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•  Brief Review of Radiation Detectors 
•  Detector Readout Electronics 

•  Preamplifiers & Amplifiers 
•  Single Channel Analyzers 
•  Multi Channel Analyzers 
•  Time-to-Amplitude Converters 
•  Digital Counters and Rate Meters 

•  Peripheral Components 
•  High Voltage Power Supplies 
•  Analog and Digital Oscilloscopes 
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Direct Radiation Detectors Indirect Radiation Detectors 

Gas  
Detectors 

Semiconductor 
Detectors 

Scintillation 
Detectors 

Detect charge from direct 
Ionization of Material 

Create charge from light 
from de-excitation 
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Desirable Characteristics of a Radiation Detector are then: 
•  High Sensitivity: High electron density, i.e. Z and density 
•  Large Area: Can be grown or manufactured in sizes relevant 

for clinical molecular imaging 
•  Excellent Energy Resolution: Ability to distinguish between 

different nuclear emissions, scatter in patient 
•  Fast Response: Avoid dead time/incomplete charge/randoms 
•  Cost Effective: Proliferation dictated by affordability 

•  Imaging in Nuclear Medicine deals with photons ~140-511 keV 
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Radiation detection 

•  Gas filled detectors:  
•  Low detection efficiency ( low density ) 
•  Low conversion efficiency 

•  Semiconductor detectors: 
•  Low detection efficiency (thin) 
•  High conversion efficiency 
•  Temperature dependent 
•  Compact  

•  Scintillation detectors: 
•  High detection efficiency 
•  Medium conversion efficiency 
•  Some loss of energy resolution  
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Conditioning Detector Signals for Application 
•  Detectors for Radionuclide Imaging operate in what is called 

“pulse mode”, i.e. one pulse per detected photon. 
•  Imaging in PET and SPECT are count-starved imaging 

scenarios. Pulse mode is necessary and acceptable. 
•  Some other applications in imaging have such a huge flux of 

incident radiation that they operate in current mode. 
•  Ex: Computed Tomography Imaging, calibration of Intensity 

Modulated Radiotherapy Systems 
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General Signal Processing Chain for Radiation Detector: 
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Preamplifiers for Radiation Detectors: 
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Preamplifiers: The General Purpose 
•  The output signal form accumulated charge in radiation 

detectors is typically quite low: 
TYPICAL SIGNAL OUTPUT AND PULSE DURATION OF VARIOUS RADIATION DETECTORS

Detector
Signal 

(V)
Pulse Duration 

(μsec)

Sodium iodide scintillator with photomultiplier tube 10−1-1 0.23*

Lutetium oxyorthosilicate scintillator with photomultiplier 
tube

10−1-1 0.04*

Liquid scintillator with photomultiplier tube 10−2-10−1 10−2*

Lutetium oxyorthosilicate scintillator with avalanche 
photodiode

10−5-10−4 0.04*

Direct semiconductor detector 10−4-10−3 10−1-1

Gas proportional counter 10−3-10−2 10−1-1

Geiger-Müller counter 1-10 50-300

*Mean decay time.

•  Three main purposes of the preamplifier (or preamp): 
1.  To amplify, if necessary, small signals from detectors 
2.  To shape signals for remaining signal processing 
3.  To match impedance between detector and sig. chain 



Molecular Imaging 
Program at Stanford 

Preamplifiers: Voltage and Charge Sensitive 
•  Two general types of preamps used for radiation detectors: 

1.  Voltage Sensitive Preamp 

2.  Charge Sensitive Preamp 
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Preamplifiers: Amplification 
•  The amplification supplied by the preamplifier depends on the 

detector type 
•  Photomultipliers in scintillation detectors provide gain, so 

little amplification is necessary ~5-20x 
•  In some NaI:Tl based imagers, no gain is used in the 

preamplifier 
•  Semiconductor detectors, having smaller signals my 

require much more amplification ~103-104 
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Preamplifiers: Amplification 
•  The amplification supplied by the preamplifier depends on the 

detector type 
•  Photomultipliers in scintillation detectors provide gain, so 

little amplification is necessary ~5-20x 
•  In some NaI:Tl based imagers, no gain is used in the 

