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1 | INTRODUC TION
Children with learning difficulties often manifest poor performance 
in multiple domains (Devine, Soltész, Nobes, Goswami, & Szűcs, 
2013; Lewis, Hitch, & Walker, 1994); however, their learning prob-
lems are typically considered within specific cognitive domains. For 
example, low reading abilities (LR) are widely thought to originate 
from a particular problem in representing the sound structure, or 
phonology, of language, negatively impacting the mapping of these 
sounds to orthographic representations (Wagner & Torgesen, 
1987). Similarly, low mathematical abilities (LM) are thought to 
originate from difficulties in processing quantities (Butterworth, 
Varma, & Laurillard, 2011) or mapping numeric symbols to mental 
representations of magnitudes (Rousselle & Noël, 2007), resulting 

in calculation deficits relative to their peers (Szűcs & Goswami, 
2013).

An often overlooked fact is that learning difficulties in reading 
and mathematics have co-occurrence rates of 40% or higher (Lewis 
et al., 1994); however, the cognitive and brain bases of combined 
low reading and mathematical abilities (LRLM) is poorly understood. 
From a cognitive perspective, LRLM could be driven by: (a) domain-
specific problems, separately affecting reading and mathematics-
specific functions, which are expressed additively in children with 
LRLM, (b) domain-general problems, in which difficulties in reading 
and math are secondary to difficulties in general cognitive skills, such 
as memory, necessary for both domains (Gathercole et al., 2016; 
Mammarella, Caviola, Giofrè, & Szűcs, 2017; Szűcs, 2016; Wang 
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Abstract
Impaired abilities in multiple domains is common in children with learning difficulties. 
Co-occurrence of low reading and mathematical abilities (LRLM) appears in almost 
every second child with learning difficulties. However, little is known regarding the 
neural bases of this combination. Leveraging a unique and tightly controlled sample 
including children with LRLM, isolated low reading ability (LR), and isolated low math-
ematical ability (LM), we uncover a distinct neural signature in children with co-
occurring low reading and mathematical abilities differentiable from LR and LM. 
Specifically, we show that LRLM is neuroanatomically distinct from both LR and LM 
based on reduced cortical folding of the right parahippocampal gyrus, a medial tem-
poral lobe region implicated in visual associative learning. LRLM children were fur-
ther distinguished from LR and LM by patterns of intrinsic functional connectivity 
between parahippocampal gyrus and brain circuitry underlying reading and numeri-
cal quantity processing. Our results critically inform cognitive and neural models of 
LRLM by implicating aberrations in both domain-specific and domain-general brain 
regions involved in reading and mathematics. More generally, our results provide the 
first evidence for distinct multimodal neural signatures associated with LRLM, and 
suggest that this population displays an independent phenotype of learning difficulty 
that cannot be explained simply as a combination of isolated low reading and math-
ematical abilities.
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& Gathercole, 2013), or (c) a combination of domain-specific and 
domain-general problems. Results from behavioral studies have not 
conclusively identified the contributions of domain-specific and gen-
eral problems to LRLM. Studies have consistently shown that LRLM 
is associated with both domain-specific (Peterson & Pennington, 
2012) and domain-general difficulties (Landerl, Fussenegger, Moll, 
& Willburger, 2009); however, it is unclear whether domain-general 
difficulties in LRLM are sufficient to account for both low read-
ing and low mathematical abilities. Therefore, it remains unknown 
whether cognitive and neural features in LRLM are comparable to 
additive LR and LM difficulties, or whether LRLM is characterized by 
a distinguishable set of cognitive and/or neural features.

Structural and functional brain imaging research provides an al-
ternative approach to investigating commonalities and differences 
between individuals with LRLM and individuals with isolated LR and 
LM. Although there is extensive evidence describing the brain basis 
of both LR (Shaywitz & Shaywitz, 2008) and LM (Ashkenazi, Black, 
Abrams, Hoeft, & Menon, 2013), the neurobiological signature of 
LRLM has not been explored. A recently proposed framework iden-
tifies three hypotheses that may explain the neural bases of LRLM 
(Ashkenazi et al., 2013). First, a domain-specific hypothesis states 
that additive problems in brain areas associated with both LR (i.e., 
left occipito-temporal and temporo-parietal cortices; Hoeft et al., 
2007; Skeide et al., 2016) and LM (i.e., parietal and prefrontal corti-
ces; Price, Holloway, Räsänen, Vesterinen, & Ansari, 2007) underlie 
LRLM. Second, a domain-general hypothesis posits that aberrations 
in brain structures serving attention or working memory, instan-
tiated in ventro- and dorsolateral prefrontal cortices and medial 
temporal regions, underlie LRLM. Third, a phonological hypothesis 
postulates that aberrations to temporal cortex, resulting in difficul-
ties in phonological processing systems, that are involved in mapping 
verbal codes (e.g., number words) to quantity representations, and 
in memorizing verbal arithmetic facts, preclude both normal read-
ing and mathematical skill acquisition (Ashkenazi et al., 2013; Geary, 
2004).

Here, we tested these competing hypotheses using a unique 
dataset that included four tightly controlled groups of children: 
LR, LM, LRLM, and typically developing (TD). We first used vox-
el- and surface-based morphometric analyses (Greve et al., 2014; 
Tucholka, Fritsch, Poline, & Thirion, 2012) to examine anatomical 
differences in the cortices of LR, LM, LRLM and TD groups. We 
then examined differences in intrinsic functional connectivity 
across these groups to identify functional brain circuitry that dis-
tinguishes the LRLM group. We predicted that a domain-specific 
basis for LRLM would manifest in additive problems consistent 
with both LR and LM groups, including structural and functional 
aberrations in left occipito-temporal and temporo-parietal corti-
ces, as well as bilateral parietal and prefrontal cortices (Price et al., 
2007; Skeide et al., 2016). Alternatively, a domain-general basis for 
LRLM would manifest in aberrations to ventro- and dorso-lateral 
prefrontal regions subserving working memory and attention 
(LaBar, Gitelman, Parrish, & Mesulam, 1999), or medial temporal 
lobe regions involved in associative learning (Aminoff, Kveraga, 

& Bar, 2013). Finally, a phonological basis for LRLM would man-
ifest as problems in phonological and object processing regions 
in temporo-parietal and occipito-temporal cortices similar to LR, 
with secondary effects in parietal and frontal regions serving 
mathematical cognition.

