated in both groups of participants,
we used a multivariate statistical pattern recognition-based method.
The effective connectivity patterns—strength of causal connectivity of
15 pairs of ROIs—were used as the input (features) to a multivariate
pattern-based classifier. The classifier distinguishes evoked brain state
from intrinsic brain state by making a classification decision based on
the value of the nonlinear combination of these features. An advantage
of using a multivariate classifier approach, as opposed to a traditional
univariate t-test, is that a multivariate approach examines patterns of

Table 2
Neuroimaging data motion parameters

Arithmetic task data Social attention task data

ASD TD P-value ASD TD P-value

Range x 1.21 ± 1.53 1.09 ± 1.33 0.80 0.79 ± 1.00 0.44 ± 0.41 0.20
Range y 1.89 ± 1.84 1.49 ± 1.63 0.51 1.28 ± 2.13 0.62 ± 0.69 0.24
Range z 3.37 ± 2.93 2.62 ± 2.76 0.45 1.65 ± 1.50 1.09 ± 0.87 0.19
Range pitch 3.22 ± 2.78 2.74 ± 2.50 0.60 2.29 ± 2.71 1.24 ± 1.62 0.18
Range roll 1.22 ± 0.86 1.47 ± 1.59 0.58 1.00 ± 1.36 0.57 ± 0.47 0.24
Range yaw 1.09 ± 0.93 1.10 ± 1.40 0.98 0.87 ± 1.12 0.50 ± 0.53 0.23
Maximum displacement 3.57 ± 2.88 3.28 ± 2.78 0.77 2.72 ± 2.85 1.73 ± 1.91 0.25
Maximum scan-to-scan displacement 3.60 ± 3.56 2.64 ± 2.80 0.39 1.76 ± 1.95 1.09 ± 0.94 0.22
Mean scan-to-scan displacement 0.34 ± 0.29 0.32 ± 0.30 0.83 0.22 ± 0.23 0.14 ± 0.12 0.18

Rest data (same subjects as above) Rest data (same subjects as above)

ASD TD P-value ASD TD P-value
Range x 1.61 ± 2.17 1.07 ± 1.34 0.39 0.78 ± 1.00 0.84 ± 1.19 0.88
Range y 3.08 ± 4.51 1.90 ± 1.79 0.33 1.66 ± 2.51 0.86 ± 1.26 0.26
Range z 3.99 ± 4.18 3.06 ± 3.04 0.46 3.25 ± 5.09 1.53 ± 1.18 0.19
Range pitch 5.05 ± 5.80 4.07 ± 3.81 0.56 4.35 ± 6.87 2.70 ± 5.14 0.43
Range roll 1.70 ± 1.86 1.52 ± 1.77 0.78 1.06 ± 1.12 1.23 ± 2.20 0.78
Range yaw 1.49 ± 1.79 1.36 ± 1.58 0.83 0.86 ± 0.81 1.79 ± 5.24 0.48
Maximum displacement 6.04 ± 7.08 5.31 ± 5.16 0.73 5.13 ± 7.17 3.66 ± 6.15 0.53
Maximum scan-to-scan displacement 4.29 ± 5.45 3.15 ± 2.64 0.45 2.99 ± 5.46 1.74 ± 3.29 0.43
Mean scan-to-scan displacement 0.40 ± 0.45 0.25 ± 0.21 0.23 0.27 ± 0.33 0.19 ± 0.30 0.52

Table 3
Coordinates of ROIs

Network Node BA Peak MNI coordinates

Salience network R fronto-insular cortex 47 39 23 −4
Anterior cingulate cortex 24 6 24 32

Central executive network R dorsolateral prefrontal cortex 9 46 20 44
R posterior parietal cortex 40 52 −52 50

Default mode network Ventromedial prefrontal cortex 11 −2 38 −12
Posterior cingulate cortex 23/30 −6 −44 34
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causal connectivity across the entire networks, and is thus more sensi-
tive. Therefore, our multivariate approach allows us to investigate the
question of whether and to what extent causal connectivity patterns
among the 6 ROIs during evoked brain states is different from those
patterns during intrinsic brain states. Full details of this analysis are
provided in Supplementary Material.

