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Aspects of the Radiotracer

(oad) "

biomolecule n radioactive
element

radiotracer

 What modes of radioactive decay are used?

 How do radionuclides decay to produce emissions for
Imaging?

 How are relevant radionuclides produced?

» How do radionuclide emissions interact in tissue and
detectors?
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lllustration of Course thus Far and Future

Visualize molecular analog chemically labeled ~ PET Detector Ring
with positron-emitting radionuclide:

18F-Fluorodeoxyglucose
OH
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Production of Radionuclides
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Nuclear transitions & Radioactive Decay

Stimulated transitions

Nuclear reactions

U

Radionuclide production

Spontaneous transitions

Increase Energy

e a decay
3 decay

v de-excitation
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Producing Radioactive Nuclei

e Naturally occurring radioactive isotopes :
e Typically have long half-life
 Very heavy elements that are not endogenous to human

biology l

Use methods to produce radioactive isotopes

I'} Produced through Nuclear Reactions
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Overview

1. Reactor-Produced Radionuclides: Neutron
activation and fission products

2. Accelerator-Produced Radionuclides: Proton
activation and cyclotron

3. Radionuclide Generators (°°™Tc)
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A common neutron source

U +n— 20U* — Y“Ba+ PKr+#n+#y+#v+E
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nucleus

e Stimulated fission is the source of energy in a nuclear power plant
* Production of a statistical # of neutrons enables a chain reaction

e Excited %3®°U has more than 100 nuclides among its fission products
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Fission Yield of U-235

10
* Ingeneral one

fragment with A
between 130 and
150; and another
between 85 and
105

0.1

e Fission products

with equal masses
are least likely

0.01

Fission yield (percent)

0.001

70 80 90 100 110 120 130 140 150 160 170
Mass number, A
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A Nuclear Reactor

* Nuclear reactors have provided large quantities of radioactive
isotopes for nuclear medicine

* Fuel cells contain fissionable Sokant
material (~4-5% of U-235 by | |
weight)

* Moderator to slow down the
neutrons (water or ‘heavy’ water  Control
D20 ) rods

e Control rods contain strong
neutron absorbers to moderate
the reaction T

e Each fission events creates about
~200 MeV of energy, mainly
released as heat to moderator

* Radionuclides are produced in Prasairo
samples surrounding the reactor  vessel
core

—» Coolant out

Pneumatic line for
+— insertion and
removal of samples

+—Coolant in

b

Shielding

Uranium fuel
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Reactor produced Radionuclides

e Fission products have excess neutrons and thus decay by B-
decay

e If aradioactive intermediate has sufficiently long half-life it
can be extracted and used as a medical radionuclide

99 B 155 _ 99 B.2ls _ 99 B~ 155 _ 99 _
"t VAl > Nb > ,,Mo(T,, =65.9hr)
 99Mo is used to generate °™Tc (More on this in just a bit)

e Also 13!l and !33Xe produced by neutron activation, these are
important for nuclear medicine as well
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Reactor produced Radionuclides

L -4 PM Tube
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Reactor produced Radionuclides

Xe-133 Scintigraphy

R Carusion
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Radionuclides by fission

General properties:

e Excess of neutrons, hence B~ decay

* Products may be carrier free, thus radionuclides have high
specific activity by chemical separation

e Lack of specificity in fission products is a drawback

B4 N8

0.161 MeaV

0.081 MaV

Q=0.427 MeV
4
0
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Overview

1. Reactor-Produced Radionuclides: Neutron
activation and fission products

2. Accelerator-Produced Radionuclides: Proton
activation and cyclotron

3. Radionuclide Generators (°°™Tc)
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Nuclear reactions: proton activation

Proton needs to be energetic to make it to the atomic
nucleus, typically 10-20 MeV

=>» Need particle accelerators
e Different kind of particle accelerators

e Most common: cyclotron

B
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Proton acceleration: Cyclotron

e Charged particle in electric field: acceleration

e Charged particle in magnetic field: change of direction

=>»These principles are combined in a cyclotron.

