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Pulmonary artery smooth muscle cell (PASMC) relaxation at birth
results from an increase in cytosolic cGMP, cGMP-dependent and
kinase-mediated activation of the Ca"-sensitive K* channel (Kc.,),
and closure of voltage-operated Ca®>* channels (VOCC). How chronic
intrauterine pulmonary hypertension compromises perinatal pulmo-
nary vasodilation remains unknown. We tested the hypothesis that
chronic intrauterine pulmonary hypertension selectively modifies
gene expression to mitigate perinatal pulmonary vasodilation medi-
ated by the cGMP kinase-Kc,-VOCC pathway. PASMC were isolated
from late-gestation fetal lambs that had undergone either ligation of
the ductus arteriosus (hypertensive) or sham operation (control) at 127
days of gestation and were maintained under either hypoxic (~25
Torr) or normoxic (~120 Torr) conditions in primary culture. We
studied mRNA levels for cGMP kinase Ia (PKG-1a), the a-chain of
VOCC (Ca,1.2), and the a-subunit of the K¢, channel. Compared
with control PASMC, hypertensive PASMC had decreased VOCC,
Kca, and PKG-1a expression. In response to sustained normoxia,
expression of VOCC and K¢, channel decreased and expression of
PKG-1a increased. In contrast, sustained normoxia had no effect on
PKG-1a levels and an attenuated effect on VOCC and K¢, channel
expression in hypertensive PASMC. Protein expression of PKG-1a
was consistent with the mRNA data. We conclude that chronic
intrauterine pulmonary hypertension decreases PKG expression and
mitigates the genetic effects of sustained normoxia on pulmonary
vasodilation, because gene expression remains compromised even
after sustained exposure to normoxia.

fetal; oxygen sensing; nitric oxide

IN UTERO, oxygen tension is low and pulmonary vascular
resistance is greater than systemic vascular resistance (36). At
birth, the pulmonary circulation undergoes an unprecedented
and unparalleled transition, given that pulmonary blood flow
increases 8- to 10-fold and arterial pressure decreases by 50%
within 24 h, concomitant with an increase in oxygen tension,
establishment of an air-liquid interface, and rhythmic disten-
tion of the lung (9, 15, 44).

Recent data suggest that activation of the large-conductance
Ca’*-sensitive K* channel (Kc,, also known as BKc, or
MaxiK) plays a critically important role in mediating the
response to perinatal pulmonary vasodilator stimuli such as
oxygen (11), nitric oxide (NO) (38), shear stress (41), and
ventilation (45). Further work has provided insight into the
cellular mechanisms whereby NO (5, 8) and, in particular,

oxygen cause relaxation of pulmonary arterial smooth muscle
cells (34). Both these molecules activate guanylate cyclase to
increase cGMP concentration and activate protein kinase G
(PKG) (34). PKG both directly and indirectly activates the K¢,
channel (7). The indirect effect includes receptor phosphory-
lation of the intracellular ryanodine-sensitive Ca?™ store, caus-
ing a localized release of a so-called Ca?* spark and activation
of the K¢, channel (30). An additional indirect effect includes
the relatively recent observation that PKG decreases Ca**
transit via voltage-operated Ca*>* channels (VOCC), thereby
further limiting PASMC cytosolic Ca?" concentration
([Ca®*];) and promoting vasodilation (20). PKG also may
directly activate the K¢, channel by phosphorylation of its
a-chain (42). Activation of the channel results in membrane
hyperpolarization, closure of voltage-gated Ca>* channels, a
decrease in cytosolic Ca>*, and vasodilation.

Recent data indicate the existence of several different iso-
forms of cGMP-dependent protein kinase. In vascular smooth
muscle cells, relaxation is contingent on activation of the type
I a-isoform (PKG-1a) (33). Nitrate-mediated relaxation is
mediated by the type I a-isoform, because an important phos-
phorylation target of the enzyme is the K¢, channel (5, 35).
PKG-1a may be sufficient to activate K¢, channels via the
NO/cGMP signaling pathway (42). Nitrate tolerance, a condi-
tion wherein sensitivity to nitrovasodilators is diminished, is
likely related to reduced PKG-1a expression (27, 40, 48).

