Technical Principles of ECG-gated CT and Radiation Dose Reduction

Dominik Fleischmann
Department of Radiology
Stanford University

OBJECTIVE

- review two fundamentals of CT technology
 - detector banks in multidetector (multislice) CT
 - pitch
- prospective and retrospective ECG gating
- explain how heart-rate influences selection of gating technique, ...
- and how this affects radiation exposure

3rd Generation Computed Tomography
Tube-Fanbeam-detector array rotating around patient

Gantry rotation times (modern scanners): 500ms → 300ms

Fastest Gantry Rotation Times for Different Scanners

<table>
<thead>
<tr>
<th>System</th>
<th>Gantry Rotation Time (ms)</th>
<th>(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE-C1 (8 row)</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>GE-C3 (16-row)</td>
<td>400</td>
<td>0.4</td>
</tr>
<tr>
<td>GE-VCT (64-row)</td>
<td>350</td>
<td>0.35</td>
</tr>
<tr>
<td>Siemens S 64 (Blake)</td>
<td>330</td>
<td>0.33</td>
</tr>
<tr>
<td>Siemens DualSource (SMIC)</td>
<td>330</td>
<td>0.33</td>
</tr>
<tr>
<td>Siemens AS+ (SMOC)</td>
<td>300</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Multiple Detector Row Systems
Exposed detector-rows

- 1 row
- 4 rows
- 8-16-32-64 rows
Examples of Detector bank Configurations

<table>
<thead>
<tr>
<th>Detector configuration</th>
<th>Total detector bank width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE–CT1 (8 row)</td>
<td>10 mm</td>
</tr>
<tr>
<td>GE–CT3 (16-row)</td>
<td>20 mm</td>
</tr>
<tr>
<td>GE–VCT (64-row)</td>
<td>40 mm</td>
</tr>
<tr>
<td>Siemens S 64 (Blake)</td>
<td>19.2 mm</td>
</tr>
<tr>
<td>Siemens DualSource (SMIC)</td>
<td>19.2 mm</td>
</tr>
<tr>
<td>Siemens AS+ (SMOC)</td>
<td>38.4 mm</td>
</tr>
</tbody>
</table>

What is the definition of Pitch ?

Spiral / Helical Acquisition

- **Pitch**: table translation (for one gantry rotation) relative to total width of exposed detector rows

Technical Principles of ECG-gated CT and Radiation Dose Reduction

OBJECTIVE

- review two fundamentals of CT technology
 - detector banks in multidetector (multislice) CT
 - pitch
- prospective and retrospective ECG gating
- explain how heart-rate influences selection of gating technique, ..
- and how this affects radiation exposure

CT and Cardiac Motion

Problem:

- fast Motion !!!
- Cardiac cycle ~ 1 s (1000 ms)
- Ideal temporal resolution: <50 msec
What is Temporal Resolution in CT?

- Time it takes to acquire all x-ray projections needed to reconstruct one CT image.
- Half-scan reconstruction needs only projections from ~180° gantry rotation. Temporal resolution ≈ 1/2 gantry rotation time.
- With two x-ray tube/detector systems, temporal resolution ≈ 1/4 gantry rotation time.

Temporal Resolution (2009)

<table>
<thead>
<tr>
<th></th>
<th>Gantry Rotation (ms)</th>
<th>Temporal Resolution (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE – VCT (CT2)</td>
<td>350</td>
<td>175 ms</td>
</tr>
<tr>
<td>Siemens S 64 (Blake)</td>
<td>330</td>
<td>165 ms</td>
</tr>
<tr>
<td>Siemens AS+ (SMOC)</td>
<td>300</td>
<td>150 ms</td>
</tr>
<tr>
<td>Siemens DualSource (SMIC)</td>
<td>330</td>
<td>85 ms</td>
</tr>
<tr>
<td>GE – HD750 (SMIC)</td>
<td>350</td>
<td>175 ms</td>
</tr>
<tr>
<td>Siemens FLASH (SMIC/SMOC)</td>
<td>280</td>
<td>75 ms Oct '09</td>
</tr>
</tbody>
</table>

