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ABSTRACT

In this paper, we propose a method for removing linguistic informa-
tion from speech for the purpose of isolating paralinguistic indicators
of affect. The immediate utility of this method lies in clinical tests
of sensitivity to vocal affect that are not confounded by language,
which is impaired in a variety of clinical populations. The method is
based on simultaneous recordings of speech audio and electroglotto-
graphic (EGG) signals. The speech audio signal is used to estimate
the average vocal tract filter response and amplitude envelop. The
EGG signal supplies a direct correlate of voice source activity that is
mostly independent of phonetic articulation. The dynamic energy of
the speech audio and the average vocal tract filter are applied to the
EGG signal create a third signal designed to capture as much paralin-
guistic information from the vocal production system as possible—
maximizing the retention of bioacoustic cues to affect—while elim-
inating phonetic cues to verbal meaning. To evaluate the success of
this method, we studied the perception of corresponding speech au-
dio and transformed EGG signals in an affect rating experiment with
online listeners. The results show a high degree of similarity in the
perceived affect of matched signals, indicating that our method is
effective.

Index Terms— speech, paralanguage, affect, voice transforma-
tion, electroglottagraphy, phoneme removal

1. INTRODUCTION

Much of the information conveyed by speech is transmitted through
paralinguistic cues encoded in the audio signal. These paralinguistic
cues are essential to the communication of emotions, intentions, and
personality [1–3]. For the majority of our daily interactions, these
paralinguistic cues are embedded among phonetic cues encoding lin-
guistic meaning. Although most individuals have no problem pars-
ing linguistic and paralinguistic cues in speech and responding ap-
propriately, this ability is often impaired in clinical populations (e.g.,
in autism [4] and depression [5]). Focusing on autism, the impair-
ment is assumed to pertain to the reception of paralinguistic cues to
speaker affect. However, the tests on which this assumption is based
use speech stimuli, and thus confound sensitivity to paralanguage
with language functioning. Testing sensitivity to paralinguistic af-
fect directly requires isolating it from speech. This is important for

∗Author correspondence: cnoufi@ccrma.stanford.edu
†This work was funded in part thanks to a grant from the National Insti-

tute of Mental Health (K01MH122730) and a seed grant from the Wu Tsai
Neurosciences Institute at Stanford University.

understanding the nature of auditory-vocal contributions to clinical
dysfunction, particularly in mental health.

Existing methods that attempt to isolate paralinguistic cues from
speech benefit from economy and efficiency, but they also lose sig-
nificant amounts of paralinguistic information, particularly concern-
ing affect. For example, one simple and efficient method is to re-
move phonologic content from speech audio by adaptively low-pass
filtering the signal such that the filter roll-off occurs below the sec-
ond formant peak, thus removing a critical cue to vowel identifica-
tion (i.e., the ratio between the first and second formants). However,
because this method removes high-frequency content (> starting at
approx. 500-2500 Hz, depending on the vowel [6]), it also destroys
important affective content [7].

Another method is to discard phonetic cues by separating the vo-
cal signal into two parts, the signal representing the laryngeal source,
and the signal representing the supralaryngeal filter. Whereas the fil-
ter is more typically associated with linguistic articulation [8–10],
the source is more associated with paralinguistic features that are es-
sential to affect, such as voice pitch, breathiness, roughness, and
other varieties of voice quality [1, 3, 11–13]. The most common
method for separating the vocal source signal e(t) from the vocal
tract impulse response h(t) is linear predictive coding (LPC) [14].
LPC uses a pth-order linear predictor to estimate speech signal s̃(t)
from p previous samples. This is done by solving for optimum pre-
dictor coefficients ak of the filter for a pseudo-stationary frame of
speech. Once the filter coefficients are found the “residual” e(t) is
calculated, representing a mixture of both glottal and noise-based
phonetic content.

