

Birgitt Schüle, MD, Dr. med Associate Professor

Department of Pathology, Stanford University School of Medicine

Overview

Why is alpha-synuclein a therapeutic target for Parkinson's disease?

What are the different therapeutic concepts for targeting alpha-synuclein?

What are the challenges?

Where are the next breakthroughs?

WANTED!

Name Address Height/weight Appearance

Crime

Alpha-synuclein, alias: NACP, PARK1/PARK4
Chromosome 4q22.1
140 amino acids, 14 kDa protein
monomer, tetrameric α-helical oligomer,
associates with biological membranes
aggregates can cause Parkinson's

Alpha-synuclein genetics, part 1: point mutations

- First point mutation discovered in 1997
- Major component of Lewy bodies
- Frequency 0.5% in familial and sporadic cases
- Only a few point mutations
- Mutations cause PD by increasing aggregation propensity

Alpha-synuclein staining in human brain

Alpha-synuclein genetics, part 2: copy number mutations

- Larger genomic regions multiplied (duplication or triplication)
 = copy number (mutation) variant
- Discovered in 2003
- Regions may include many genes
- Alpha-synuclein is common 'denominator'
- Too much normal alpha-synuclein causes PD

Piper, Sastre & Schüle 2018, Front. Neurosci. 12:199.

Alpha-synuclein genetics, part 3: non-coding variants

- Genetic changes outside the gene
- Increase risk for PD
- Might alter alpha-synuclein expression

Piper, Sastre & Schüle 2018, Front. Neurosci. 12:199.

Mechanisms of alpha-synuclein pathology in Parkinson's disease

How much reduction of alpha-synuclein is beneficial?

Clinical spectrum of a-syn gene dosage from autism to Lewy body dementia

Therapeutic concepts of lowering alpha-synuclein

1. Reducing production of alpha-synuclein

Rationale: if production of a-syn can be prevented then less protein is produced and toxicity of protein misfolding can be avoided.

Therapeutic strategies follow principles of the central dogma of biology

Therapeutic strategies follow principles of the central dogma of biology

Gene editing targets the DNA

CRISPR regulation of a-syn gene expression

- "Molecular scissors" for gene engineering
- SLS-004 is lentiviral vector
- Targets epigenome of alpha-synuclein
- In vitro: reduces alpha-synuclein expression (by ~30%) & rescued function in dopaminergic neurons
- In vivo: single dose leads to 40% alpha-synuclein reduction
- Seelos Therapeutics, Inc. announced the exclusive worldwide licensing of SLS-004 from Dr. Chiba-Falek, Duke University in Summer 2019

Antisense oligonucleotides = ASO "shooting the messenger"

Antisense oligonucleotides = ASO "shooting the messenger"

Antisense oligonucleotides downregulate alpha-synuclein mRNA

- Synthetic strands of nucleic acid that modulate gene expression
- ASO therapeutics recently FDA-approved for muscular atrophy
- Selective reduction of a-syn production in midbrain monoaminergic regions
- Clinical trial in MSA via intrathecal injection (HORIZON), NCT04165486

Primate brain and CSF, Cole et al. 2021

2. Reducing aggregation of alpha-synuclein

Rationale: if aggregation of a-syn can be prevented then its normal function can be sustained and toxicity of protein misfolding can be avoided.

Small molecule binds to alpha-synuclein oligomers

Prevention of alpha-synuclein fibril formation

Anle138b modulates alpha-synuclein oligomers

- Binding to oligomers alters structure & inhibits neurotoxic properties
- Modulation towards non-toxic oligomers and monomers
- normal alpha-synuclein function regained
- depletes pre-amyloid oligomers and impairs fibril growth, but not a "fibril breaker"
- First-in-Human Study of Single and Multiple
 Doses of anle138b in Healthy Subjects shows
 good safety profile (ClinicalTrials.gov Identifier:
 NCT04208152)

Teva and MODAG Announce Licensing Collaboration for Neurodegenerative Disease Drug Candidate

Small molecule candidate Anle138b targets disease modification for multiple system atrophy and other neurological disorders

October 26, 2021 04:45 PM Eastern Daylight Time

TEL AVIV & WENDELSHEIM, Germany--(BUSINESS WIRE)—Teva Pharmaceutical Industries Ltd. (NYSE and TASE: TEVA) and MODAG GmbH today announced a strategic collaboration on the exclusive worldwide licensing and development of MODAG's lead compound anie138b and a related compound, sery433.

3. Increasing degradation of alphasynuclein

Rationale: Autophagy plays major role in degradation of a-syn aggregates

Enhancing autophagy/lysosomal function

- Enhancement of autophagic processes
 leads to increased degradation of pathological a-syn
- Examples:
 - Rapamycin (natural anti-fungal antibiotic)
 - Trehalose (natural sugar)
 - Modulator of the mitochondrial pyruvate carrier (MSDC-160)

Challenges:

- Lack of specificity for a-syn (effects on other essential pathways)
- Side-effects (e.g. immunosuppression)

GBA encodes the GCase enzyme & mutations increase risk for PD

- GBA mutations account for 7-10% of PD
- GBA carriers have 20-fold increased risk of developing PD
- GBA encodes lysosomal enzyme, beta-glucocerebrosidase (GCase),
- Required for degradation & recycling of glycolipids
- GBA mutation affects:
 - > severity
 - >age of onset
 - > rate of progression
 - ►likelihood of dementia

Restauration of GCase enzyme function

GBA gene therapy

- Study PRV-PD101 is a Phase 1/2a first in-human study
- Evaluate safety of <u>intracisternal PR001A administration</u>
- Patients with at least 1 pathogenic GBA1 mutation
- PR001 utilizes an AAV9 viral vector to deliver the GBA1 gene
- Goal: correct lysosomal enzyme deficiency
- Open-label, 12 participants, multi-center