CT and Cardiac Motion

Solution:
- (a) Scan much faster
- (b) Synchronize scan (or reconstruction) with EKG signal
- (a) + (b)

Coronary Angiography (Catheter angiography)

RAO of right coronary artery

Cardiac CT basics

Heart rate vs duration of diastole/systole

Low heart rate (~60): best images in Diastole
Medium heart rate (~70): best images Diastole or Systole
Higher heart rates (~80): best images in Systole
ECG synchronized CT
(coronary CTA, gated chest)

- Prospective triggering (step and shoot)
 - every other R-peak triggers (80-175ms) scan
 - no (minimal) radiation dose overlap
 - NEEDS slow and STABLE heart rate

- Retrospective gating (low pitch helical)
 - redundant helical data acquisition (pitch ~0.2)
 - coregistration of ECG
 - selecting only projection samples which fall into desired phase of cardiac cycle

- Prospectively triggered high-pitch helical
 - dual source only

Prospective Triggering
for Coronary CTA

- step- and- shoot (every other heart beat)
 - 3 scans (~12cm): 5 heartbeats → ~5 sec
 - 4 scans (~16cm): 7 heartbeats → ~7 sec

- acquisition as fast as helical
 - substantially less radiation dose
 - (as low as 2–3 mSv) *

- need low and steady heart rate !!
 (≤60 bpm; ±5)

- no dynamic information (no 4D)

* Earls (2008) Radiology 246
Scheffel (2008) Heart 94
Stolzmann (2008) Radiology 249

56 yo man with chest pain (ER)

prospectively gated coronary CTA
(betablocker, HR 62 bpm)

ECG synchronized CT
(coronary CTA, gated chest)

- Prospective triggering (step and shoot)
 - every other R-peak triggers (80-175ms) scan
 - no (minimal) radiation dose overlap
 - NEEDS slow and STABLE heart rate

- Retrospective gating (low pitch helical)
 - redundant helical data acquisition (pitch ~0.2)
 - coregistration of ECG
 - selecting only projection samples which fall into desired phase of cardiac cycle

- Prospectively triggered high-pitch helical
 - dual source only

Multislice CT
Spiral Acquisition

Focus

T1 table increment
Pitch 1.0
Multislice CT
Spiral Acquisition

Focus

TI table increment
Pitch 1.5

Focus

TI table increment
Pitch 0.25

retrospective ECG – gating

4 x 1mm spiral
1.5 mm TI
(pitch: 0.375)
1.2 mm S_{eff}

ECG synchronized CT
(coronary CTA, gated chest)

• Prospective triggering (step and shoot)
 - every other R-peak triggers (80–175ms) scan
 - no (minimal) radiation dose overlap
 - NEEDS slow and STABLE heart rate

• Retrospective gating (low pitch helical)
 - redundant helical data acquisition (pitch ~0.2)
 - coregistration of ECG
 - selecting only projection samples which fall into desired phase of cardiac cycle

 redundant radiation \rightarrow increased dose
 \rightarrow EKG based tube current modulation

Aortic Root Aneurysm, Mitral Valve Prolapse and Mitral Anulus Disjunction

33 yo woman, Marfan’s
 gated chest

(64x0.6mm)
Dual-Source Scanner
Lowest Dose Coronary Protocol(s) possible with low heart rates

Siemens Scanners

- retrospective gating (heart rate < 65 bpm)
- with 'min–dose' tube current modulation and pulsing window of 70% RR
- (if heart rate > 65 bpm, pulsing window 30–70%)

GE: VCT

- prospective gating (heart rate ≤ 60 bpm ± 5)
- (if heart rate > 60 bpm or irregular, retro–gating)

100 kVp for slim patients (< 65kg)