Although source-filter separation is useful in many cases, the
reality is that both linguistic and paralinguistic information are en-
coded across the entire range of the frequency spectrum [7] and
produced by both source and filter [1, 11–13]. Given that existing
methods operating on speech audio alone do not adequately sep-
arate linguistic and paralinguistic information, we designed a new
method that leverages synchronized audio and electroglottagraphic
(EGG) [15–18] recordings of speech to create a third transformed
EGG (“tEGG”) signal made by applying a speech-based spectro-
temporal transform to the EGG signal. When played as audio, this
stimulus lacks the speech signal’s linguistic content but retains sig-
nificant paralinguistic information across the frequency spectrum. In
Section 2, we describe the algorithm for the transformation method.
In Section 3, we describe the speech/EGG recording process and an
implementation of the algorithm. In Section 4, we evaluate our al-
gorithm in an online experiment comparing ratings of emotional af-
fect in corresponding speech and tEGG signal pairs. We conclude by
briefly summarizing future directions and applications of the methodIC
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Fig. 1: Proposed transformation method given speech signal s(t) and EGG source signal g(t). The two-stage method creates signal z(t) that
preserves paralinguistic content contained in the source, average vocal tract shape, and amplitude envelope, while removing linguistic content
supplied by supralaryngeal articulation. The first stage (blue) extracts the LPC-based average resonant impulse response h(t) representing
the vocal tract during periods of vocal source activity. h(t) is convolved (∗) with g(t) in the second stage (green) and dynamically scaled via
cross-filtering to produce z(t).

introduced here for understanding and computing vocal affect.

2. TRANSFORMATION METHOD

The transformation algorithm operates in two stages (Figure 1). The
first stage, represented by the blue block in Figure 1, aims to pre-
serve the average frequency response profile of the speaker’s vocal
tract during voice speech production, up to, but not including, the
supralaryngeal articulation. This involves iteratively estimating the
filter representation of the vocal tract through LPC on short frames
of audio, taking an average of the results, and then convolving this
average filter representation in the time domain with the source sig-
nal captured by the EGG. The second stage, represented by the green
block in Figure 1, aims to preserve the dynamic energy envelope of
the original speech audio signal. This involves extracting dynamic
amplitude modulation over time from the speech signal and applying
it to the convolved signal.

Let a speech audio signal s(t) and a corresponding EGG signal
g(t) both be monophonic digital audio signals with sampling rate
fs. Stage one of the algorithm proceeds as follows. An energy-
based voice activity detection algorithm [19] is used to indicate if
a sample at time t contains voice activity or not. Samples contain-
ing voice activity are concatenated and the remaining samples are
discarded. We perform LPC on short frames of audio (assumed to
be pseudo-stationary) to obtain the per-frame filter coefficients Av ,
Ag , and Al representing the vocal tract, glottal source, and lip radi-
ation filters, respectively. This algorithm uses an Iterative Adaptive
Inverse Filtering method based on a Glottal Flow Model to estimate
the linear prediction coefficients of both vocal tract and glottis fil-
ters from a speech signal frame [20]. An adaptive filter with order
2 + fs/1000 is used to determine Av and a 3rd-order filter to deter-
mine Ag . We apply a Hamming window to each frame of the voiced
speech audio signal to obtain the short frame sn(t). To estimate the
complex frequency response of the vocal tract, we set the the coeffi-
cients Av as zeros of the complex polynomial Hn(ejω) and set the
polynomial representation of the poles to 1. For frames 1...N , we
apply LPC to each overlapping frame of voiced samples to obtain the
vocal tract frequency response at each nth frame. We subsequently

calculate the average of the magnitudes of the complex frequency

responses, |H[n]| =
∑N

n=1 |Hn(ejω)|
N

. A minimum-phase finite im-
pulse response (FIR) filter is created given |H[n]|. The phase of
the FIR filter is the imaginary component of the negative of Hilbert
transform of the magnitude of the full spectrum frequency response.
Finally, the estimated average impulse response of the vocal tract
h(t) is convolved with the glottal source signal g(t) in the time do-
main to create filtered source signal y(t).

