Giving Opportunities

Clinical and Post-Doctoral Fellowships | $2 million/$125,000
Fellowship funds allow us to attract the most gifted graduate and post-doctoral fellows to work alongside faculty to gain traction on promising research problems. Their insights often lead to new discoveries and paths of inquiry.

Cutaneous Lymphoma International Consortium (CLIC) | $150,000+
Serving as CLIC’s coordinating data center, Stanford collects and manages clinical, pathology, and molecular data in a virtual biobank that links participating centers. This biobank allows key scientific discoveries from one center to be validated in a larger, international study. Your gift would support building the international virtual biobank, clinical database, and digitized pathology databank that will be used for translational research.

Genomics and Immune Therapy Research Fund | Varying Gift Amounts
Research funds can be earmarked to accelerate any of the multiple research efforts currently underway or to help launch a novel line of inquiry. Additional research is needed to understand the variety and pathway of rare genetic alterations and to analyze and characterize disease at the molecular level, so we can prescribe therapies precisely tailored for each patient. Similar methods will be used to identify targets for immune therapy and how best to boost patients’ own immune system to fight against their cancerous cells.

Translational Medicine Fund | Varying Gift Amounts
Clinical trials allow us to test promising new approaches to therapy such as biomarkers of disease, new drugs, or novel applications for existing drugs. We can determine the safety and efficacy of new treatments, products, procedures, or approaches and deliver new alternatives to patients. Clinical trials offer an opportunity for cutting-edge treatments for patients where other conventional options may have failed. Your support will fund bringing the basic discoveries made by MCLP members and its collaborators to the clinics and thus make novel therapies available to our patients.

Contact Us
Kat Walsch, MBA, Senior Associate Director
Medical Center Development
3172 Porter Drive | Suite 210 | Palo Alto, California | 94304
650.724.9860 | kwalsch@stanford.edu

Cutaneous T-Cell Lymphoma
RESEARCH AND TREATMENT ADVANCES AT STANFORD MEDICINE
Dr. Youn H. Kim, MD
The Joanne and Peter Haas, Jr., Professor for Cutaneous Lymphoma Research, Director of the Multidisciplinary Cutaneous Lymphoma Program, and Professor of Dermatology and Medicine (Oncology, by courtesy)

Dr. Youn Kim’s pivotal clinical and scientific contributions have served to revolutionize our understanding of cutaneous lymphomas. She has published extensively and is recognized internationally for her leadership.

Dr. Kim chose to study this rare cancer because she understood that even though the disease affects only a small population, the impact it can have on each patient’s life is changing and potentially lifesaving. Because cutaneous lymphoma can appear as a skin rash, it is often misdiagnosed and care is often mismanaged. Quality of life is poor, greatly affecting social and personal interactions for patients who are reminded daily of their cancer, given its visual and tactile nature.

To revolutionize the approach to understanding and managing cutaneous lymphomas, Dr. Kim established a diverse group of the most talented experts to collaborate under the umbrella of Stanford’s Multidisciplinary Cutaneous Lymphoma Program (MCLP). She also established the Cutaneous Lymphoma International Consortium (CLIC), headquartered at Stanford, includes more than 60 academic institutions committed to producing a large-scale clinical and pathology database linked with patients’ tissue and blood samples, thus establishing the machinery to share data and material cohesively across five continents.

Under the direction of Dr. Kim, Stanford’s Multidisciplinary Cutaneous Lymphoma Program (MCLP) has become an international leader in these rare skin lymphomas. Dr. Kim first encountered the cancer as a dermatology resident at Stanford working with her mentor Dr. Richard Hoppe, co-founder of the MCLP. Frustrated by the difficulty in diagnosing CTCL and the lack of effective treatments, Dr. Kim dedicated her career to finding solutions for her patients. Today, the MCLP has advanced the standard of care worldwide, pioneering breakthrough therapies and providing hope and relief for patients.

An interdisciplinary team that brings together dermatologists, medical oncologists, radiation oncologists, and experts in blood stem cell transplantation, the MCLP has collaborated with cutting-edge investigators in dermatology to identify key genetic alterations in patients’ diverse manifestation of disease. By gaining a clearer picture of the genetic and immunologic factors, the team is better able to develop targeted treatments that kill the cancer cells but spare the healthy cells.

“We can now design drug trials in a smart, evidence-based way that is specific to the patient,” said Dr. Kim. “Before we had this data, it was trial and error—we were totally flying blind.”

Stanford’s multidisciplinary approach has enabled the investigation of novel treatments from many angles, including new immune therapies that boost patients’ own immune systems to fight cancer. This research, led by MCLP member Dr. Michael Khodadoust, includes immune checkpoint inhibitors, where the antibody therapy releases the brakes in the immune system, enabling dormant immune cells to be unleashed and eliminate cancerous T-cells. Other immune approaches are being studied to develop potential vaccine-type therapies to fight against patient-specific abnormal T-cell receptors.

Another member of the MCLP, Dr. Wen-Kai Weng, led the development of an novel blood stem cell transplant regimen replacing CTCL patients’ defective immune cells with healthy cells from a compatible donor. Transplants are often associated with difficult side effects such as graft versus host disease, which can be fatal. But by creating an original regimen, the team has reduced the risks and preserved cells’ ability to attack cancer.

Dr. Weng also helped to develop a tool capable of detecting a single cancer cell among a million cells. With a nearly one-thousand fold increase in sensitivity compared to older technologies, the tool allows doctors to detect cancerous cells, track, and respond to recurrences with greater speed and precision.

Radiation therapy remains the most effective weapon in the arsenal against cutaneous lymphoma. Stanford developed the original total skin electron beam therapy (TSEBT) where radiation generated by electrons can be delivered to optimize treatment of the entire skin surface. An innovative approach led by Dr. Richard Hoppe uses a significantly lower dose of radiation allowing patients to receive therapy multiple times with fewer side effects and with dramatic clearing of disease. The low-dose TSEBT approach can be combined with immune therapies to prolong the duration of response in patients.

Deciphering the cause of any disease is exponentially more difficult when rare and diverse in expression. Even doctors who focus on CTCL don’t see enough cases to build a robust tissue bank or database. To solve that problem, Dr. Kim organized an international coalition of experts in CTCL. The Cutaneous Lymphoma International Consortium (CLIC), headquartered at Stanford, includes more than 60 academic institutions committed to producing a large-scale clinical and pathology database linked with patients’ tissue and blood samples, thus establishing the machinery to share data and material cohesively across five continents.

Stanford’s Multidisciplinary Cutaneous Lymphoma Program has played critical roles in developing many promising treatments—with others still to come. Furthermore, with increased knowledge about the genetics and biology of CTCL, doctors can offer therapies that are more effective for their patients. With your help, Dr. Kim and her team will be able to pursue the most promising areas of research to improve patients’ lives affected by this rare disease.