Radiation Exposure Reduction in Cardiac CT

Retrospective Gating
- no EKG dose modulation: 100%
- EKG mod. 20% mA: 30–70% RR: ~ 70%
- EKG mod. 20% mA: 70% RR: ~ 50%
- EKG mod. 4% mA: 30–70% RR: ~ 50%
- EKG mod. 4% mA: 70% RR: ~ 25%

Prospective Gating
- prospective std. padding: ~ 25%

100kV

- dose proportional to square of kV:
 - iodine signal incr.; noise increases too; subtract
 - 120–100kV: ~30% dose (at same mA): ~ 30%

3–5mSv

Technical Principles of ECG-gated CT and Radiation Dose Reduction

OBJECTIVE

- review two fundamentals of CT technology
 - detector banks in multidetector (multislice) CT
 - pitch
- prospective and retrospective ECG gating
- explain how heart–rate influences selection of gating technique, ..
- and how this affects radiation exposure

MinDose 30 0%

42.13 mGy (592 mGy·cm) [10mSv]

54 yom

5’11” (180cm)
185 lbs (84kg)
2.04 BSA
100 atenolol
HR 69

CLINICAL CASE EXAMPLES
MinDose 30% 42.13 mGy (592 mGy/cm) [10mSv]

54 yom
5'11" (180cm) 185 lbs (84kg) 2.04 BSA
100 atenolol HR 69

CTDI (CT Dose index): mGy (milligray)
DLP (dose length product): mGy x cm

MinDose 30% 42.13 mGy (592 mGy/cm) [10mSv]

54 yom
5'11" (180cm) 185 lbs (84kg) 2.04 BSA
100 atenolol HR 69

CTDI (CT Dose index): mGy (milligray)
DLP (dose length product): mGy x cm

prospective gating: 24.84 mGy (338 mGy/cm) [5.75mSv]

59 yo man
6'1" (190cm) 185 lbs (86 kg) BSA 2.11
HR: 50 bpm

prospective gating: 24.84 mGy (338 mGy/cm) [5.75mSv]

59 yo man
6'1" (190cm) 185 lbs (86 kg) BSA 2.11
HR: 50 bpm

CLINICAL CASE

56 yo physician
5'6" (168cm) 133 lbs (60kg) 1.68 BSA
HR: 48 bpm
Practical Dose Reduction Strategies in Cardiac CT

SUMMARY

- very effective dose-reduction strategies for cardiac CT available
- slightly different on different scanners
 - prospective: GE-VCT, Siemens AS+
 - retrospective: minDose: Dual Source
- individually tailored to
 - patient size
 - heart rate
 - clinical indication

<table>
<thead>
<tr>
<th>Scan Type</th>
<th>kV</th>
<th>mAs / ref.</th>
<th>CTDI (mGy)</th>
<th>DLP (mGy*cm)</th>
<th>mSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pulsing</td>
<td>120</td>
<td>438</td>
<td>110.60</td>
<td>1593</td>
<td>~27</td>
</tr>
<tr>
<td>mindose 30–70</td>
<td>120</td>
<td>214/438</td>
<td>42.13</td>
<td>592</td>
<td>~10</td>
</tr>
<tr>
<td>mindose 70–70</td>
<td>120</td>
<td>119/438</td>
<td>26.19</td>
<td>426</td>
<td>~7.2</td>
</tr>
<tr>
<td>mindose 70–70</td>
<td>100</td>
<td>68/350</td>
<td>11.49</td>
<td>192</td>
<td>~3.3</td>
</tr>
<tr>
<td>prospective</td>
<td>120</td>
<td>385/400</td>
<td>24.48</td>
<td>338</td>
<td>~5.7</td>
</tr>
<tr>
<td>XXL</td>
<td>120</td>
<td>438</td>
<td>61.61</td>
<td>890</td>
<td>~15</td>
</tr>
<tr>
<td>gated chest 30–70</td>
<td>100</td>
<td>203/438</td>
<td>27.01</td>
<td>667</td>
<td>~11</td>
</tr>
</tbody>
</table>

THANK YOU ...

Department of Radiology
Stanford University