2  | MATERIAL S AND METHODS

2.1 | Participants

Our goal was to identify well-matched LR, LM, LRLM, and TD control 
groups from a cohort of 129 children, between the ages of 7 and 12, 
who had complete neuropsychological and structural brain imaging 
datasets from a multiyear brain imaging study of learning disabilities. 
All 129 children had full-scale IQ ≥ 80 to ensure no general intel-
lectual disability (American Psychiatric Association, 2013), and no 
formal diagnosis of attention-deficit/hyperactivity disorder, which 
is often co-morbid with learning difficulties (Margari et al., 2013). 
To ensure interpretable structural brain imaging results, we scruti-
nized the integrity of structural brain imaging data in all eligible par-
ticipants and subsequently excluded 46 participants based on poor 
quality of structural images (Ducharme et al., 2016; see Structural 
MRI data acquisition and analysis).

2.2 | LRLM, LR, and LM categorization

To identify individuals with LR, LM, and LRLM in this sample of 83 
eligible children, we used a normed-based cut-off criterion consist-
ent with previous studies of learning difficulties (Bruck, 1992; Evans, 
Flowers, Napoliello, Olulade, & Eden, 2014; Krafnick, Flowers, 
Luetje, Napoliello, & Eden, 2014; Olulade, Flowers, Napoliello, & 
Eden, 2013).

RESEARCH HIGHLIGHTS

•	 Cortical morphometry and intrinsic functional connec-
tivity were examined in children with low reading and/or 
mathematical abilities (LRLM) and typically developing 
children.

•	 Children with LRLM showed reduced cortical folding in 
right parahippocampal gyrus compared to comparison 
groups.

•	 Children with LRLM showed aberrant patterns of intrin-
sic functional connectivity between right parahip-
pocampal gyrus and brain regions that support reading 
and numerical processing.

•	 These data provide evidence for an independent neural 
signature of co-occurring low reading and mathematical 
abilities characterized by aberrations to both domain-
general and domain-specific brain regions.
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The LR group consisted of children who had at least average 
mathematical skills (32nd percentile, standardized test score ≥ 93) 
but performed below the 30th percentile, either in a real word or 
a pseudoword reading accuracy test (standardized test score ≤ 92). 
The LM group consisted of children who had at least average read-
ing skills (≥ 93) but mathematical skills that were below the 30th 
percentile (≤ 92). The LRLM group consisted of children who per-
formed below the 30th percentile (≤ 92) either in a real word or a 
pseudoword reading test and in a basic mathematical test. The TD 
group consisted of children that had both at least average reading 
and mathematical skills (≥ 93) (Table 1; see Psychometric assessment 
section for details).

Categorizing children based on the aforementioned criteria 
yielded a total of 11 children with LR, 29 children with LM, 13 
children with LRLM, and 29 TD children. Given that the LR group 
had the fewest number of participants among these four groups, 

our next goal was to identify LM, LRLM, and TD groups that 
matched the LR group on several characteristics that are known 
to influence brain anatomy associated with reading or mathe-
matics skills, including age (Rivera, Reiss, Eckert, & Menon, 2005; 
Turkeltaub, Gareau, Flowers, Zeffiro, & Eden, 2003), sex (Evans, 
Flowers, Napoliello, & Eden, 2014), handedness (Paracchini, Scerri, 
& Monaco, 2007), maternal education (Demir-Lira, Prado, & Booth, 
2016; Monzalvo, Fluss, Billard, Dehaene, & Dehaene-Lambertz, 
2012; Noble, Wolmetz, Ochs, Farah, & McCandliss, 2006), IQ 
(Simos, Fletcher, Rezaie, & Papanicolaou, 2014) and working mem-
ory (Beneventi, Tønnessen, Ersland, & Hugdahl, 2010). Groups 
were matched for working memory and IQ because our goal was 
to identify brain structural and functional networks that specifi-
cally distinguish children with LRLM from LR, LM and TD children 
independent of other cognitive abilities. Results from this match-
ing procedure yielded an LR group that consisted of 11 partici-
pants, and LM, LRLM, and TD groups that each consisted of 12 
participants and who were well matched on all six characteristics 
known to influence brain anatomy (p ≥ .2 on all measures; Table 2). 
Children that were excluded after matching did not differ signifi-
cantly from each other with respect to their working memory 
scores (LM: F(1, 20) = 0.82, p = .377; TD: F(1, 22) = 0.25, p = .622). 
The ethnicity of the final sample was 51.1% white/Caucasian, 
21.3% Hispanic, 6.4% African American, 6.4% Asian, 8.5% other, 
and 6.4% elected not to report.

