Strategies for reducing racial/ethnic disparities in the COVID-19 vaccination campaign

Marissa Reitsma
PhD Student in Health Policy
Center for Health Policy, Stanford University

April 28, 2021

Results are preliminary
Study Team

Anneke Claypool
PhD student (2021), Management Science & Engineering

Jeremy Goldhaber-Fiebert
Associate Professor of Medicine, Stanford School of Medicine

Joshua Salomon
Professor of Medicine, Stanford School of Medicine

Results are preliminary
Prevention Policy Modeling Lab

Health Policy
Stanford

SC-COSMO Modeling Consortium (http://sc-cosmo.org)

Results are preliminary
Background

• COVID-19 has disproportionately impacted Black, Indigenous, and Hispanic people

Risk for COVID-19 Infection, Hospitalization, and Death By Race/Ethnicity

Results are preliminary
Background

• COVID-19 has disproportionately impacted Black, Indigenous, and Hispanic people

• Vaccination rates to date have been unequal across race/ethnicity groups

Results are preliminary

How do elements of COVID-19 vaccination strategies, including eligibility criteria, distribution rules, accessibility, and confidence affect uptake, by race/ethnicity?

How can states improve the efficiency and equity of the vaccine rollout?
1. Addressing allocation, access, and acceptance to reduce racial/ethnic disparities in age-based vaccination strategies in California and the United States
Age-based prioritization ≠ Risk-based prioritization

Equal vaccination rates: smaller proportion of deaths averted among Black and Hispanic populations

Unequal vaccination rates: even greater disparities in outcomes

Age-based vaccination strategies confer disproportionate benefits to White populations

Results are preliminary
Approach

- Assume age-based eligibility (65+)
- Modeled daily vaccine uptake over 8-week period, at census tract level, by race/ethnicity
 - Modeled mortality differentials over age, race/ethnicity and geography...
 - To translate cumulative vaccination coverage into estimated mortality reductions
- Compare scenarios varying:
 - Allocation rules to census tracts within states
 - Accessibility by race/ethnicity and region
 - Acceptance by age, race/ethnicity and region

Results are preliminary
Data Sources

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population by age, race/ethnicity, census tract</td>
<td>2015-2019 American Community Survey</td>
</tr>
<tr>
<td>Social vulnerability index by census tract</td>
<td>CDC</td>
</tr>
<tr>
<td>COVID-19 mortality by age and race/ethnicity at state level</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>COVID-19 mortality, all ages, all races, by county</td>
<td>Johns Hopkins University, Center for Systems Sciences and Engineering</td>
</tr>
<tr>
<td>Vaccine acceptance by age, race/ethnicity and state</td>
<td>Delphi Group at CMU</td>
</tr>
<tr>
<td>Vaccination access by race/ethnicity and state, all ages</td>
<td>Kaiser Family Foundation</td>
</tr>
</tbody>
</table>

Results are preliminary
Allocation and Uptake Model

National vaccine supply
- 2 million doses per day

State-level allocation
- Proportional to eligible population size

Tract-level allocation
- Proportional to eligible population size vs. 2:1 for disadvantaged quartile

Daily vaccinations within tracts
- Reflects eligible population size, acceptance and access

Results are preliminary
Allocation and Uptake Model

National vaccine supply
- 2 million doses per day

State-level allocation
- Proportional to eligible population size

Tract-level allocation
- Proportional to eligible population size vs. 2:1 for disadvantaged quartile

Daily vaccinations within tracts
- Reflects eligible population size, acceptance and access

Proportional allocation

Additional allocation to disadvantaged census tracts

Results are preliminary
Estimated Acceptance by Age, Race, and Region

Results are preliminary
Estimated Acceptance by Age, Race, and Region

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Percent Vaccinated or Accepting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18−24</td>
<td>40%</td>
</tr>
<tr>
<td>25−34</td>
<td>60%</td>
</tr>
<tr>
<td>35−44</td>
<td>80%</td>
</tr>
<tr>
<td>45−54</td>
<td>100%</td>
</tr>
<tr>
<td>55−64</td>
<td>100%</td>
</tr>
<tr>
<td>65+</td>
<td>100%</td>
</tr>
</tbody>
</table>