preamplifier 
•  Semiconductor detectors, having smaller signals my 

require much more amplification ~103-104 

•  Preamp should be linear, preserve Energy vs. Charge/Voltage 
•  Preamp should be placed as close to the detector output as 

possible 
•  Avoid SNR degradation from parasitic capacitance and 

noise pickup in cable 
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General Signal Processing Chain for Radiation Detector: 
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Amplifiers for Radiation Detectors: 
•  Amplification and Pulse Shaping Functions 
•  Resistor-Capacitor Shaping 
•  Baseline Shift and Pulse-Pileup 
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Amplifiers: The General Purpose 
•  The output signal form the preamplifier can still be quite low for 

traditional electronics in signal processing chain 
•  Three main purposes of the preamplifier (or preamp): 

1.  To amplify, the still relatively small pulses from the 
preamplifier 

2.  To reshape the long signals from the preamplifier to 
minimize pulse-pileup at high count rates and improve SNR 
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•  The output signal form the preamplifier can still be quite low for 

traditional electronics in signal processing chain 
•  Three main purposes of the preamplifier (or preamp): 

1.  To amplify, the still relatively small pulses from the 
preamplifier 
•  The amount of amplification typically ranges from x1 to 

x1000 
•  A good dynamic range might be 10V = 1 MeV deposited 
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minimize pulse-pileup at high count rates and improve SNR 
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Amplifiers: The General Purpose 
•  The output signal form the preamplifier can still be quite low for 

traditional electronics in signal processing chain 
•  Three main purposes of the preamplifier (or preamp): 

1.  To amplify, the still relatively small pulses from the 
preamplifier 
•  The amount of amplification typically ranges from x1 to 

x1000 
•  A good dynamic range might be 10V = 1 MeV deposited 

2.  To reshape the long signals from the preamplifier to 
minimize pulse-pileup at high count rates and improve SNR 
•  Essential function of the amplifier 
•  Preamp output typically ~500 μsec 
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Amplifiers: The General Purpose 
2. To reshape the long signals from the preamplifier to  
    minimize pulse-pileup at high count rates and improve SNR 

•  Essential function of the amplifier 
•  Preamp output typically ~500 μsec 
•  Pulses arriving at rates >100/sec would ride on the tail of 

previous pulse 
•  Inaccurate amplitude information (i.e. Energy info) 
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RC Shaping of Detector Signals 
•  The most common way to shape signal with the amplifier is RC 

shaping methods 
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RC Shaping of Detector Signals 
•  In (A), the result of successive differentiation and integration 

shown, produces unipolar pulse. In (B), double differentiation 
produces bipolar pulse. 
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•  Unipolar pulses preferred for best energy resolution, bipolar 
pulses preferred for high count rate applications 
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Baseline Shifts and Pulse Pile-up 
•  In (A), an example of amplitude defect shown due to baseline 

shifts. Event riding on negative portion of unipolar pulse 
appears less energy than actually is. 
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•  Corrected with pole-zero 
cancelling circuits. 

•  In (B), the effect of pulse-pileup is 
shown. 

•  Situations avoided with low RC 
time constants, reducing SNR and 
energy resolution 

•  For scintillation cameras, Eres 
already poor enough to  not be 
affected 

General Signal Processing Chain for Radiation Detector: 
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Pulse Height Analyzers 
•  Single Channel Analyzers 
•  Multi-Channel Analyzers 
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Pulse Height Analyzers: Basic Functions 
•  For energy sensitive detectors (ex. NaI:Tl), examining 

amplitude of amplifier pulses provides information on energy 
deposited in the detector 

•  A devices for this task is called a pulse height analyzer (PHA). 
•  A PHA examines pulse height to determine if it lies within a 

particular range or “channel”: 
•  Single channel analyzer 
•  Multi channel analyzer 
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Single Channel Analyzers (SCAs) 

•  Output is identical square pulses, no longer containing energy 
information, already extracted by SCA 

•  These output pulses are used to drive counters, rate meters, or 
other circuits 
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Single Channel Analyzers (SCAs) 

•  A second type of SCA, where there is no upper level 
discriminator, that includes all events above one lower 
threshold is simply called a discriminator 
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Multi Channel Analyzers (MCAs) 
•  Some applications require simultaneous recording of 

information in multiple energy windows 
•  Some SCAs have 2-3 windows, but a practical solution is Multi 