TABLE  1 Group inclusion table

LR LM LRLM TD

Full-scale IQ > 80 > 80 > 80 > 80

Word reading 
skills

≤ 92 ≥ 93 ≤ 92 ≥ 93

Mathematical 
skills

≥ 93 ≤ 92 ≤ 92 ≥ 93

TABLE  2 Demographic and psychometric results

LR11 LM11 LRLM11 TD11 Δ12

Age1 8.67±0.62 8.88±1.19 9.04±1.47 8.70±0.63 F(3,43)=0.31, p=.819

Sex2 4m/7f 6m/6f 4m/8f 6m/6f Χ2(3)=1.11, p=.775

Handedness3 11/0 12/0 9/1 12/0 Χ2(3)=3.50, p=.321

Maternal education4 3.64±1.29 3.83±1.12 3.75±0.75 3.55±1.21 Χ2(3)=0.40, p=.939

Performance IQ5 99.45±13.43 101.92±17.14 102.67±11.04 106.50±9.08 F(3,43)=0.58, p=.629

Verbal IQ5 101.00±11.45 107.67±11.05 101.25±11.32 108.42±9.87 F(3,43)=1.58, p=.209

Full-scale IQ5 100.27±12.83 105.42±12.09 102.42±10.23 108.00±6.48 F(3,43)=1.17, p=.331

Visuospatial sketchpad6 94.20±12.47 88.42±10.27 87.30±18.57 96.09±14.61 F(3,39)=0.99, p=.407

Phonological loop7 89.89±15.02 101.27±15.32 96.40±15.08 92.82±18.17 F(3,39)=0.96, p=.424

Central executive8 89.60±11.08 91.92±16.18 83.20±13.09 95.82±12.09 F(3,39)=1.63, p=.198

Word reading skills9 91.64±4.32 111.42±3.78 83.42±5.88 109.00±5.10 Χ2(3)=36.91, p<.001*

Mathematical skills10 111.82±13.49 83.33±6.23 80.83±8.31 111.08±6.69 Χ2(3)=34.66, p<.001*

1 … years 2 … m = male/f = female 3 … right-handers/left-handers (if < 12 data unavailable)
4… 5-point scale: 1 = partial high school, 2 = high school graduate, 3 = partial college, 4 = college graduate, 5 = graduate degree
5… Wechsler Abbreviated Scale of Intelligence (WASI)
6… Automated Working Memory Assessment (AWMA) block recall / … Working Memory Test Battery for Children (WMBT-C) block recall (unavailable 
for 4 participants)
7… Automated Working Memory Assessment (AWMA) digit recall / … Working Memory Test Battery for Children (WMBT-C) digit recall (unavailable 
for 4 participants)
8… Automated Working Memory Assessment (AWMA) backward digit recall / … Working Memory Test Battery for Children (WMBT-C) backward digit 
recall (unavailable for 4 participants)
9… Wechsler Individual Achievement Test (WIAT-II) word reading / … Woodcock-Johnson (WJ-III) letter-word identification
10… Wechsler Individual Achievement Test (WIAT-II) numerical operations / … Woodcock-Johnson (WJ-III) calculation
11… LR = low reading, LM = low math, LRLM = low reading and low math, TD = typically developing
12… one-way ANOVA or Kruskal-Wallis H test, *significant (two-sided p value)
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2.3 | Psychometric assessment

Real word reading and mathematical skills were assessed either 
with the Wechsler Individual Achievement Test (WIAT-II; Word 
Reading/Numerical Operations subtests; Wechsler, 2001) or the 
Woodcock-Johnson Tests of Cognitive Abilities (WJ-III; Letter-
Word Identification/Calculation subtests; Woodcock, McGrew, 
& Mather, 2001). Correlation between WIAT-II and WJ-III was r = 
0.90 for the reading subscales and r = 0.72 for the calculation sub-
scales. Pseudoword reading skills were assessed with the Word 
Attack subtest of the WJ-III. IQ scores were determined using the 
Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). 
Working memory measures included the Block Recall, Digit Recall 
and Backward Digit Recall subtests of the Working Memory Test 
Battery for Children (WMTB-C; Pickering & Gathercole, 2001) or the 
Automated Working Memory Assessment (AWMA; Alloway, 2007).

Between-group comparisons of all demographic and psycho-
metric data were performed either by running one-way analyses of 
variance or independent-samples t tests. Within-group comparisons 
were performed by running one-sample t tests. Non-parametric 
Kruskal-Wallis H tests or Mann-Whitney U tests were carried out in 
case the data were not normally distributed, variance was inhomo-
geneous, or the sphericity assumption was violated. Within-group 
comparisons of non-normally distributed data were carried out by 
running Wilcoxon signed-rank tests.

2.4 | Structural MRI data acquisition and analysis

T1-weighted spoiled gradient recalled inversion recovery images 
were acquired on a 3T General Electric Signa scanner at a single site. 
Data from 26 participants was acquired with the following protocol 
using a 1-channel head coil: repetition time TR = 8.36 ms; echo time 
TE = 1.78 ms; inversion time TI = 300 ms; flip angle FA = 15°; band-
width = 122.11 kHz; voxel size = 1.5 × 0.9 × 1.1 mm3). Data from 
13 participants was acquired with an 8-channel head coil; repetition 
time TR = 5.90 ms; echo time TE = 1.95 ms; inversion time TI = 400 
ms; flip angle FA = 11°; bandwidth = 244.14 kHz; voxel size = 0.9 
× 0.9 × 1.0 mm3). Data from the remaining nine participants were 
acquired with a slightly different protocol but the same 8-channel 
head coil; repetition time TR = 8.36 ms; echo time TE = 1.78 ms; 
inversion time TI = 300 ms; flip angle FA = 15°; bandwidth = 122.1 
1kHz; voxel size = 1.5 × 0.9 × 1.1 mm3). Importantly, the distribution 
of protocols over the four study groups did not differ (Χ2(3) = 0.08, 
p = .994): Protocol 1: NLR = 6, NLM = 6, NLRLM = 6, NTD = 7; Protocol 
2: NLR = 1, NLM = 3, NLRLM = 4, NTD = 1; Protocol 3: NLR = 4, NLM = 3, 
NLRLM = 2, NTD = 4.