Results are preliminary
Estimated Acceptance by Age, Race, and Region

Results are preliminary
Estimated Access by Race and Region

Results are preliminary
Results: coverage (65+) by race/ethnicity across scenarios

Results are preliminary
Results: deaths averted by race/ethnicity, vaccinating 65+

- All intervention scenarios are more efficient and more equitable than the status quo
- Allocation: big boost for Black and Hispanic populations
- Access: more important than acceptance for 65+ population

Results are preliminary
Results are preliminary

*Values Shown for Populations Exceeding 200,000

*All non-white race/ethnic groups have population < 200,000, so difference not computed.
Policy Impact: California’s Allocation Strategy

- Collaboration with CDPH partners to model the impact of increasing allocation to most disadvantaged quartiles of zip codes
- Adapted modeling framework to run custom scenarios for California
 - Direct data feed for key inputs
 - Direct line to decision-makers
- Policy change announced March 3

Results are preliminary
Key findings for age-based eligibility

- Age-based eligibility confers greater benefits for White populations, which are further compounded by access barriers for older Black and Hispanic adults.

- Prioritizing additional supply for disadvantaged areas (census tracts, zip codes) is both more equitable and more efficient than proportionate distribution.

- Even in the best-case scenario, equity gaps are difficult to close under age-based eligibility schemes.

Results are preliminary.
1. Addressing allocation, access, and acceptance to reduce racial/ethnic disparities in age-based vaccination strategies in California and the United States

2. Tracking and reducing vaccination disparities in the context of all-adult eligibility

Results are preliminary
"Due to the phased approach of vaccine distribution, demographics presented here are not yet expected to align with general population demographics."

-Arizona Vaccination Dashboard
Approach

- Expand age-based eligibility analysis framework to eligibility for all adults
- Collapse access and acceptance into ‘relative rates of uptake’
 - Based on a snapshot of state vaccination data (by race and age) extracted on March 31
 - Controls for the interaction of historical age-based eligibility criteria and age-race population structures
- Model scale-up of coverage by race/ethnicity over April-July, assuming a steady state-specific vaccination rate
- Compare scenarios based on time to reach 75% population coverage among adults

Results are preliminary
Differential Uptake Rates on March 31

Relative Rate of Uptake: Observed share of vaccinations, divided by the expected share of vaccinations under proportionate uptake.

After controlling for the impact of age-based eligibility criteria on the expected distribution of vaccinations by race, we observe persistently lower relative uptake rates among Black and Hispanic populations across states.

Legend

Race/Ethnicity
- Asian
- Black
- Hispanic
- White

Population (Millions)
- 0.2–0.4
- 0.5–0.9
- 1.0–1.9
- 2.0+

Results are preliminary.
Results: Scale-Up Scenarios, National

Results are preliminary.
Time difference in reaching 75% coverage, people of color vs. White

Results are preliminary
Time difference in reaching 75% coverage compared to national average

Results are preliminary
Future work: tracking of disparities in vaccination coverage

- Prospective data extraction
- Benchmarking progress in eliminating disparities in uptake
- Updating projections

Results are preliminary
Key findings for universal adult eligibility

- Relative uptake rates among White adults have been substantially higher than among Black and Hispanic adults.
- Limitations in available data present challenges in monitoring disparities.
- If current disparities in uptake persist, Hispanic and Black adults would reach the 75% coverage threshold a month later than White adults.
- Eliminating access barriers and increasing vaccine confidence among marginalized populations can narrow, but not eliminate, gaps in coverage.
- Place-based allocation strategies can further accelerate vaccination in disadvantaged communities, and may be needed to close coverage gaps by July.

Results are preliminary.
Supported in part by the Stanford Clinical and Translational Science Award (CTSA) to Spectrum (UL1TR003142), the Centers for Disease Control and Prevention and the Council of State and Territorial Epidemiologists (NU38OT000297), the National Institute on Drug Abuse (3R37DA01561217S1), and the State of California (SPO: 184726).

Thank you!