In some newborn infants, pulmonary vascular resistance re-
mains elevated after birth, resulting in shunting of blood away
from the lungs and severe central hypoxemia (21). Infants with
this condition, termed persistent pulmonary hypertension of the
newborn (PPHN), often respond only incompletely to administra-
tion of high concentrations of supplemental oxygen or inhaled NO
(22). Given that an incomplete response to pulmonary vasodilator
stimuli characterizes PPHN (17), we sought to determine whether
chronic intrauterine pulmonary hypertension, an animal model of
PPHN, affects the mechanisms of the relaxation signaling cascade
and the response to sustained increase in oxygen tension, and we
investigated the expression of the molecular components involved
in such mechanisms.

METHODS

Animals. The procedures followed in these studies were previously
reviewed and approved by the Animal Care and Use Committee at the
University of Minnesota.

Cell cultures. Techniques used for cell isolation and culture have
been previously described (13, 14). Late-gestation fetal sheep (term =
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147 days) from ewes with time-dated pregnancies were used in this
study. Ewes were fasted for 24 h and sedated with pentobarbital
sodium. Fetal lambs were partially delivered through a hysterotomy
incision, with the head remaining inside the womb to prevent spon-
taneous breathing, and intracardiac pentobarbital sodium was admin-
istered. After thoracotomy, the lung and heart block was isolated.

Methods for dissection of distal (=4th generation) pulmonary
arteries (PA) and isolation and culturing of smooth muscle cells
(SMC) were described previously (11). Subconfluent monolayers of
cells were studied between days 5 and /4 of primary culture. PASMC
were maintained in a low-oxygen tension environment (25 mmHg). In
experiments examining the effects of sustained normoxia, oxygen
tension was increased to 120 mmHg after 72 h in culture under
hypoxic conditions.

Chronic intrauterine pulmonary hypertension model. Surgical li-
gation of the ductus arteriosus (DA) was performed as previously
described (28). Pregnant ewes between 126 and 128 days of gestation
were fasted for 24 h before surgery. Ewes were sedated with intrave-
nous pentobarbital sodium (total dose 2—4 g) and anesthetized with
1% tetracaine hydrochloride (3 mg) by lumbar puncture. Throughout
surgery, the ewes were sedated but breathed spontaneously. Under
sterile conditions, the fetal lamb’s left forelimb was withdrawn
through a small hysterotomy. A left thoracotomy exposed the heart
and great vessels. The DA was isolated with blunt dissection, and a
2-0 silk suture was placed around the DA and tied. The hysterotomy
incision was closed, and the uterus was returned into the maternal
abdominal cavity. The ewes recovered rapidly from surgery and were
generally standing in their pens within 6 h. After 7-10 days, animals
were killed rapidly after high-dose maternal and fetal infusions of
pentobarbital sodium, and the PASMC were harvested.

Reverse transcriptase-polymerase chain reaction. Total RNA was
extracted from PASMC in primary culture using TRI reagent (Sigma).
RNA (2 pg) was used in a first-strand cDNA synthesis reaction
(Invitrogen, Carlsbad, CA). Oligonucleotide primers used to amplify
PKG-1a were designed using the human sequence and were (forward)
5'-GAGGTCGACAAGCGGCTGTCAGAGAAG-3" and (reverse)
5'-TTGGTCGACTCTCTGTCGATCACAAGGCA-3’ (generating an
850-bp fragment). Primers for the voltage-gated Ca?* channel oc-
subunit (Cay1.2) were (forward) 5'-GCCCCTCTTTTCCAGGGA-
TGT-3" and (reverse) 5'-TGGAGGCGAAAACCTGTTGTTA-3'
(516-bp product). Primers directed against the a-chain of the Kca
channel were designed on the basis of the consensus among human,
bovine, and dog (slo) sequences and were (forward) 5'-CTACTGG-
GATGTTTCACTGGTGT-3" and (reverse) 5'-TGCTGTCATCAA-
ACTGCATA-3'" (446-bp product). The identity of each product was
confirmed with sequence analysis. Gel densitometry was performed to
quantify the RT-PCR product (NIH Image software; Scion, Frederick,
MD). 18S rRNA cDNA was amplified concurrently in RT-PCR with
a Quantum-RNA primer/competimer set (Ambion) and served as an
internal loading control. The relative density of the 18S and the
experimental bands were compared in each individual lane on each
gel. PCR was run two to three times on each RNA sample.