All T1 images were visually inspected for artifacts and anatomi-
cal abnormalities (Ducharme et al., 2016) before their qualities were 
rated automatically by quantifying noise, inhomogeneity and resolu-
tion using the Computational Anatomy Toolbox (CAT) (http://dbm.
neuro.uni-jena.de/cat) implemented in the Statistical Parametric 
Mapping 12 (SPM 12) software (http://fil.ion.ucl.ac.uk/spm/). To 
be included in further analyses, an image had to yield at least a 

summarized rating of ≥ 73.33 (considered as satisfactory within the 
CAT framework). Image quality did not differ significantly between 
groups (F(3, 43) = 0.98, p = .412).

The images were first normalized to an age-specific template in 
Montreal Neurological Institute (MNI) space. This template was gener-
ated from the T1 data of the sample by employing the Diffeomorphic 
Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) 
algorithm. Next, the images were segmented into gray matter, white 
matter, CSF, dura, non-brain soft tissue and air. Tissue probability maps 
used as priors for the segmentation were created from the T1 data of 
an independent reference sample with a comparable age and sex dis-
tribution using the Template-O-Matic Toolbox Version 8 (https://irc.
cchmc.org/software/tom/downloads.php).

We computed gray matter volume maps that were modulated for 
non-linear effects to preserve local volumetric values, while account-
ing for individual differences in total intracranial volume. Total intra-
cranial volume did not differ significantly between groups (F(3, 43) = 
0.42, p = .740). Finally, the volumetric images were smoothed with 
an 8 mm full-width at half-maximum (FWHM) Gaussian kernel. In the 
analysis, we also employed surface-based methods, which more accu-
rately reflect cortical geometry and have proven to be more powerful 
and reliable in detecting effects than volume-based methods, with 
fewer subjects required to achieve similar levels of significance (Greve 
et al., 2014; Tucholka et al., 2012). We estimated cortical thickness 
by applying a projection-based thickness method (Dahnke, Yotter, & 
Gaser, 2013) and local surface complexity by applying spherical har-
monic constructions (Yotter, Nenadic, Ziegler, Thompson, & Gaser, 
2011), both of which are implemented in CAT. In accordance to the 
matched filter theorem, the cortical thickness data were smoothed 
using a 10 mm FWHM Gaussian kernel whereas the cortical surface 
complexity data were smoothed using a 20 mm FWHM Gaussian ker-
nel to optimally capture features in distances between sulci and gyri 
(about 20–30 mm in the adult brain). All images were statistically an-
alyzed as between-group t-contrasts in the framework of the flexible 
factorial design implemented in SPM 12. Between-group t-contrasts 
were set up to test for additive effects of LR (−LR +LM −LRLM +TD and 
+LR −LM +LRLM −TD), additive effects of LM (+LR −LM −LRLM +TD 
and −LR +LM +LRLM −TD) and specific effects of LRLM (+LR +LM −
LRLM +TD and −LR −LM +LRLM −TD) on gray matter macrostructure. 
To correct for multiple testing, we combined a height threshold of p < 
.001 with a spatial extent threshold of p < .05 that was corrected by 
applying the false-discovery-rate (FDR) method. Significant clusters 
were identified anatomically based on the Automated Anatomical 
Labeling Atlas (http://www.gin.cnrs.fr/AAL). Image quality was unre-
lated to cortical surface complexity (r = −0.02, p = .916).

2.5 | Functional MRI data acquisition and analysis

Resting-state fMRI data were acquired using T2*-sensitive gradient 
echo spiral-in/out pulse sequences on a 3T General Electric Signa 
scanner at a single site. Data from 21 participants were acquired 
using a 1-channel head coil with the following protocol: field of view 
= 200 × 200; matrix size = 64 × 64 × 31; number of volumes = 240; 

http://dbm.neuro.uni-jena.de/cat
http://dbm.neuro.uni-jena.de/cat
http://fil.ion.ucl.ac.uk/spm/
https://irc.cchmc.org/software/tom/downloads.php
https://irc.cchmc.org/software/tom/downloads.php
http://www.gin.cnrs.fr/AAL
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voxel size = 3.1 × 3.1 × 4 mm3). Data from 10 participants were ac-
quired using an 8-channel head coil and the following parameters; 
field of view = 220 × 220; matrix size = 64 × 64 × 29; number of 
volumes = 180; voxel size = 3.1 × 3.1 × 4 mm3). Data from the re-
maining eight participants were acquired using the same 8-channel 
head coil and the following parameters; field of view = 220 × 220; 
matrix size = 64 × 64 × 29; number of volumes = 180; voxel size = 3.4 
× 3.4 × 4 mm3). All other parameters, including TR = 2.000 ms and 
TE = 30 ms were the same across all participants. The distribution 
of protocols over the four study groups did not differ (Χ2(3) = 1.35, 
p = .718): Protocol 1: NLR = 4, NLM = 5, NLRLM = 5, NTD = 6; Protocol 
2: NLR = 0, NLM = 3, NLRLM = 4, NTD = 1; Protocol 3: NLR = 4, NLM = 3, 
NLRLM = 0, NTD = 3.

fMRI data were available for 41 out of 48 subjects. First, all 
images were visually inspected for artifacts and anatomical ab-
normalities. Next, to ensure comparability of the data, all datasets 
containing 240 volumes were reduced to 180 volumes by cutting 
off the last 60 volumes. In addition, the two most ventral slices of 
all datasets containing 31 slices (covering the brainstem ventral to 
the cerebellum) were cut off so that all datasets comprised 29 slices. 
Two cutoff criteria for head motion were defined a priori to minimize 
the confounding influence of head motion: Mean distance between 
consecutive frames, that is, mean framewise displacement (FD), had 
to be < 0.2 mm. Maximum distance between consecutive frames, 
that is, maximum FD, had to be < 0.8 mm. Two datasets could not 
be included in further analyses because they violated the former cri-
terion. The final sample of 39 participants comprised 9 LR, 11 LM, 
9 LRLM and 10 TD individuals. Maximum FD in the final sample of 
39 participants was 0.79 mm, and mean FD was 0.12 mm (SD = 0.05 
mm). Mean FD was not significantly correlated with the variables of 
interest (word reading skills: r = 0.12, p = .483; mathematical skills: 
r = −0.12, p = .500) and did not differ significantly between groups 
(Χ2(3) = 2.10, p = .553).