In stage two of the algorithm, we then dynamically modulate the
amplitude of the convolved signal y(t) to match the amplitude of the
original speech signal s(t). We apply a short-time Fourier transform
(STFT) to obtain time-frequency representations S[n] and Y [n]. We
obtain the short-time energy envelopes ES [n] and EY [n] of each
representation by taking the sum of the magnitudes across the fre-
quency spectrum at each time step n. We determine the dynamic
modulation vector R[n] to be the ratio of the short-time energy en-
velopes ES [n] and EY [n]. This dynamic modulation vector is then
applied to Y [n] via a right-hand-side multiplication to yield Z[n].
Equations 1 and 2 describe this cross-filtering procedure:

Z = Y× diag(R) (1)

where ZF×N and YF×N are real-valued matrices and R1×N is a
real-valued column vector. F represents the number of frequency
bins f determining the resolution of the STFT. Each nth element of
R is determined by

R[n] =
ES [n]

EY [n]
=

∑F
f=1 |Sf [n]|∑F
f=1 |Yf [n]|

(2)

Z[n] now represents the EGG source signal that has been both fil-
tered by the average vocal tract response and the dynamic energy
envelope of the speech signal. The inverse STFT is applied to bring
back Z[n] into the time domain, resulting in the tEGG signal z(t) in
which phonetic variation has been systematically removed.
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3. IMPLEMENTATION

To test the transformation method, we used a series of parallel audio
and EGG recordings of affective speech made by our group as part
of a related project [21]. Here we provide only the details of the
protocol that apply to implementing our transformation method.

In brief, “voice actors” from the local Stanford community were
recruited to produce a set of audio and EGG recordings of affec-
tive speech. Each actor was tasked with expressing 16 varieties
of affect using a short emotionally neutral sentence (representative
examples include “He stands on the dock” and “A bag is in the
room” [22]). Speech recording sessions took place inside a sound-
attenuating chamber at the Center for Computer Research in Music
and Acoustics at Stanford University. After a short vocal warm-up
and EGG calibration, the experimenter sounded a clapperboard (as
a synchronization pulse) and proceeded to lead the actor through the
16 affect targets in a fixed order. Actors were recorded standing.

Audio recordings were made with a microphone (DPA, 466-OC-
R-B00) and a digital audio recorder (Zoom H4n PRO) set to sample
at 48 kHz with 24 bit-depth. The microphone was located 30 cm in
front of the actor’s mouth. Parallel EGG recordings were made with
an electroglottagraph (Glottal Enterprises, model EG2-PCX2) and a
pair of skin surface electrodes placed on either side of the larynx and
held in place by an elastic strap. The EGG signal was A-to-D con-
verted by the electroglottagraph and transmitted over USB to a com-
puter (Apple Macmini 9,1) running Adobe Audition (v 13.0.13.46)
set to sample at 48 kHz at 4 bit depth. The sound intensity level was
recorded in dB using a sound level meter (NTi XL2 with M4261
microphone; frequency weighting = A, sample rate = 10 Hz).

The audio, EGG, and sound intensity tracks from each record-
ing were synchronized in post-processing. Then, for each actor, the
experimenters listened and selected a single rendition basis of its
perceived conveyance of the intended affect and being free of ar-
tifacts (e.g., coughing or failed electrode contact). Next, electrical
noise was removed from each selected rendition’s EGG channel us-
ing Audition’s “Effects→DeNoise” function and a proximate voice-
free sample of the noise. EGG channels which contained substantial
low-frequency energy below the fundamental frequency of the voice
(due, e.g., to laryngeal movement) were additionally high-pass fil-
tered with an adaptive cut-off set approximately 20 Hz below the
fundamental. Finally, the amplitudes of the audio and EGG tracks
were adjusted to accord with measured sound intensity level (at 60%
scale, to avoid clipping), and the mean (calculated across all record-
ings) was centered at -23 LUF using the EBU R-128 loudness stan-
dard [23, 24]. The results were set between two 50 ms buffers of
silence and saved as the left and right channels of a two-track .wav
file.