Relationship Between Brain State Discriminability and
Symptom Severity: Correlation Analysis
To investigate relationships between brain state discriminability and
symptom severity in children with ASD, we computed correlation coef-
ficients between brain state discriminability and symptom severity
based on diagnostic criteria (ADI-R Social, ADI-R Communication,
ADI-R Repetitive Behavior, ADOS Social, and ADOS Communication
Domain scores). Brain state discriminability was measured as the “dis-
tance” between the evoked and intrinsic brain states. The distance
between each subject’s evoked state and intrinsic state was computed
by adding the distance of his/her evoked state from the hyperplane
and the distance of his/her intrinsic state from the hyperplane. As the
nonlinear SVM procedure attempts to find a hyperplane that represents
the largest separation between the 2 classes (evoked state vs. intrinsic
state), the distance from the hyperplane represents the discriminability
of the observation. Using this measure of discriminability, we tested
for significant correlations with scores on the 3 subscales of the ADI-R
and the 2 subscales of the ADOS.

Relationship Between Brain State Discriminability and
Symptom Severity: Prediction Analysis
The aforementioned correlation analysis provides information about
the associative relationship between brain state discriminability and
symptom severity in children with ASD. To assess the predictive ability
of brain state discriminability, we used a novel machine learning ap-
proach—balanced cross-validation with linear regression (Supekar,
Swigart, et al. 2013). Details of this procedure are described in Supple-
mentary Material.

Relationship Between Brain State Discriminability and IQ
To further assess the significance of brain state discriminability for in-
tellectual functioning, we conducted both correlation and prediction
analyses using full-scale IQ for children with ASD and TD children.

Results

Behavioral Responses During Arithmetic and Social
Attention Tasks
The children with ASD and TD groups did not differ on reac-
tion time or accuracy on either the arithmetic task (ASD accur-
acy 0.89 ± 0.10, TD accuracy 0.83 ± 0.15, P = 0.18; ASD reaction
time 2159.40 ± 479.70 ms, TD reaction time 2285.25 ± 314.53
ms, P = 0.37) or the social attention task (ASD accuracy
0.81 ± 0.18, TD accuracy 0.89 ± 0.13, P = 0.20; ASD reaction
time 537.10 ± 171.19, TD reaction time 636.50 ± 167.80, P =
0.12, data missing from 3 ASD and 1 TD participant).

Task-Evoked Versus Intrinsic Effective Connectivity
We computed causal influences between the 6 network nodes
for both the arithmetic task and the social attention task, as
well as for the resting-state data collected from the same indivi-
duals. During both intrinsic and evoked brain states, both
groups of children exhibited brain network dynamics consist-
ent with previous observations that the rFIC acts as a “causal
outflow hub” by influencing activity in other key network
nodes (Sridharan et al. 2008; Uddin et al. 2011) (Fig. 1B,C).

Using these 2 datasets of task and resting-state fMRI data,
we sought to examine whether children with ASD exhibit
neurophysiological inflexibility. This was tested using a non-
linear SVM classification algorithm designed to assess the dis-
criminability of effective connectivity measurements between
intrinsic and evoked brain states within subjects in both experi-
ments. This analysis revealed that task-related (evoked) and
resting-state (intrinsic) effective connectivity measures were
more discriminable in TD children than in children with ASD
(Fig. 2A). In other words, brain states during task and rest from
the same participant were more differentiated in TD children
than in children with ASD.

