

How do we detect ionizing radiation?

Indirectly, by its effects as it traverses matter?

What are these effects?

•Ionization and excitation of the atoms and molecules •Heat

MIPS Molecular Imaging School of Medicine

Types of Ionizing Radiation Detectors

•Film

•Gas or liquid filled ionization detectors •Scintillation crystal detectors •Semiconductor crystal detectors

These 3 produce electronic signals

"Counters" measure the number of particles that interact "Spectrometers" can count but also can measure the distribution of deposited energy (the amplitude of each pulse is proportional to the amount of ionization charge deposited which is proportional to the energy deposited in the detector by the interaction) "Dosimeters" measure the sum energy deposited for multiple events

```
MIPS
Molecular Imagi
```

Stanford University School of Medicine Department of Radiology

Pulse and Current Modes of Operation

- Pulse Mode (Nuc Med imaging systems and well-counters-these are spectrometers): Electronic signal from each event is processed individually Advantage: Energy information from each event and rate (energy of event is proportional to the amount of charge deposited) Disadvantage: Pulse pile-up and system dead-time Current Mode (Nuc Med dose calibrators and most all other Radiology Imaging systems): Signals are summed together over a time period forming a net signal. Advantage: Can perform at higher incoming radiation intensity

 - Advantage: Can perform at higher incoming radiation intensity and measure dose rate deposited in detector <u>Disadvantage</u>: Lose all interaction rate or energy information of incoming radiation

IP S

School of Medicine Department of Radiology

Ino	rdan	ic Sc	intilla	tion C	rvsta	Is
	3					
Material	Density (g/cm²)	Effective Z	Peak Wavelength A _{max} (nm)	Refractive Index at λ_{max}	Decay Time (ns)	Light Yield (Photons/MeV)
Nal(TI)	3.67	51	410	1.85	230	38,000
Bi ₄ (GeO ₄) ₃	7.13	75	480	2.15	300	8,200
CsI(TI)	4.51	54	540	1.80	1000	39,000
Lu₂(SiO₄)O:Ce	7.40	66	420	1.82	40	28,500
Gd₂(SiO₄)O:Ce	6.71	59	440	1.85	60	9,500
BaF ₂	4.88	65	220	1.56	0.6	10,000
CaF ₂ (Eu)	3.19	17	435	1.44	900	17,000
MIPS Molecular Imaging Program at Stanfo	J				Stanfor S Departm	d University chool of Medicine ent of Radiology

Inorganic Scintillation Crystal Mechanism

Important Performance Parameters of Radiation Detectors

•Energy Resolution •Timing resolution •Efficiency •Count rate performance

Non-imaging detectors used in clinic

Thyroid Probe ("Collimated" scintillation detector)
 Well Counter ("Well-shaped" scintillation detector)
 Dose Calibrator ("Well-shaped" gas detector)
 Geiger Counter ("panel shaped" gas detector)
 MIPS Stanford University
 State of Medical M

Radiopharmaceutical Properties •Labels functional properties rather than anatomy •Loses short-lived nuclear emissions (γ and β) with appropriate energy for low dose •Non-toxic and uncontaminated •Localize in the tissue or organ of interest and not elsewhere •Easy to make, low cost, non toxic Example localization (uptake) mechanisms: 1. Active transport for uptake by tissue or organ (e.g. thyroid) 2. Exchange or diffusion (e.g. blood pool) 3. Exchange or diffusion (e.g. blood pool) 4. Perfusion (e.g. liver) 9. Capillary blockade (e.g. lung)

6. Cell sequestration (e.g. spleen)

MIPS Molecular Imagir School of Medicine Department of Radiology

Radiotracer	Biological Analog	Measured Response
2-deoxy-2-("F)fluoro-D-	Glucose	Glucose metabolism,
glucose (FDG)		Hexokinase activity
C)-Acetate	Acetate	Fatty acid metabolism
(N)-Ammonia	Ammonia	Tissue pertusion
(-O)-water	water	Rigod flow
5-("E)-fluoro-DOPA	Docamine	Amino acid metabolisa
(10F)-fluoroacyclovir	Acyclovic	Thymidinekinase activit
(III) Buoromathudhuroning	Turneline	Amino sold metabolism