Applying the transformation method to these tracks first required
creating a copy of the speech audio signal s(t) down-sampled to 16
kHz. This was necessary because the adaptive filtering procedure
used in LPC is not guaranteed to produce reliable results on high
frequency content. All steps to compute the average vocal tract filter
response via LPC were performed on this 16 kHz signal. We used
a 20 ms Hamming window, 50% overlap, and adjusted endpoints
to adhere to constant-overlap-add requirements [25]. The resulting
impulse response h(t) was then upsampled to the original sampling
rate of 48 kHz using 4th-order low-pass filter interpolation. This
upsampled impulse response was then convolved with g(t) and dy-
namic amplitude modulation was performed at 48 kHz. The two-
stage transformation process runs approximately 30% faster than
real-time.

The tEGG signal z(t) is the resulting audio signal that retains

Fig. 2: Residual difference spectrograms for affective speech sam-
ple s(t). The sample uses “A bag is in the room” as linguistic ma-
terial. (Top) speech audio signal s(t)− the tEGG signal z(t); (Mid-
dle) z(t)− EGG signal g(t). (Bottom) transformed tEGG signal
z(t). These spectrograms detail the signal content removed and aug-
mented through the transformation process.

the energy levels, rhythmic cadence, pitch prosody and voice quality
of the speech signal at a 20 ms resolution. The residual spectrograms
in Figure 2 show the acoustic content removed from s(t) and added
to g(t) to obtain z(t). As shown in Figure 2, the average resonant
filter h(t) applied to the source signal g(t) allows the signal to re-
tain the speaker’s average “tone of voice” as dictated by anatomy of
the vocal tract, but removes dynamic variations in the formants that
result in phonologic variation. Instead, the result is an average of all
the vowels and voiced consonants uttered in the sentence.1

4. EVALUATION

To determine the effects of our transformation method on percep-
tion, we conducted an online affect rating experiment. We hypothe-
sized that affect ratings for the transformed (tEGG) signals z(t) will
be practically the same as those for matching original speech audio
signals s(t). Statistically, we tested this by comparing variation in
ratings within speech-tEGG signal pairs [s(t), z(t)] to variation in
ratings of the same speech audio signal. We reasoned that, if varia-
tion within signal pairs is ≤ variation in ratings of the speech audio
signal, it would imply that our transformation method successfully

1Audio examples of the transformation process, alongside comparative
baselines and code repository, can be found online: https://ccrma.
stanford.edu/˜cnoufi/demos/TAVA-PhonemeRemoval/
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preserves the major paralinguistic cues to affect in speech.
For this experiment, a total of 61 participants were recruited

from Amazon’s Mechanical Turk, via Cloud Research (mean
age=40, SD =12; 31 male, 28 female, 1 unknown). Each partic-
ipant rated 128 stimuli (64 [s(t), z(t)] pairs). These 64 pairs were
derived from a set of 64 speech audio stimuli selected from a larger
set on the basis of being consistently rated for affect across listeners
in a different study [21]. They included 21 different voices (10
male), with four 4 instances of each of the 16 targets.

For each trial within an experiment, a single stimulus was rated
using three visual analogue scales: valence (V; from “negative” to
“positive”), arousal (A, from “low-energy” to “high-energy”), and
dominance (D; from “submissive” to “dominant”) [26]. Stimulus
order was fully randomized and participants were not shown the 16
categorical affect labels. The experiment began with 10 practice tri-
als (half speech, half tEGG, not paired) designed to familiarize par-
ticipants with the rating interface. Practice stimuli did not overlap
with the 128 test stimulus set, no feedback was given, and these data
are not analyzed here. Finally, a subset of 10 stimuli from the 128
test stimulus set (half speech, half tEGG) were repeated throughout
the experiment. This allowed us to assess intra-rater reliability as an
indicator of whether or not participants performed the task in good
faith. Data from 7 of the 61 participants were discarded on these
grounds to poor correlation across repeated ratings (mean intra-rater
correlation coefficient < 0.5). Thus, 20,352 ratings (53 raters ×
128 stimuli × 3 dimensions) were used in subsequent analyses. The
average affect ratings for each signal are shown in Figure 3a.