Motion of charged particles in a
magnetic field
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+ = =
i "‘q ... F,

+ o= -

+ oS -
DN STANFORD e
FAKY SCHOOL OF MEDICINE Molecular Imaging (~*.| -

Stanford University Medical Center Program at Stanford ,-"I



Proton acceleration: Cyclotron

e Charged particle in electric field: acceleration

e Charged particle in magnetic field: change of direction

=>»These principles are combined in a cyclotron.

electromagnet
(north pole)

* Pair of hollow ‘dees’, positioned ~ *****sp—~—~__ i
between poles of magnet e ars = e
%)
* |on source at the center charged particle
. . target
* Electric field between dees LR
alternating
current
source electromagnet
i (south pole)
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Proton acceleration: Cyclotron
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MNote that the accelerating field frequency is independent
of the particle velocity and the path radius

e Particle gains energy in gap between dees

 Upon increased energy, the ion will have a larger
radius in the dee

e Electric field is reversed after every transition
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Proton acceleration: cyclotron

e When maximum orbital radius is reached, particles are
extracted, using targets or a stripping foil

e Cyclotron produce in general smaller quantities of
radioactivity than nuclear reactors due to

e Lower beam intensities
e Lower cross section

e Special interest are short-lived positron emitters: *1C
( 20 min), 13N (10 min), >0 (2 min), these require a
local cyclotron

e Also 8F (110 min) important, but a regional
distribution center is sufficient
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Overview

1. Reactor-Produced Radionuclides: Neutron
activation and fission products

2. Accelerator-Produced Radionuclides: Proton
activation and cyclotron

3. Radionuclide Generators (°°™Tc)
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Radionuclide Generators

-

|
Parent Da ter Grand-daughter
H “ Tie=Tp . T1:g;th I Tip = T?:l
1 I - Many Beta Gamma radiation
[ e 235U decays QQMO radiation gngC with low energy - QQTC
‘l 66 h 6 h

* Parent-daughter radionuclide pair contained in apparatus
that permits separation

 Most important generator: *?Mo —°"Tc

 Very common because of wide spread Tc use ( more than
1850 TBq of **Mo required per week )

e Also %8Ga, 82Rb, ®2Cu are generator produced
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Radionuclide Generators

| Eluate

(evacuated vial)

Eluant
(saline vial)
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Radiotracers

e Many candidate radionuclides, yet relatively small number of
practical radionuclides because of following considerations:

 Type and energy of emissions and the branching ratio: ideally no other
processes than y-emission at energies 50-600 keV

e Physical half-life of radionuclide:

e |ftoo short: no time for preparation

e |f too long: high radiation contamination for disposal and most of the
activity emitted outside of examination time

e Specific activity: need as many as possible radioactive molecules in a sample;
must not be biologically perterbing

e Radionuclidic purity: fraction of the radioactivity in the desired form, i.e. no
contaminants

e Cost and complexity: ease of production

‘%,j E ‘?Lrl]:)j(DALNOF];I‘\ﬂ(E)D Erps Molecular Imaging @

Stanford University Medical Center Program at Stanford



Radiotracers

Radionuclide Decay Mode Principal Photon Emissions Half-Life Primary Use
1c B+ 511 keV 20.4 min Imaging

13N B+ 511 keV 9.97 min Imaging

150 B+ 511 keV 2.03 min Imaging

18F B+ 511 keV 110 min Imaging

32p B- — 14.3d  Therapy

67Ga EC 93,185, 300 keV 3.26d  Imaging

82Rb B+ 511 keV 1.25 min Imaging

89Sr B- — 50.5d Therapy
PmTc IT 140 keV 6.02 hr Imaging

1 n EC 172, 247 keV 2.83d Imaging

123 EC 159 keV 13.2 hr Imaging

125] EC 27-30keV xrays 60.1d Invitro assays
131 B— 364 keV 8.04d Therapy/imaging
153Sm B- 41, 103 keV 46.7 hr  Therapy

186Re B- 137 keV 3.8d Therapy

2017 EC 68-80 keV xrays 3.04d Imaging
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Production of Radionuclides: Major Takeaways

1. Naturally abundant radionuclides are long-lived, not
generally useful for nuclear medicine studies

2. Produce short-lived radionuclides via stimulated
transitions: ex. neutron activation or fission in reactor,
proton activation in cyclotron

3. Work horse isotope Tc-99m eluted from Mo-99
product in radionuclide generator

4. Radionuclide chemically labeled to biological analog,
which predetermines application, specificity, and so
much
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Interaction of Radiation with Matter
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Interactions of rad. with matter: How it fits In

 Why is understanding interaction of radiation with matter
Important for imaging in nuclear medicine?