Ca?* imaging. Dynamic changes in [Ca®>*]; in individual SMC
were assessed with the Ca®"-sensitive fluorophore fura-2 AM (Mo-
lecular Probes). Subconfluent fetal PASMC on 25-mm? glass cover-
slips were placed on the stage of an inverted microscope (Nikon
Diaphot). Cells were loaded with 10 nM fura-2 AM and 2.5 pg/ml
Pluronic acid (Molecular Probes) for 20 min, followed by 20 min in
Ca?*-containing solution to allow for deesterification before the
experiment. Ratiometric imaging was performed with excitation
wavelengths of 340 and 380 nm and an emission wavelength of 510
nm. Imaging was performed with an intensified charge-coupled device
camera (Photonic Science, Robertsbridge, UK) using Axon Instru-
ments (Foster City, CA) or Metafluor (Fryer, Bloomington, MN)
image capture and analysis software. Ca?" calibration was achieved
by measuring a maximum (with 1 mM ionomycin) and a minimum
(with 10 mM EGTA). Intracellular free Ca®>* was calculated by

L427

assuming a dissociation constant of 220 nM (18). For each experi-
ment, 8—10 cells were visualized and ratiometric data were acquired
from individual cells.

Immunohistochemistry. Cells grown on glass coverslips were fixed
in 4% paraformaldehyde in PBS and permeabilized with 0.1% Triton
X-100 in PBS. Primary antibodies for PKG-1a (Stressgen, Victoria,
BC, Canada) or negative control IgG were diluted in blocking
agent and incubated with the cells overnight at 4°C, followed by a
FITC-labeled secondary antibody (Jackson ImmunoResearch, West
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Fig. 1. cGMP-kinase Ia (PKG-1a) expression in chronic intrauterine hyper-
tension under normal and low oxygen tension. Protein and mRNA levels were
determined in pulmonary artery smooth muscle cells (PASMC) isolated from
normal and hypertensive fetal lambs. A: aggregate PKG-1ae mRNA expression
data obtained from RT-PCR using PKG-1a-specific primers. Band density was
normalized to the 18S rRNA internal control. *P < 0.05; **P < 0.01 vs.
hypoxia. ***P < 0.01 vs. normotensive. B: representative RT-PCR gel and
Western blot (No, normoxia; Hy, hypoxia). C: PKG-1a protein levels (aggre-
gate data from Western blot). The 70-kDa PKG band was quantified and
normalized to the 42-kDa a-actin loading control. *P < 0.01 vs. normotensive.
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Grove, PA). Digital images were obtained with a Spot camera
(Diagnostic Instruments, Sterling Heights, MI) mounted on a Zeiss
Atto Arc fluorescence microscope (Carl Zeiss Microlmaging, Thorn-
wood, NY).

Western blotting. Cultured cells were rinsed twice in cold PBS and
then lysed in RIPA buffer. Protein (75 ng) was electrophoresed in a
4-20% gradient gel (Bio-Rad) and electroblotted onto polyvinylidene
difluoride membrane (Bio-Rad). Antibodies against PKG-1« and anti-
rabbit IgG horseradish peroxidase conjugate were from Stressgen.