Relationship Between Neural Inflexibility and Clinical
Symptoms
We next sought to test whether this reduced differentiation
between brain states in ASD was related to cognitive and be-
havioral inflexibility. We tested for relationships between
symptom severity as measured by 2 subscales of the ADOS
(Communication and Reciprocal Social Interaction) and 3 sub-
scales of the ADI (Reciprocal Social Interaction, Communica-
tion, and Restricted, Repetitive, and Stereotyped Patterns of
Behavior). We found that children with ASD who were most
severely affected in the domain of restricted and repetitive be-
haviors showed the greatest degree of similarity between ef-
fective connectivity measures in task and rest during the
arithmetic task (r =−0.51, P = 0.02), with a similar trend in the
social attention task (r =−0.47, P = 0.07) (Fig. 2B,C). We
further examined the predictive ability of these connectivity
measures using a machine learning approach. Results from
this analysis showed that the degree of similarity between ef-
fective connectivity measures in task and rest during the arith-
metic task [r(pred,actual) = 0.47, P = 0.03] and the social
attention task [r(pred,actual) = 0.35, P = 0.06] predicted
symptom severity in the domain of restricted and repetitive be-
haviors. Neither the correlative nor predictive relationships
between brain state discriminability and symptom severity
were observed for any other subscale of the ADI or the ADOS
for either task. Thus, the brain–behavior relationships were ob-
served only with restricted and repetitive behaviors, and not
with measures of social communication. Relationships
between brain state discriminability and IQ were also ex-
plored. Children with ASD and TD children showed no signifi-
cant correlations or predictions using full-scale IQ.

Discussion

In addition to well-documented social communication impair-
ments, a key characteristic of ASD is the presence of restricted
and repetitive behaviors, cognitive inflexibility, and a “need
for sameness” (Turner 1999). Despite the prevalence and se-
verity of cognitive and behavioral inflexibility in ASD, there is
no unifying hypotheses or model to describe the link between
these core symptoms and brain dynamics. We show that char-
acterizing brain network dynamics in ASD during evoked and
intrinsic states can provide novel insights into the etiology and
complex phenotype of the disorder.

In the current work, we sought to uncover neural signatures
of behavioral inflexibility by examining dynamic interactions
among 3 core neurocognitive networks implicated in develop-
mental psychopathology—the default mode, salience, and
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CENs (Menon 2011). We have recently shown that the causal
influence of the rFIC “hub” on nodes of the salience and CENs
is significantly greater in adults compared with TD children,
and have suggested that functional maturation of rFIC path-
ways is critical to the development of brain networks capable
of supporting complex, flexible cognitive processes in adult-
hood (Uddin et al. 2011). Here, we leveraged the insights
gained from recent examinations of these core brain networks
to explore the extent to which the brain in ASD shows reduced
differentiation, as previously hypothesized based on animal
models (Rubenstein and Merzenich 2003). Our results suggest
that atypical brain network dynamics may contribute to cogni-
tive and behavioral inflexibility in autism.

Using patterns of effective connectivity between 6 key nodes
of 3 neurocognitive networks (DMN, SN, and CEN), we found
evidence for reduced discriminability between evoked and in-
trinsic brain states in children with ASD. Specifically, children
with ASD do not exhibit as drastic changes in connectivity pat-
terns between task-evoked processing and resting states as do

TD children. This finding is in line with the hypothesis that
autism may be characterized by “undifferentiated brain states”
(Rubenstein and Merzenich 2003) as animal models suggest.

In 2 cohorts of children, we demonstrate that evoked and in-
trinsic connectivity patterns are more differentiated in TD chil-
dren than in children with ASD. This neurophysiological
inflexibility in ASD reflects weaker task-dependent modulation
and aberrant functional connectivity in the disorder (Kana
et al. 2011; Just et al. 2012). We recently demonstrated intrinsic
functional hyperconnectivity across multiple large-scale brain
networks including the DMN, SN, and CEN in children with
ASD, and suggested that this hyperconnectivity may hinder
network interactions necessary for flexible behavior (Uddin,
Supekar, Lynch, et al. 2013). Here we show that across 2 tasks
with different instructions, cognitive demands, and stimuli,
similar patterns of neurophysiological inflexibility can be
observed in ASD. The current data provide the first empirical
evidence integrating noisy neural processing and aberrant
functional connectivity models of ASD.