« Emissions from radioactive nuclei are too high in energy & too
small to be seen with the naked eye

* We observe their existence only through the effects they
produce in matter

» Effects caused by various forces and interactions the nuclear
emissions experience as they traverse a material

Example: Scintillation Detector

LIGHT ELECTRONS
INCIDENT

RADIATION s 1> E‘I..E(IIE:-[
¥ | scinTiLLATOR s = | SasRe | —>

PHOTOCATODE
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Range of 8F positrons in water

a Patient in a scanner
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e FWHM ~ 0.1 mm
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Interactions of rad. with matter: How it fits In

 The forces and interactions that nuclear emissions experience
can also alter the state of the emissions
e This can directly impact imaging, ex. Compton scatter in PET:

PET Ring

Scattered
coincidence
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Interactions of rad. with matter: How it fits In

 The forces and interactions that nuclear emissions experience
can also alter the state of the emissions

(a) Scatter (b) No Scatter Difference
Correction Correction (b)-(a)/(b)

1R
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Intro: interaction of radiation with matter

« Examples of highly penetrating radiation ?

Rank in order of penetrating power:
a. Neutrino 1. Neutrino
b. Electron 2. Neutron o3
any pattern :
c. Photon 3.Photon yp
4. Electron
e. Neutron
&}E STANFORD 1
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Intro: interaction of radiation with matter

< TR
° @
=
—
|

Paper Alumini"um Lead

« Incoming radiation interacts with the electrons or the
nucleus of the material it encounters

Tissue penetration dependent on:
1. Type of Radiation
2. Interaction Material (and thickness)
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Intro: interaction of radiation with matter

« Important for detection of radiation, assessing
radiation damage, analyzing radiation therapy
 density p and atomic number Z of the interacting

matter is important
 Interactions are statistical in nature:

P,=1-e*

int
« M = attenuation coefficient ( 1/cm)
« X = distance travelled
 1/u = mean free path
* Many particles per unit length so low variations in
average numbers
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Interaction of radiation with matter

Distinction between three types:
1. Heavy charged particles:

o Short, well defined range

o Collisional losses ( at Nuc Med energies )
2. Light charged particles:

* Longer, largely varying paths

« Collisional and some radiative losses
3. Photons

 Rayleigh Scatter (non-ionizing)

 Photo-electric Effect

« Compton Scatter

e Pair Production

Interaction of lonizing radiations will ultimately resultin a
cascade of lower energy electrons
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Intro: interaction of radiation with matter

« Charged particles undergo two primary energy transfer
mechanisms:
» Collisional Energy Transfers
 Radiative Energy Transfers
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|: Collisional losses

Collisional losses

(ionization)

N = Neutron
+ = Proton

 When incoming radiation has a lot of kinetic energy, it
may ionize the material; i.e. we have ionizing radiation
« Alternative: excitation of the atom (elastic)
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|I: Radiative losses

Competing process: Radiative loss

Mockornnto oy
bromestrallung
x-rEy pihoton

Low onorgy
brerrmstrahiung

Charged partic S the nucleus,
loses energy, emits a Bremsstrahlung photon
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II: Bremsstrahlung

Results in a continuum of
energies produced:
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II: Bremsstrahlung

Xray-CT Imaqing exploits bremsstrahlung to visualize anatomy

X-ray tube X-ray CT Scan

Regulator wire

Regulator (lever)

Anticathode Spark Gap
(target)

’;;«.

rplﬁ\“\

TR LY
|’||"-\\\
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I: Heavy Charged Particles

 Interact mainly through Coulomb interaction with
atomic electrons

 Range is short: 10 MeV proton loses all its energy In
only 0.25 mm copper

e Inelastic scattering: # particles in # # particles out:
a+Z=>a+Zt+e

« Energy transferred to the atom

e lonizing radiation: target becomes ionized, may Yyield
biological damage

e Other interaction may be elastic scattering from
nucleus, or nuclear reactions
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Il: Light Charged Particles: Electrons/Positrons

e Electrons behave similarly as heavy charged particles
* Lose energy through interactions with atomic electrons,
however
e More energy is transferred in a collision
e Secondary electrons may become ionizing: delta-rays
e Path subject to large variations
e Q: What about positrons ?
A: exactly the same, except for annihilation after thermalization

G
Stanford University Medical Center Program at Stanford
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Bremsstrahlung vs Collisional Losses

e Okay — so there are two competing processes: Collisional
and radiative energy transfers

e Which is dominant?

