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We do a lot, without knowing what works.
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Profiling risk factors for chronic uveitis
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Androgen deprivation & Alzheimer’s risk
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www.tinyurl.com/JCO-ADT

. ATLAS by Stanford

Searching 1,459,052 patients over 11,950,995 encounters
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VARS: MINE  GROUP

// patients with cryptogenic stroke, where we don’t have an
obvious reason for the stroke

var stroke = Intersect (OR(icd9=436, icd9=434), NOT (OR(icd9=393,
icd9=394, 1cd9=397.1, icd9=397.9, icd9=398, icd9=246, icd9=424.9,
icd9=v43, icd9=433.1, icd9=431, icd9=434.11, icd9=434.01)), AGE
(40 years, 90 years), VISIT TYPE="INPATIENT", NOT (TEXT="thyroid
diseases"), NOT(TEXT="heart valve prosthesis"), NOT (TEXT="disease
of mitral valve"), NOT(TEXT="rheumatic heart disease"))

// those that got diagnosed with Afib
var afib = FIRST_MENTION (icd9=427.31)

// those that had a cryptogenic stroke, and got diagnosed with
Afib in 1 to 5 years
BEFORE (§stroke*, $afib)+(-5 years, -1 year)

Taput Tex ot T E T
Negxand Confext [ et st
E2E oy R
B8 e SR S Tl Bl i
Knowledge graph bl B R T s, e
§ :: [
; = i irittarie: xmm,.,.“....k(.,m...mu...—»3 e i
i — — ] B Defer binding
| [ o[- [w[nlelol to concepts
o[ [0 [sooo [osofows | [om| | | |
il ntictioes B
i e e

ile Idiopathic Arthritis
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696.0, 714.0, 714.2, 714.3, 714.9, 720.2, 720.9
Juvenile Idiopathic Arthritis.
2 Terms:

. " Juvenile idiopathic arthritis, JIA
Uveitits Juvenile rheumnatoid arthritis, IRA

Psoriatic arthritis

Iridocylitis
Juvenile spondyloarthropathy,
» spondyloarthritis,
& enthesitis related arthritis,

S EEREEERE sacroiliitis,
reactive arthritis

Count present, positive
mentions, about the patient
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Androgen deprivation & Dementia risk
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234 patients

NOTES
Lass Cohort is male, white and 65+ years old
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http://tinyurl.com/inf-consult

My Patient

A 55 year old female of Vietnamese heritage |

with known asthma presents to her physician
with new onset moderate hypertension

Intervention

[ antihypertensives ]
Outcome

[ Diastolic pressure < 90 mm Hg ]
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Example — 2: Choosing chemotherapy

Scenario: For 55-60 year old white male patient
with newly diagnosed plasma cell leukemia (PCL),
what is the difference in overall survival between
patients treated with intensive versus less intensive
chemotherapy?

Example — 1: Choosing diabetes drugs

Scenario: Which second line drug to use for treating
diabetics who have high HbAlc one to two months
after first line treatment?

Effective treatment pathways
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Metformin - Glipizide vs. Pioglitazone
Metformin > Sitagliptin vs. Glipizide . 1

Metformin - Sitagliptin vs. Pioglitazone | [EEEEEEEn @-------nn|

Example — 2: Personalized estimate

All Patients With Multiple Myeloma: n = 1074
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Outline of an informatics consult

Descriptive summary
* What happened after treatment?

Making recommendations
* What treatment choices are typically made,
given prior medical history? What are typical

outcomes?

¢ Estimation: What is the effect of treatment
choice X on outcome Y?

Phenotyping - effort precision trade off
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X P R ESS' EXtraction of Phenotypes from clinical Records using Silver Standards

Input: config.R — with term search settings
Output: keywords.tsv and ignore.tsv

Input: getPatients.R -- config.R, keywords.tsv, ignore.tsv
Output: feature_vectors.Rda Fosture

v
Torms. 109 RX Labs

Annotations

Input: buildModel R -- config.R, feature_vectors.Rda
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095 91% 83% 83%  Output:modelRda
Mi 091 89% 91% 91%
FH 0.90 76.5% 93.6% ~20%
Celiac 075 40% 90% ~4%

Insights

D ETECT Data mining EMRs To Evaluate Coincident Testing
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Quality metrics

Time between surgery and DVT/PE event
(first year after surgery)

* Post surgery DVT :
rates .

Predictive Modeling

* Urinary
Incontinence after
prostate cancer
surgery

Classification or Prediction? Predicting delayed healing wounds

Risk prediction ~ Time of “X” Classification
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68 Healogics Wound 59,958 patients 180,716 wounds Each wound assessment:
Care Centers in 26 L
. . Age + Wound type + Dimensions
states *+ Gender + Wound location * Edema
+ Center Code * Insurance * Erythema
+ Zip code + Rubor N
* Other wound qualities

Clinically usable performance Predicting Cost Blooms

ROC Curve for lasso
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Predicting Cost Blooms Fruitful areas of activity

60% - Bloomers
don’t bloom Correctly predicted

bloomers 40% - Persistent

Risk stratification: cost, latent disease,
decompensation

Personalizing evidence: risk for me, what
treatment will work

Insights into disease progression

Using passively collected data: sensors,
feature engineering

* Practice management: predicting missed
appointments, medication adherence ...

N =274,525 .
Expensive in
2014 = $18,028 °
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