Preprocessing was conducted using SPM12 and the FMRIB soft-
ware library (FSL) version 5.0 (http://fsl.fmrib.ox.ac.uk). The first 
four volumes of each dataset were discarded to allow for MR sig-
nal stabilization. Then, the remaining images were slice-timing cor-
rected by interpolating them and resampling them to the slice at the 
midtime point of each TR. Next, the images were motion-corrected 
by: (1) realigning them to the first volume, (2) regressing out three 
translational and three rotational parameters of each volume and its 
preceding volume as well as the square of each of these values, and 
(3) regressing out the FD of each volume. Mean signals of the white 
matter and the cerebrospinal fluid and linear and quadratic trends 
of the gray matter signal were also regressed out in this model to 
control for physiological noise. Residual time series were tempo-
rally band-pass filtered with an ideal rectangular filter (0.01–0.1 Hz). 
Subsequently, all images were resampled to a spatial resolution of 
1.5 × 1.5 × 1.5 mm3 and normalized to the MNI template specified 
above. The images were spatially smoothed by applying a 6 mm 
FWHM Gaussian kernel.

ROIs for the functional connectivity analysis were created using 
the MarsBar toolbox (http://marsbar.sourceforge.net). A sphere of 

radius 3 mm was placed at the peak MNI coordinate in the right 
parahippocampal gyrus (rPHG) (+33 −39 −12) obtained from the 
cortical surface complexity analysis. Four additional spheres were 
placed at the peak MNI coordinates of brain areas that repeatedly 
revealed activation differences in previous task-based fMRI stud-
ies when comparing children with low reading or low mathematical 
ability, respectively, against TD individuals (see Results for details). 
Established reading-related ROIs included left-hemisphere posterior 
fusiform gyrus (lpFFG; MNI coordinates: −31 −69 −10; Hoeft et al., 
2007) and planum temporale (lPT; MNI coordinates: −44 −28 +10; 
(Blau et al., 2010)), and mathematics-related areas included right-
hemisphere intraparietal sulcus (rIPS; MNI coordinates: +33 −50 
+52; Price et al., 2007) and left-hemisphere prefrontal cortex (lPFC; 
MNI coordinates: −13, +54, −2; Price et al., 2007).

Custom Matlab scripts (https://www.mathworks.com) were 
used for carrying out the following analysis steps. Hemodynamic 
time courses of each ROI were computed by averaging the BOLD 
signals of all voxels within the spheres. Subsequently, we created 
single-subject functional connectivity matrices by calculating bivar-
iate Pearson correlations between the signal-intensity time courses 
of each pair of seeds. This was done first for the rPHG and the two 
reading-related ROIs and then separately for the rPHG and the 
two mathematics-related ROIs. After converting the single-subject 
r matrices to z matrices by applying Fisher’s r-to-z transformation, 
between-group comparisons of the functional connectivity indices 
were performed by running independent-samples t tests. The signif-
icance threshold of p < .05 was FDR-corrected.

2.6 | Binary logistic regression

To examine whether the strength of functional connectivity of the 
rPHG to brain circuitry known to support reading and mathematical 
function distinguishes LRLM group membership, binary logistic regres-
sion was performed. We first calculated connectivity strength between 
ROIs identified in the functional connectivity analysis, and then calcu-
lated Pearson correlation coefficients for each subject for the follow-
ing six connections: (1) rPHG to lFFG; (2) rPHG to lPT; (3) lFFG to lPT; 
(4) rPHG to rIPS; (5) rPHG to lPFC; and (6) rIPS to lPFC. We then used 
binary logistic regression to model the relationship between the de-
pendent variable, which was group membership in either LR vs. LRLM 
or LM vs. LRLM, and the independent variables, which were z-scores 
describing the strength of connectivity for the six aforementioned con-
nections. Separate regression models were run for LM vs. LRLM and 
LR vs. LRLM analyses. SPSS software (IBM) was used for all regression 
analyses.

3  | RESULTS

3.1 | Group characteristics: reading and 
mathematical skills

Reading skills differed significantly between groups (Χ2(3) =36.91, 
p < .001, Cohen’s d = 3.9) with LR scoring significantly below LM 

http://fsl.fmrib.ox.ac.uk
http://marsbar.sourceforge.net
https://www.mathworks.com
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(z = 4.07, p < .001) and TD (z = 4.07, p < .001) but above LRLM 
(z = 3.03, p = .002) (Figure 1a). In addition, mathematical skills 
differed significantly between groups (Χ2(3) =34.66, p < .001, 
Cohen’s d = 3.39) with LM scoring significantly below LR (z = 4.07, 
p < .001) and TD (z = 4.16, p < .001) but not LRLM (z = 0.61, p 
= .543) (Figure 1b). Within-group differences between reading 
and mathematical skills were only significant in LR (z = 2.93, p = 
.003) and in LM (z = 3.06, p = .002) but not in LRLM (z = 1.34, p 
= .181) and TD (z = 0.67, p = .504) (Table 2). These results show 
clear dissociation between LR, LM, LRLM and TD groups, with LR 
and LM groups showing domain-specific weaknesses and LRLM 
showing significant weaknesses in both reading and mathemati-
cal domains.