* Relatively more Bremsstrahlung at higher or lower
energies ?

* Relatively more Bremsstrahlung at high Z or low Z ?
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|I: Radiative vs. collisional losses

LOSSBremsstrahl ung _ ZE;?aX
L oss, 3000

ollision

Radiative losses more prominent for increasing particle
energy and increasing absorber Z

Radiative losses more prominent for increasing particle
energy



Are radiative (bremsstrahlung) or collisional losses more
dominant for charged particles at energies relevant to nuclear
medicine imaging studies?

I—OSSBremsstrahI ung _ ZE;J’naX
L oss., 3000

ollision



Are radiative (bremsstrahlung) or collisional losses more
dominant for charged particles at energies relevant to nuclear
medicine imaging studies?

I—OSSBremsstrahI ung _ ZE;J’naX
L oss., 3000

ollision
o Z fortissue is low H20 ~7.4
* Energy range for nuclear medicine studies ~0.1-0.5 MeV

Very small fraction of energy transferred from interaction of
charge particles in tissue result in radiative yields, and dose
IS predominantly locally deposited.



lI: Compare particle tracks

e wa-particle track
------- > X

P o Rays
/’\Z 1. e- mass much

High-energy
} electron tracks Iower
2. e- charge lower

“\/\ 1/ 3. e- experience
large angle
/ ------- > x deflections
Bremsstrahlung (bremsstrahlung)

« Heavy charged particles travel in “straight lines, energy
deposited locally
* Electrons undergo large angle deflections
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Specific ionization

e Specific ionization: number of ion pairs per distance
 The value is energy dependent

10000

Electrons

More ion/pairs for lower energy, so
larger ionization density towards the

end of a particle track

8000

6000

lon pairs/mm

4000

2000

0.01 0.1 1 10 100 1000

x‘rq& STE. .. oo Energy (keV) |
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Specific ionization

e More energy deposited towards the end of track
* Bragg Peak, in particular for alpha particles

8000
Heavy Charged Particles
Bragg ionization peak ——————P»

6000
E
E
%
5 4000 |
=
s

2000

!
ﬂ i l i 1 i | i 1 i 1 i 1 i
: 7 § " 4 3 2 1 0 |
‘% ?,P bSSCVHI(‘)I/OXLT Distance from end of range, cm air naging O‘:\,/.
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Proton Therapy

Protons
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Particle Range

e Range of heavy particles (ex. Alpha particles & protons)

1.0 :
\ Source
Range
- E straggling :
2% \
= 3 1. .
= -
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EQ 1 1 Absorber
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28
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Mean range -
0.0 : \. Detector

Absorber thickness
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&R

Particle Range

 Range of electrons/positrons
 More spread than heavy particles

1 -
- -
)
28
E 3 Extrapolated
[ =
= E range
20
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Particle Range

e Range of electrons/positrons
* Strongly energy dependent Electrons in water

10

0.1

0.01

Extrapolated range (cm)

0.001

0.0001
0.01 0.1 1 10

Y ST. -
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Stopping power and Range

| Material | Density |_Stopping Power

(g/cm3) MeVcm/g (MeV/cm) (g/cm?) (cm) (um)

1 MeV proton Air 0.00120 222 0.266 0.00287 2.39 23900
1 MeV electron 1.66 0.00199 0.0490 408  408x10°
1 MeV proton Water 1.00 260 260 0.00246 0.00246 24.6
1 MeV electron 1.85 1.85 0.437 0.437 4370
1 MeV proton  Tungsten 19.3 63.5 1220 0.0122 0.00063 6.34
1 MeV electron 1.02 19.6 0.768 0.0399 399

Density is crucial

Stopping power decreases as Z/A

Electrons about 2 orders of magnitude larger range

Source NIST pstar and estar:
http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
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Heavy and Light Charged Particles: Takeaways

* Interaction of Radiation in Matter in two categories:
 Charged Particles
 Heavy Charged Particles
» Electrons/Positions

e Also two primary energy transfer mechanisms for charged
particles:
e Collisional Energy Transfers
* Inelastic Coulomb scattering
 Elastic nuclear interactions
 Radiative Energy Transfers
* Bremsstrahlung
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Photon Interactions

aQ & — ]