ClinicalTrials: Phase 1/2a Clinical Trial of PR001 in Patients With Parkinson's Disease With at Least One GBA1 Mutation (PROPEL) NCT04127578

Ambroxol "shuttles" GCase through the cell

- Small-molecule chaperones drive correct folding of mutant GCase molecules in the cell
- Efficient transport to lysosomes & increased GCase activity, rescue neurodegeneration
- Ambroxol, an FDA-approved over-the-counter cough medication

 Four clinical trials ongoing or completed testing efficacy of Ambroxol in PD and Dementia with Lewy bodies

Ambroxol "Shuttles GCase through cell"

4. Reducing extracellular alpha-synuclein

Immunotherapies

Antibodies target extracellular alpha-synuclein

Antibodies target extracellular alpha-synuclein

Immunotherapies target extra-cellular a-syn

- Antibodies are unable to enter cells
- Immunotherapy reduce a-syn aggregation in transgenic mice overexpressing a-syn and prevent rescue phenotypes
- Anti-inflammatory effect in neurodegenerative models

Challenges:

- potential to trigger off-target responses
- ➤ non-specific inflammatory reactions
- ➤ need for repetitive administration
- ➤ limited penetration of antibodies into the CNS (0.1-1%)

Completed phase I trials – low BBB penetration

Table 1. Completed phase I trials of α -synuclein-targeted immunotherapy

Name	Туре	Target of the antibody	Affinity (oligomeric/ monomeric)	Trials	Dose	Half-life (d)	Change in serum α-syn level	Change in CSF α-syn level	BBB penetration rate	Safety
PRX002	Passive	C-terminus	> 400 fold	Phase la	Single ascending dose	18.2	-	-	-	No severe or serious TEAEs
				Phase Ib*	Multiple ascending doses	10.2	Up to 97% reduction	No	0.3%	No severe or serious TEAEs
BIIB054	Passive	N-terminus	> 800 fold	Phase I [†]	Single ascending dose	28–35	-	-	0.3–0.5%	No severe or serious TEAEs
PD01A	Active	C-terminus	-	Phase I	Single dose	-	-	_	-	No serious adverse events

^{*}adapted from Jankovic et al.⁶⁴; †adapted from Brys et al.⁶⁵ d: day, syn: synuclein, CSF: cerebrospinal fluid, BBB: blood-brain barrier, TEAEs: treat-ment-emergent adverse events.

Biogen alpha-synuclein antibody therapy failed

Biogen tosses out Parkinson's hopeful cinpanemab, pays \$75M for its syn

by Ben Adams | Feb 3, 2021 7:55am

Getting through ---- the blood brain barrier

using TVs = transport vehicles

carrying a drug across the blood-brain barrier = receptor-mediated transcytosis

5. Reducing cellular uptake of a-syn

Cell surface receptors bind misfolded alpha-synuclein

- Extracellular alpha-synuclein propagates between cells
- Oligomeric alpha-synuclein binds to cell surface receptors
- induces transmission of signals into cells

New therapeutic avenues: modulate receptors to inhibit alpha-synuclein update

Summary

MEDICINE Pathology

- Alpha-synuclein is well-established therapeutic target for alphasynucleinopathies
- > Different strategies of alpha-synuclein lowering strategies
- Some are already in clinical trials
- Challenges: route of administration, passing BBB, frequency of treatment
 Stanford | Department of Depart

Thanks so much for your attention!

Any questions? Contact: bschuele@stanford.edu

Bibliography and References cited

- Morato Torres, C.A. et al. The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 21(2020).
- 2. Piper, D.A., Sastre, D. & Schüle, B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. *Front Neurosci* **12**, 199 (2018).
- 3. Zafar, F. *et al.* Genetic fine-mapping of the Iowan SNCA gene triplication in a patient with Parkinson's disease. *NPJ Parkinsons Dis* **4**, 18 (2018).
- 4. Brundin, P., Dave, K.D. & Kordower, J.H. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 298, 225-235 (2017).
- 5. Ottolini, D., Calí, T., Szabò, I. & Brini, M. Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. *Biol Chem* **398**, 77-100 (2017).
- 6. Kantor, B. *et al.* Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. *Mol Ther* **26**, 2638-2649 (2018).
- 7. Alegre-Abarrategui, J. et al. Selective vulnerability in α-synucleinopathies. Acta Neuropathologica 138, 681-704 (2019).
- 8. Fields, C.R., Bengoa-Vergniory, N. & Wade-Martins, R. Targeting Alpha-Synuclein as a Therapy for Parkinson's Disease. *Frontiers in Molecular Neuroscience* **12**(2019).
- 9. Pagan, F.L. *et al.* Nilotinib Effects on Safety, Tolerability, and Potential Biomarkers in Parkinson Disease: A Phase 2 Randomized Clinical Trial. *JAMA Neurol* **77**, 309-317 (2020).
- 10. Schneider, S.A. & Alcalay, R.N. Precision medicine in Parkinson's disease: emerging treatments for genetic Parkinson's disease. *J Neurol* **267**, 860-869 (2020).
- 11. Surguchev, A.A., Emamzadeh, F.N. & Surguchov, A. Cell Responses to Extracellular alpha-Synuclein. *Molecules* 24(2019).
- 12. Alarcon-Aris, D. *et al.* Anti-alpha-synuclein ASO delivered to monoamine neurons prevents alpha-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. *EBioMedicine* **59**, 102944 (2020).
- 13. Shin, J., Kim, H.J. & Jeon, B. Immunotherapy Targeting Neurodegenerative Proteinopathies: alpha-Synucleinopathies and Tauopathies. *J Mov Disord* **13**, 11-19 (2020).