Statistical analysis. Throughout, results are presented as means *=
SE. Statistical significance was tested with Student’s r-test (paired or
unpaired as appropriate). P <0.05 was taken as the threshold level for
statistical significance. Experiments were designed to have a statistical
power of at least 90% at a probability level of P <0.05. A two-way
ANOVA with repeated measures and a Student-Newman-Keuls post
hoc test were used to assess the differences between and among
groups in the manganese quenching experimental protocol.

RESULTS

Effect of sustained normoxia on PKG-Ila expression in
control and hypertensive PASMC. Under hypoxic conditions,
PKG-1a mRNA expression was 0.82 # (.15 in control (n = 6
animals; 13 PCR) and 0.88 * 0.16 (n = 4 animals; 7 PCR) in
hypertensive PASMC. In sustained normoxia, PKG-1ae mRNA
expression increased to 0.96 = 0.11 in control (n = 6 animals;
10 PCR; P < 0.05 vs. hypoxia) but decreased to 0.52 = 010 in
hypertensive (n = 4; 6 PCR; P < 0.01 vs. hypoxia, P < 0.01
vs. control normoxia) PASMC (Fig. 1A). Under both hypoxic
and normoxic conditions, PKG-1a expression was greater in
control (n = 4 animals), compared with hypertensive (n = 4
animals) PASMC (Fig. 1C). Immunohistochemistry was con-
sistent with the protein data, because staining intensity was
diminished in hypertensive compared with normotensive
PASMC (Fig. 2).

Effect of sustained normoxia on K¢, channel and voltage-
operated Ca** channel mRNA expression in control and hy-
pertensive PASMC. Under hypoxic conditions, K¢, channel
o-subunit mRNA expression was 1.56 = 0.14 in control (n =

Hypertensive

Fig. 2. PKG-la expression in PASMC from chronic intra-
uterine hypertensive fetal lambs. Immunofluorescence stain-
ing shows a reduced PKG expression in normoxic hyperten-
sive cells.

Normotensive
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4 animals; 7 PCR) and 1.14 £ 0.10 (n = 4 animals; 8 PCR) in
hypertensive (P = 0.03, control vs. hypertensive) PASMC. In
sustained normoxia, K¢, a-subunit mRNA expression de-
creased to 1.09 = 0.18 in control (n = 4 animals; 8 PCR; P <
0.05 vs. hypoxia) but increased to 1.42 = 0.12 in hypertensive
(n = 4; 5 PCR; P < 0.02 vs. hypoxia, control normoxia)
PASMC (Fig. 3A). Sustained normoxia decreased K¢, channel
a-subunit mRNA expression by 29 = 10% in control com-
pared with an increase of 24 = 7% in hypertensive PASMC
(Fig. 3B, P < 0.01, control vs. hypertensive).

Under hypoxic conditions, Ca,1.2 mRNA expression was
1.54 = 0.14 in control (n = 4 animals; 7 PCR) and 1.26 = 0.11
(n = 5 animals; 9 PCR) in hypertensive PASMC. In sustained
normoxia, Cayl.2 expression decreased to 1.09 = 0.09 in
control (n = 4 animals; 9 PCR; P < 0.001 vs. hypoxia) and
decreased to 1.076 = 0.12 in hypertensive (n = 4; 9 PCR; P <
0.02 vs. hypoxia) PASMC (Fig. 4A). Sustained normoxia
decreased Ca,1.2 mRNA expression by 29 * 6% in control
compared with a decrease of 13 = 6% in hypertensive PASMC
(Fig. 4B, P < 0.01, control vs. hypertensive).

Effect of 8-bromo-cGMP on control and hypertensive
PASMC. Under low-oxygen tension conditions, cells were
treated with the cell-permeant analog of ¢cGMP, 8§-bromo-
¢GMP. In control PASMC (1 = 79), 8-bromo-cGMP (10~7 M)
decreased the fluorescence ratio by 4.7 = 0.2%, whereas in
hypertensive PASMC (n = 83), 8-bromo-cGMP had no effect
on fura-2 fluorescence (Fig. 5, P < 0.001 vs. hypertensive).