BO »
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Paper Aluminium Lead

Photons are highly penetrating electromagnetic radiation
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Interaction of radiation with matter

Distinction between three types:
1. Heavy charged particles:
o Short, well defined range
e Collisional losses ( at Nuc Med energies )
2. Light, charged particles:
 Longer, largely varying paths
 Collisional and some radiative losses
3. Photons
 Rayleigh Scatter (non-ionizing)
 Photo-electric Effect
« Compton Scatter
e Pair Production
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Photon Interactions

« For a photon to deposit energy, energy needs to be
transferred to an electron first

Two processes most relevant at Nuclear Medicine Energies:
1. Photoelectric absorption
2. Compton Scatter

Important: the electron that receives energy from

the photon will deposit energy in the material
(i.e. ionize the material )

R STANFORD W
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Photons: Photo-Electric Absorption

Photon absorbed by atom

. Atom emits photoelectron, with energy:

E,. = E, — BE (BindingEnergy )

Photo-Electron now is ionizing

An higher shell electron fills the vacancy and emits
an X-Ray photon

(a) (b)

\ 1

N =

B W

N

Ejected Photoclectron o K-Xray
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IlI: Photons: Compton Scatter

1. Photon scattered by electron
2. Electron overcomes the binding energy and gets

ejected : _ .
Ee — Ey - Ey B Ebinding
3. Scattered -unbound- electron deposits energy

8
\@ :e

compton
~  electron
ORSTANFO B
FAKY SCHOOL OF MEDICINE Molecular Imaging (~. |~
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IlI: Photons: Compton Scatter

1. Photon scattered by electron phoron -

E}.j: compton

E. = E)/[1+(E)/0.511) (1-cos®)] ™

TABLE 6-2
SCATTERED PHOTON AND RECOIL ELECTRON ENERGIES FOR 180-DEGREE COMPTON
SCATTERING INTERACTIONS

Radionuclide Photon Energy (keV)

1251 27.5 24.8 2.7
135Xe 81 62 19
99mTe 140 91 49
| 364 150 214
B* (annihilation) 511 170 341
%Co 1330 214 1116

— oo 255.5 —



I1l: Photons: Compton Scatter

100 keV
(=]
=
£
=8
35 500 keV
38
== 1 MeV
R
o
a 0.01
5 MeV
0.001 ) . . . . =
0 30 60 90 120 150 180

Scattering angle, 6 (deg)
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IlI: Photons: Compton Scatter

80

Be-030

« Scatter more forward
for higher energies

* Electron obtains most
energy when photon
backscatters (most
energy transfer

180

£ STANFORD
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How Angular Dependency Matters in PET

(One Example)

PET Detector Ring

§@@ @@%

Scatter
Lesion
body

Counts

Bed
Detector

Module

@@@@

%P STANFORD
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WITH Tissue
Scattering
N

Case of NO
Tissue
Scattering

Energy

i
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Photons: Rayleigh Scatter

1. Elastic scatter of a photon off the entire atom

* 10 % of interactions at 30 keV
& 9 e (in soft tissue) - mammography
| 4 g * 5 9% of interactions at 70 keV
@ @ 1 © 1) (in soft tissue) - X-ray imaging
O ._ : . In_teract:i%on probability goes up
\ @ - with ~Z

 Non-ionizing!

=

Y - - |
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lll: Photons: Other processes

« Pair production: higher energy photons are able to create
electron-positron pairs ( E>1.022 MeV), this process quickly
becomes dominant ( ~ Z log(E) )

Incident e
photon electron

0.511-MeV annihilation photons

JA‘LE STANFOR

|
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Photon interactions

 Interactions alter emissions from the radionuclide carefully

selected for a molecular probe for imaging
It is important to know how likely these interactions will affect

emissions

Simple Experiment to
Extract this Parameter

Absorber

Incident Transmitted

photon beam photon beam
intensity, 1 intensity, (I—AlI)

e~ ~—~———>
e ~—~———>
~———P>

Jﬂi STANFORD -
K¢ SCHOOL OF MEDICINE

Stanford University Medical Center

Detector

Iy

I(x) = I exp(-px)
/

3

I'
T = exp(-ux)
0
u is the probability of
Interaction per unit
path length (1/cm)