For every speech-tEGG stimulus pair, we calculate absolute
differences in affect ratings along each affect dimension (dV , dA,
and dD), resulting in a set of 3,392 differences (64 stimulus pairs ×
53 raters) for each dimension. As a basis for comparison with these
data, we estimated “baseline” variation in speech-affect perception
by randomly selecting 53 pairs of ratings for each of the 64 speech
signals, and calculating the differences along each dimension as
above. This random sampling procedure was repeated 20 times to
guard against possible sampling bias. Figure 3b shows the proba-
bility distribution of the observed speech-tEGG differences for each
dimension (in gray) overlaid with a representative probability distri-
bution of differences in affect ratings for the same speech stimuli (in
color). A close correspondence between distributions in apparent in
every case, as it was across all 20 repetitions.

As a basic evaluation of the statistical significance of these
correspondences, we compared the speech-tEGG differences to
the baseline difference using two-tailed Mann Whitney U -tests for
each repetition [27]. The results were not significant for valence
(Uµ = 5.86e6, n1 = n2 = 3392, Pµ = 0.209) or arousal (Uµ =
5.91e6, n1 = n2 = 3392, Pµ = 0.141), indicating that variation in
affect perception between paired speech and tEGG stimuli was sta-
tistically indistinguishable from baseline variation in speech-affect
perception along these dimensions. For dominance, there was a sig-
nificant difference (Uµ = 5.93e6, n1 = n2 = 3392, Pµ < 1e− 3),
but its direction was such that variation in affect perception between
paired speech and tEGG stimuli was less than baseline variation in
speech-affect perception (medians = 0.23 vs. 0.33, respectively).
More telling than these tests is a measure of absolute effect size [28].
For valence, Cohen’s d varied from -0.065 to 0.009 (µ = −0.036)
across the 20 repetitions; for arousal, it varied from -0.07 to -0.03
(µ = −0.047); for dominance, it varied from -0.08 to -0.038
(µ = −0.058). These very small effect sizes (all less than one tenth
of a standard deviation) indicate that variation in affect perception
between paired speech and tEGG signals is practically indistinguish-
able from baseline variation in speech-affect perception.

(a) Mean ratings and 95% confidence intervals for 64 speech-tEGG signal
pairs.

(b) Comparison of rating difference scores to speech-only baseline. The
dark gray histogram displays the distribution of difference scores calculated
for speech-tEGG pairs, e.g. dV = |Vs(t)–Vz(t)| for valence. The overlaid
color histogram displays the distribution of difference scores for pairs of
ratings (e.g. dVbaseline = |V 1s(t)–V 2s(t)| of the same speech signal s(t)).

Fig. 3: Affect ratings of valence (V ), arousal (A) and dominance
(D) given to speech signals s(t) and transformed signals z(t) by
listeners (N = 53 raters).

5. CONCLUSION

In this paper, we proposed a novel signal processing method based
on LPC and EGG to systematically remove phonetic content from
a vocal signal while retaining as much of the signal as possible to
preserve paralinguistic cues. Empirical comparison of perceived af-
fect in response to original speech audio signals and corresponding
transformed EGG signals were shown to be highly similar, indicating
that little affective information is lost as a result of our transforma-
tion method. As such, the algorithm we describe provides a method
for generating a synchronized dataset of affective speech, EGG, and
phoneme-agnostic audio signals that can be used to further research
acoustic correlates of paralinguistic vocal cues.

Finally, we note that an important limitation on the generaliz-
ability of the method described here is the necessity of having par-
allel speech audio and EGG recordings, the latter being relatively
rare. For this reason, we are currently using a dataset of speech,
EGG, and transformed EGG stimuli (only part of which has been
described here) toward training an artificial neural network model to
isolate paralinguistic cues from speech audio without the need for
EGG.
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