3.2 | Whole-brain gray matter morphometry

Gray matter volume, cortical thickness and cortical surface complex-
ity were computed for LR, LM, LRLM, and TD groups. A significant 
difference of group means was found in cortical surface complexity, 
but not in gray matter volume and cortical thickness (height thresh-
old of p < .001 and a family-wise-error (FWE) corrected spatial ex-
tent threshold of p < .05). A significant effect was identified as a 
specific reduction in surface complexity of LRLM compared to LR, 
LM and TD. This effect was localized to the right parahippocampal 
gyrus (rPHG) (MNI coordinates: +33 −39 −12; 554 vertices; Cohen’s 
d > 0.8; Cohen’s DMAX = 1.26; achieved power: 0.60– 0.91; Figure 2).

To examine whether reduced cortical folding of the LRLM vs. 
the LR sample reflects overall lower reading abilities in the LRLM 
sample, we performed a post-hoc analysis of variance on these two 
samples with the factor group and cortical surface complexity as the 
dependent variable. Group differences remained statistically signif-
icant after covarying out reading test scores (F(2, 20) = 6.72, p = 
.006).

3.3 | Intrinsic functional connectivity of math and 
reading circuits in LRLM

Structural findings indicated LRLM being characterized by ab-
normalities in rPHG, a region known to be involved in long-term 
memory formation (Aminoff et al., 2013; Kirchhoff, Wagner, Maril, 
& Stern, 2000; Nenert, Allendorfer, & Szaflarski, 2014; Schon, 
Hasselmo, Lopresti, Tricarico, & Stern, 2004). However, it is unclear 
how deficiencies in this region might impact domain-specific read-
ing and mathematics in this population. Therefore, our next goal in 
the analysis was to investigate the possible role of rPHG in domain-
specific functions by examining intrinsic brain connectivity linking 
rPHG to brain regions known to support reading and mathematics. 
We focused our analysis on functional interactions between rPHG 
and two structures that have been implicated in reading, including 
left-hemisphere posterior fusiform gyrus (lpFFG; Hoeft et al., 2007) 
and planum temporale (lPT; Blau et al., 2010), as well as two struc-
tures that have been implicated in mathematical function, including 
right-hemisphere intraparietal sulcus (rIPS; Price et al., 2007) and 
left-hemisphere prefrontal cortex (lPFC; Price et al., 2007).

Results show that functional connectivity between rPHG and 
cortical structures implicated in reading and mathematical function 
distinguished the LRLM group from the LR, LM, and TD groups. 
First, analysis of functional connectivity between rPHG and reading-
related cortical structures revealed weaker connectivity between 
rPHG and lpFFG in the LRLM group compared to LR, LM and TD 
groups (p < .05, FDR corrected; Cohen’s d = 0.50–0.89; Figure 3a). 
In addition, the LRLM group also showed weaker connectivity com-
pared to the LR group for both the rPHG to lPT and lFFG to lPT 
connections (p < .05, FDR corrected; Cohen’s d = 0.67 and 1.43; 
Figure 3a, left matrix). Next, functional connectivity analysis be-
tween rPHG and mathematics-related cortical structures showed 
that the LRLM group had reduced connectivity between rPHG and 

F IGURE  1 Group-wise word reading skills (a) and mathematical skills (b). From left to right: Yellow bar: children with low reading ability 
(LR), orange bar: children with low mathematical ability (LM), red bar: children with both low reading and mathematical ability (LRLM), blue 
bar: typically developing (TD) children with at least average ability. Horizontal lines within the bars represent the group median. Vertical lines 
at the top and the bottom of the bars depict the standard deviation. Dots indicate single cases that are more than 1.5 standard deviations 
away from the group mean. Asterisks mark significant between-group differences (single asterisk: p < .005; double asterisk: p < .001)
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F IGURE  2 Whole-brain cortical surface complexity results. Compared to children with isolated low reading ability (LR), low mathematical 
ability (LM) and typically developing children (TD), children with co-occurring difficulties (LRLM) showed significantly reduced cortical 
surface folding of the right parahippocampal gyrus (MNI coordinates: +33 −39 −12; 511 vertices). L = left, R = right, A = anterior, P = 
posterior. The color bar illustrates the p values of the t-contrast (+LR +LM −LRLM +TD) that was thresholded at height p < .001 with false-
discovery-rate (FDR) corrections at a spatial extent threshold of p < .05. Effect sizes at each vertex yielded Cohen’s d > 0.8. Group-wise 
medians (horizontal lines within the bars) and standard deviations (vertical lines at the top and the bottom of the bars) of the cortical surface 
complexity (z scores) within the cluster are visualized in the boxplot. From left to right: Yellow bar: children with low reading ability (LR), 
orange bar: children with low mathematical ability (LM), red bar: children with both low reading and mathematical ability, blue bar: typically 
developing (TD) children. Asterisks mark significant between-group differences (single asterisk: p < .005; double asterisk: p < .001)

F IGURE  3  Intrinsic functional connectivity in combined LRLM group vs. the three other groups. (a) Schematic illustration of the right 
parahippocampal gyrus (rPHG) seed region (brown sphere), and two target regions (black spheres) know from the literature to be related to 
reading (lFFG: left posterior fusiform gyrus, lPT: left planum temporale). (b) Schematic illustration of the right parahippocampal gyrus (rPHG) 
seed region (brown sphere), and to target regions related to mathematical processing (rIPS: right intraparietal sulcus, lPFC: left prefrontal 
cortex) (black spheres). The corresponding matrices display the results of pair-wise group comparisons of Pearson correlation coefficients 
quantifying the associations of mean hemodynamic signal timecourses for each pair of regions. The color bars depict the t-statistics of the 
independent-sample t tests. Significant group differences passing a false-discovery-rate (FDR) corrected threshold of p < .05 are indicated 
by asterisks. LR = children with isolated low reading ability, LM = children with isolated low mathematical ability, LRLM = children with co-
occuring difficulties, TD = typically developing children. (c) Polar plot showing the mean functional connectivity (z values) between the rPHG 
seed region and all four target regions for all four groups



8 of 11  |     SKEIDE et al.

rIPS compared to the LR, LM and TD groups (p < .05, FDR corrected; 
Cohen’s d = 0.78–1.06; Figure 3b).