Channel Analzyers that use ADCs to sort Energy info 

Amplifier

Output pulses
from amplifier

Detector
Object

containing
99mTc

1Channels

ADC

2 3 5 6 7 8

Channel number
Photon energy

Memory

C
ou

nt
s 

ch
an

ne
l

9 10 11 124

1 2 3 5 6 7 8 9 10 11 124

B



Molecular Imaging 
Program at Stanford 

Analog to Digital Conversion Methods (ADC) 
•  The ADC is the heart of the MCA, and two general types are 

used in radionuclide imaging applications: 

Output from oscillator
(clock pulses)

Gate pulse

Discharge of capacitor

Input pulse from amplifier

Wilkinson (or Ramp) Converter Successive Approximations Converter 
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MCA in Application: Spectroscopy 
•  The application of MCA provides powerful spectroscopic 

capabilities 
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Time-to-Amplitude Converters (TACs): 
•  Convert time difference between two pulses to a 

proportional Voltage 
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Time-Pickoff in Radionuclide Imaging 
•  Applications in radionuclide imaging require knowledge on the 

time of arrival of tracer-specific emissions at the detector 
•  Ex: PET coincidence annihilation photons to discriminate 

real events from randoms. 
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Timing Methods: Time of Interaction Estimation 
•  Timing Methods: Leading Edge and Crossover Timing 
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•  Other fast timing methods include peak detection and constant 
fraction discrimination 
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Time-to-Amplitude Converters: Function 

START pulse

STOP pulse

Voltage on
capacitor

V � t

t

•  Current source linear, 
therefore, Voltage at capacitor 
also linear with time between 
START and STOP 

•  Typically SCA selects events within a certain energy range, 
producing logic pulse for first event passed to module inside 
energy window 

•  Module drives a constant current source to charge a capacitor 
•  Second event into module within energy window terminates 

charging of capacitor 
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Time-to-Amplitude Converters: Function 
•  Output of the module is a logic pulse with amplitude 

proportional to time between the two events 
•  This can be viewed with a MCA, calibrated for time 
•  Can also be used to form a coincidence window for counting  

MCA Time Difference Spectrum: 
•  These modules not really 

used in imaging systems, 
more so for research 
applications Δt=t1-t2 
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Digital Counters and Rate Meters: 
•  Scalers, Timers, and Counters 
•  Analog Rate Meters 
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Analog Rate Meter 
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Coincidence Units: 

Radiation
detector

Counter /
digitizer

Incident
radiation

Preamplifier

High voltage supply

Amplifier



Molecular Imaging 
Program at Stanford 

Coincidence Untis 

t

t t

t

Input A

Input B

Sum A+B Output

t

t t

t

Input A

Input B

Sum A�B Output

�



Molecular Imaging 
Program at Stanford 

Peripheral Components for Radiation Detectors: 
•  High Voltage Power Supplies 
•  Analog and Digital Oscilloscopes 
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Power Supplies and Integrated Electronics Platforms 

•  Nuclear Instrumentation Measurement (NIM) Electronics Bin 

•  General research applications for traditional radiation detection 
problems have well-defined needs. 

• Other mixed analog/digital standardized platforms have emerged 
• CAMAC 
• VME 

•  Keep in mind that a single detector 
requires hundreds or thousands of volts 
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Analog and Digital Oscilloscopes 
•  Analog Oscilloscopes – Cathode Ray Tube: 
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•  Digital Oscilloscopes – Fast ADCs + Digital Algorithms 
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Summary: Electronics for Radiation Detectors 
•  Charge generated in radiation detectors from interaction of 

photons in radionuclide imaging is typically quite low 
•  Preamplifiers amplify and preserve information from detectors 
•  Amplifiers mostly shape signals and provide additional 

amplification if necessary for remainder of signal processing 
chain 

•  With a clean, linear signal from amplifiers, the signal can be 
processed to extract or infer information about the radiation 
that interacted in the detector: 
•  SCA – Is signal within a defined energy window? 
•  MCA – Statistically visualize events in detector. 
•  Counters – How many events? How fast? (Activity) 
•  TACs – What was the time difference between multiple 

events? (Coincidence Processing) 