Figure 2. Brain state discriminability and relation to clinical symptoms. (A) Effective connectivity measures computed for task and resting-state data were subjected to
classification analyses to determine, within each individual, the extent to which the 2 brain states could be discriminated. For both the arithmetic and social attention task, evoked
and intrinsic brain states were discriminated with a high degree of accuracy in TD children, in contrast with results observed in children with ASD. (B) Children with ASD who were
most severely affected on restricted and repetitive behaviors showed the greatest degree of similarity between causal connectivity measures in the arithmetic task and rest
(n=17; r=−0.51, P= 0.02), (C) and to some degree in the social attention task and rest (n= 15; r=−0.47, P= 0.07). As can be seen in B and C, task/rest discriminability
scores were overall much higher for the arithmetic task than for the social attention task.
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While the idea that altered patterns of functional connectiv-
ity underlie the diverse symptoms observed in autism has
dominated the field (Kana et al. 2011; Just et al. 2012), previ-
ous studies have focused on characterizing task-related con-
nectivity (Muller et al. 2011) or more recently, intrinsic
connectivity in isolation (Uddin, Supekar, Menon 2013).
However, understanding the neural basis of behavioral inflex-
ibility requires concurrent examination of both intrinsic and
evoked brain states. Recent work by You et al. (2013) has de-
monstrated atypical modulation of long-range functional con-
nectivity patterns in children with ASD as they transition from
intrinsic resting states to attention-demanding task-evoked
brain states. The work by You and colleagues is consistent
with previous studies providing evidence for noisy processing
and unreliable evoked responses (Dinstein et al. 2012) and
altered patterns of connectivity across cognitive states in ASD
(Barttfeld et al. 2012). Previous studies used static measures of
functional connectivity, and did not characterize effective con-
nectivity between brain regions for flexible cognitive control in
ASD. Here, we show that dynamic interactions between 3 core
neurocognitive networks are differentially modulated by task
performance in TD children compared with children with ASD.

Behaviorally, autism manifests as a need for sameness, cog-
nitive rigidity, and an inability to flexibly adapt behavior in
novel situations. These behaviors are linked to brain function
in our sample of children with ASD. We found a significant
positive correlation between task/rest discrimination and re-
stricted and repetitive behavior symptoms as measured by the
ADI. The ADI Restricted and Repetitive Behavior subscale
quantifies individual’s preoccupation or circumscribed pat-
terns of interests, compulsive adherence to nonfunctional rou-
tines or rituals, stereotyped and repetitive motor mannerisms,
and preoccupation with parts of objects or nonfunctional ele-
ments of material (Lord et al. 1994). As measures of cognitive
flexibility are predictive of symptom severity for repetitive be-
haviors in autism (Lopez et al. 2005), this ADI subscale serves
as a proxy for flexibility deficits in this population. Reduced
differentiation between evoked and intrinsic brain states was
more prominent in children who were most severely impaired
in the restricted and repetitive behavior domain. The differenti-
ation between evoked and intrinsic brain states was also pre-
dictive of severity of impairment in the restricted and repetitive
behavior domain in children with ASD. Severity of social and
communication deficits was not related to the brain state mea-
sures computed, nor was IQ, suggesting that there may be a
specific link with behavioral inflexibility symptoms of ASD.
While the behavioral relationships tested in the current study
are not exhaustive, the current findings suggest that weaker
modulation between task-evoked and intrinsic brain states
may underlie the behavioral manifestations of restricted and re-
petitive behaviors and cognitive inflexibility that characterize
this complex disorder. Future work with larger samples and
more comprehensive behavioral and cognitive test batteries in-
cluding the Repetitive Behavior Scale (Lam and Aman 2007)
will be necessary to test the specificity of the brain–behavior
links reported here.

It should be noted that, in addition to the cortical systems
emphasized in the current study, atypical development of sub-
cortical structures such as the basal ganglia has also been
shown to contribute to restricted and repetitive behaviors
in ASD (Langen et al. 2009). Incorporating network models
that include cortical and subcortical components is thus an

important direction for future research. In the current study,
we present a novel approach for investigating brain state dis-
criminability, revealing ASD-related atypicalities. The specifi-
city of these findings to ASD will need to be assessed in future
studies of other neurodevelopmental disorders affecting brain
connectivity and behavioral flexibility.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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