Functional connectivity fingerprints showing group connectivity 
between rPHG and nodes of reading and mathematics circuits were 
constructed for LR, LM, LRLM and TD groups (Figure 3c). Results 
show a distinct connectivity profile for the LRLM group (red) with 
pronounced weaknesses in connectivity between rPHG and lFFG 
and rIPS compared to the other three groups.

3.4 | Functional connectivity discriminates LRLM 
group membership

The final goal of the analysis was to examine whether the strength 
of intrinsic connectivity between rPHG and brain circuitry known 
to support reading and mathematical function is sufficient to dis-
criminate LRLM group membership. First, we performed a multi-
nomial logistic regression analysis using group as the dependent 
variable (with the categories LR, LM and LRLM) and functional con-
nectivity values for six connections (see off-diagonal connections 
in Figure 3 matrices) as covariates. Functional connectivity indices 
significantly distinguished between the three groups (Χ2(6) = 24.05, 
p = .020). Finally, to determine the degree to which differences be-
tween LRLM and the remaining groups contributed to this effect, 
we performed binary logistic regression using two separate models. 
In the first regression model, group membership in LM vs. LRLM 
acted as the dependent variable, and functional connectivity values 
served as covariates. In the second regression model, we set group 
membership in LR vs. LRLM as the dependent variable. Results 
from binary logistic regression analyses showed that the strength 
of these functional connections discriminates the LRLM group from 
both the LM group (Χ2(6) = 15.37, p = .018) and the LR group (Χ2(6) 
= 23.51, p < .001).

4  | DISCUSSION

Low reading and mathematical abilities are typically considered 
within their respective domains; as such, little is known regarding 
the brain mechanisms underlying frequent co-occurrence of these 
difficulties in school-aged children. Here, we have identified a dis-
tinct neural signature for children with low abilities in reading and 
mathematical cognitive domains. Specifically, we have shown that 
LRLM is both neuroanatomically distinct from LR and LM groups 
based on reduced cortical surface complexity in the rPHG and func-
tionally distinct from these groups based on unique profiles of intrin-
sic functional connectivity linking the rPHG and specialized regions 
for reading and mathematical processing. Together, these results 
provide novel support that children struggling with combined read-
ing and mathematical difficulties display a distinct neurocognitive 
profile relative to both LR and LM groups, and suggest that cogni-
tive and neural models of LR and LM require additional refinement 
to distinguish and characterize this large sub-population of children 
with multiple difficulties.

4.1 | Phenotypic specificity of LRLM

Our sample of children with LRLM showed reduced reading abilities 
compared to children with LR but comparable math skills compared 
to individuals with LM. This particular cognitive profile is consistent 
with results reported from several independent samples across dif-
ferent languages (Supplementary Tables S1 and S2). The consistency 
of this finding suggests that reduced reading abilities in individuals 
with comorbid reading and math difficulties compared to children 
with LR reflects an important feature of this population, and that the 
samples described in the current study are appropriate representa-
tions of these low performing groups. Nevertheless, we performed 
additional analyses to examine the possibility that reduced cortical 
folding in the LRLM vs. LR sample does not simply reflect overall 
lower reading abilities in the LRLM sample, and results continued 
to show reduced cortical folding in the LRLM compared to LR group 
after controlling for behavioral differences in reading ability.

4.2 | A role for the rPHG and memory systems 
in LRLM

Whole-brain gray matter morphometry analysis showed that LRLM 
children had significantly reduced surface complexity of rPHG, a key 
node of the brain’s memory system (Aminoff et al., 2013; Kirchhoff 
et al., 2000; Nenert et al., 2014; Schon et al., 2004), compared to LR, 
LM and TD children (Figure 2); however, all groups showed compa-
rable cortical thickness in this region. The cortical surface complex-
ity measure applied here is particularly sensitive to local differences 
in cortical folding (Yotter et al., 2011), suggesting that in individuals 
with LRLM, the rPHG surface is misfolded despite normal thickness.

We then tested the hypothesis that such morphometric abnor-
malities in the medial temporal lobe contribute to aberrant func-
tional connectivity between the PHG and domain-specific regions 
subserving reading and mathematics (Figure 3). From a functional 
neuroanatomical perspective, it should be noted that the rPHG has 
been consistently implicated in the associative encoding of com-
plex visuospatial information in long-term memory (Aminoff et al., 
2013; Kirchhoff et al., 2000; Nenert et al., 2014; Schon et al., 2004). 
However, the rPHG is seldom associated with LR or LM, and struc-
tural alterations in this region have only been sporadically reported in 
the context of learning disorders (Rotzer et al., 2008; Rykhlevskaia, 
Uddin, Kondos, & Menon, 2009). What, then, might be the role of 
the rPHG in LRLM? Perhaps becoming literate and acquiring arith-
metic skills both require, and result in, visual memory formation, in-
cluding associative encoding of symbolic stimuli. Specifically, these 
associative processes require that visual symbolic stimuli be paired 
with mental representations of phonological information during 
reading acquisition and with magnitude information during math-
ematical skills acquisition. Consistent with this view, several previ-
ous studies have demonstrated a key role for medial temporal lobe 
structures in both reading and mathematical learning. For example, 
in the reading domain, increased gray matter volume in the right 
medial temporal lobe has been shown to accompany vocabulary 
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learning (Bellander et al., 2016). Similarly, in the mathematical do-
main, the developmental trajectory from the reliance on counting to 
more mature memory-based fact retrieval strategies for calculation 
is marked by increased neocortical functional connectivity of the 
right hippocampus (Qin et al., 2014). Moreover, it has been shown 
that hippocampal volume predicts performance improvements in 
reading and mathematics (Hoeft et al., 2011; Supekar et al., 2013). 
Based on this evidence, we suggest that the PHG plays an important 
role in the associative encoding of both orthographic and numeric 
symbolic stimuli, and that reduced structural integrity of this neural 
structure adversely affects these key associative processes in LRLM.