Molecular Imaging @
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Photon Probability of Interaction

Water Nal(Til) Pb
100 100 ' 100 g# L
EX & i
2 2 F \ 2 10 i
Ne 10 o 10k o
§ | § Y 13
: | ;
£ ¢ g
g 1 g 8 1
. o .
§ $ [ 5
§ 3 o Y o Fem 3
s 01 § 01E===F=5_ S 04
2 ﬁ .. \4 ﬁ
w 2 I % [ W
(] . ~ | g
% . g - .',‘ | .N’I'\. ) = i T __"':rl :’“\‘
0.01 4 0.01% 7 0.01 & T
: ] ;- E -1{ ’l' K E JI.
I ':. T K 2 ¢ [ ;-.‘ : : K - %
0.001 L iuinad® o il 4100 0,001 Ll il b L 0.001 L unnd o T
0.01 0.1 1 10 0.01 0.1 1 10 0.01 01 1 10
A Photon energy (MeV) B Photon energy (MeV) C Photon energy (MeV)

T = photoelectric absorption
o = Compton Scatter
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Dominant Photon Interactions Z vs. E

100
75
e Pai(r}I '
@ Photoelectric production
o] .
c absorption
g 50
Q
5 Compton
< scattering
0
0.01 0.1 1 10 100

Photon energy (MeV)
Different processes dominant at different energies
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Photon interactions

 Rayleigh Scatter: coherent scatter whereby the photon
changes direction, can be significant at low energies

 Photoelectric: y -> photoelectron (-BE). Probability ~
Z4/E3

« Compton Scatter:y ->y' + e’. Probability ~ Z/E

o Pair production: higher energy photons are able to
create electron-positron pairs ( E>1.022 MeV), this

process quickly becomes dominant (~Zlog(E))
“%,j § ’sscrHI;Ic[}LNOFFn‘nQ: IC NIg Molecular Imaging @
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How Photons Deposit Energy in Matter

a— , Compton
recon electron

Scattered
photon
Scattered
Incident photon
photon
_\/\/ Xray
Compton )

recoill electron Photoelectron

* Interactions of photons and charged particles
with matter are coupled
e Secondary electrons ionize and deposit dose

%é ?f EScLI;fc}LISFF;nQ: ER Molecular Imaging @
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A look forward: The Scintillation process

Scintillation
Photoelectrons light

\ / Reflector

PM Tube

o vy ray
«—

\/
7 AN
First .
dyrllt;)sde Photocathode Interaction
Mu-metal
shield

1. Gamma interaction

¢ Photoelectric Absorption
* Compton Scattering

2. Photo- or Compton electron
deposits energy in scintillator

¢ |onization
¢ Excitation of Medium

3. Scintillator atoms get excited

¢ Thermalization of charge carriers

4. Scintillator atoms de-excite by
emitting optical photons

one gamma photon yields one electron, but

many optical photons
M STANFORD
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Photon interactions

Air (p =1.2103 g/cm?)

H,0 (p=1 g/cm?)

Tungsten (p =19 g/cm3)

Total Mean
Mean mean Mean free Total mean free Total mean
Energy Attenuation free path free path |Attenuation path free path |Attenuation path free path
(keV) (103cm?/g) (10°cm) (cm) (103cm?/g) (103 cm) (cm) (103cm?/g) (cm) (cm)
140 R 2.57 0.324 6030 2.79 0.358 6.51 100 0.519 0.0277
C 135 0.006 150 0.007 98.5 0.528
PE 0.67 1.24 0.915 1.09 2000 0.031
511 R 0.20 4.23 9640 0.22 4.65 10.4 9.14 5.68 0.388
C 86.2 0.010 95.8 0.010 68.1 0.763
PE 0.01 64.4 0.02 56.2 56.6 0.918
1000 R 0.05 16.2 13100 0.06 17.8 14.1 2.48 21.0 0.785
C 63.6 0.013 70.7 0.0141 50.9 1.02
PE 0.003 311 0.004 2.72 12.8 4.06

g STAN

% SCHOOL OF MEDICINE
Stanford Ur

Higher energy results in higher mean free path
Mean free path = average distance between interactions
Air almost no attenuation
In water Compton dominant at E > 140 keV
lggsten Compton dominant at E > 500 keV

Lgair=76,;7Z4H,0=74
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