4.3 | Implications for neural 
models and theories of LRLM

A primary goal of the current study was to test differential predictions 
of neural models of LRLM described in a theoretical framework pro-
posing domain-specific, domain-general, or phonological processing 
pathways to theses difficulties (Ashkenazi et al., 2013). Structural 
results from gray matter morphometry showed reduced cortical sur-
face complexity in rPHG, and, given the putative role of the rPHG in 
visuo-spatial memory, are consistent with a domain-specific model 
of LRLM. However, results from functional connectivity and logistic 
regression analyses revealed distinct patterns of intrinsic connec-
tivity linking rPHG to domain-specific cortical regions implicated in 
reading and mathematics in LRLM. Together, these results support 
a hybrid neural model of LRLM, fusing elements of the domain-
specific and domain-general models. Specifically, LRLM is character-
ized by a primary problem in a domain-general structure underlying 
visuo-spatial memory (rPHG) (Aminoff et al., 2013; Kirchhoff et al., 
2000; Nenert et al., 2014; Schon et al., 2004); however, weak intrin-
sic functional interactions between the rPHG and domain-specific 
regions serving reading and mathematics further distinguish LRLM 
from LR and LM children. We suggest that simplistic models of 
LRLM may be insufficient to account for the heterogeneity of cog-
nitive profiles seen within this population with comorbid learning 
difficulties. An important direction for future work informing cog-
nitive (Landerl et al., 2009; Wilson et al., 2015) and neural models 
(Ashkenazi et al., 2013) of LRLM is to incorporate a multidimensional 
approach to studying cognitive function in this population that si-
multaneously considers interactions between domain-specific and 
domain-general function.

4.4 | Developmental origins of the neural basis of LRLM

When assessed together, surface-based and volumetric methods 
allow for the distinction between cortical thickness and gyral com-
plexity as they provide complementary information about the tim-
ing and nature of disrupted neurodevelopmental processes (Schaer 
& Eliez, 2009). Atypical cortical surface complexity is thought to 
arise early in development (Giménez et al., 2006; Haukvik et al., 
2012; Kesler et al., 2006; Schaer et al., 2009) while changes in cor-
tical thickness undergo constant maturation through adulthood via 

pruning and learning-dependent plasticity (Shaw et al., 2006, 2008). 
Our finding of reductions in cortical surface complexity, but not 
thickness, is suggestive of early focal problems in LRLM individuals. 
This finding might also explain why LRLM children are vulnerable to 
difficulties in multiple cognitive domains. Whether such aberrations 
in the medial temporal lobe manifest early in development, and how 
this weakness in turn disrupts the communication between relevant 
cortical networks supporting reading and mathematical information 
processing, remains to be investigated using appropriate longitu-
dinal study designs in younger children (Kraft et al., 2016; Skeide 
et al., 2016). In addition, further research is also needed to exam-
ine whether early disruption of medial temporal lobe organization 
also contributes to learning difficulties in multiple other cognitive 
domains.

4.5 | Diagnostic distinction between “low 
abilities” and “learning disabilities”

Here we have applied a relatively liberal criterion for grouping chil-
dren with learning difficulties. However, unlike previous studies ap-
plying similar diagnostic criteria (Evans et al., 2014; Krafnick et al., 
2014; Olulade et al., 2013), participants in our study were not labeled 
“learning disabled”; rather these children were characterized as “low 
reading and mathematical abilities”. Nevertheless, we argue that the 
reported findings are relevant to our understanding of learning dis-
abilities given the empirical evidence for quantitative rather than 
qualitative differences between disabilities and low abilities. In par-
ticular, several recent functional and structural MRI studies suggest 
that the core neural indices of reading disability can be robustly iden-
tified across liberal and conservative criteria (e.g., Clark et al., 2014; 
Finn et al., 2014). Moreover, several available data sources indicate 
that the trajectory from average to below-average performance is 
continuous, rather than categorical in nature (Peterson & Pennington, 
2012); therefore, we argue that applying the criteria described in our 
manuscript will provide important and novel information regarding 
structural and functional brain differences underlying reading and 
mathematical abilities. Nevertheless, follow-up work is needed to de-
termine whether our results generalize to clinical samples involving 
subjects with an official diagnosis of reading disability (developmen-
tal dyslexia) or mathematical disability (developmental dyscalculia).

4.6 | Conclusion

Here we have described, for the first time, a distinct brain signature 
of co-occurring low reading and mathematical abilities in the devel-
oping brain. Results indicate that LRLM is distinguished by structural 
aberrations within a domain-general medial temporal lobe region and 
intrinsic functional connectivity reductions in circuits linking specific 
medial temporal lobe regions to domain-specific regions critical for 
reading and mathematics. Our findings inform models of LRLM by 
suggesting that this population displays an independent phenotype 
of learning difficulty that cannot be explained as a combination of 
isolated low reading and mathematical abilities.
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