DISCUSSION

In this report, we present evidence that the molecular re-
sponse of PASMC to sustained increase in oxygen tension,
similar to the normal transition to air-breathing life, is affected
in a model of chronic intrauterine hypertension. In response to
sustained exposure to normoxia, the expression of molecules
that favor diminished tone in PASMC normally increases.
Gene and protein expression of PKG-la, a molecule that

PKG1a

Background
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Fig. 3. Effect of oxygen tension on Ca>"-sensitive K* channel (Kca) mRNA
expression in chronic intrauterine hypertension. Aggregate RT-PCR data were
obtained for Kca mRNA levels in PASMC isolated from normal and hyper-
tensive fetal lambs. A: relative Kca mRNA levels in PASMC from normoten-
sive and hypertensive fetal lambs were obtained under either normoxic or
hypoxic conditions by using Kca. a-specific primers. Band intensity was
normalized to the 18S rRNA internal control. *P = 0.03 vs. normotensive.
#Ep < 0.05; ##*¥P < 0.02 vs. hypoxia. B: relative %change in Kca mRNA
when switching normal and hypertensive PASMC from hypoxia to normoxia.
*P < 0.01 vs. normotensive. C: representative RT-PCR gel and Western blot.

affects SMC tone at different but complementary levels (27,
40, 42), increases in response to a sustained increase in oxygen
tension. Emerging evidence indicates that PKG has three
distinct effects that promote diminished SMC tone. First,
receptor phosphorylation by PKG enables ryanodine-sensitive
Ca>* stores to produce a local and quantal release of Ca’™,
resulting in K¢, channel opening, membrane hyperpolariza-
tion, and subsequent closure of Ca?" channels to decrease
cytosolic Ca?* (19, 35). Second, PKG directly activates the
Kca channel through phosphorylation at serine 1072 of the
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a-chain (4, 16). Third, PKG may inhibit the voltage-operated
Ca®" channel by direct phosphorylation of the channel or by
PKG-induced activation of a phosphatase (20). In addition to
the effects on PKG-la expression, sustained normoxia de-
creases expression of PASMC K¢, and VOCC.

Whereas chronic intrauterine pulmonary hypertension com-
promises postnatal adaptation of the pulmonary circulation (1,
29, 37), the mechanisms that account for sustained elevation of
pulmonary vascular resistance remain incompletely under-
stood. As previously reported (12, 39, 47), chronic intrauterine
pulmonary hypertension alters the expression of molecules that
modulate perinatal pulmonary vascular tone. The present data
add to the current knowledge by demonstrating that chronic
intrauterine pulmonary hypertension decreases protein expres-
sion of cGMP kinase (PKG-1a). More important, perhaps, we
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Fig. 4. Effect of oxygen tension on voltage-gated Ca®>" channel ac-subunit
(Cay1.2) mRNA expression in chronic intrauterine hypertension. Aggregate
RT-PCR data were obtained for Ca,1.2 mRNA levels in PA SMC isolated
from normal and hypertensive fetal lambs. A: relative Ca,1.2 mRNA levels in
PASMC were obtained under normoxic or hypoxic conditions by using
Cay1.2-specific primers. Band intensity was normalized to the 18S rRNA
internal control. *P < 0.001; **P < 0.02 vs. hypoxia. B: relative %change in
Cay1.2 mRNA (Ca,) when switching normal and hypertensive PA SMC from
hypoxia to normoxia. *P < 0.01 vs. normotensive. C: representative RT-PCR
gel.
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Fig. 5. Effect of 8-bromo-cGMP on control and hypertensive PASMC. Under
low-oxygen tension conditions, cells treated with 10~7 M 8-bromo-cGMP, an
analog of cGMP, demonstrated a decrease in intracellular Ca>* concentration
in control (P < 0.01 vs. baseline) but not in hypertensive PASMC. *P < 0.001
vs. normotensive.

have presented data indicating that the intrauterine experience
of the pulmonary vasculature informs the more long-term
genetic response of PASMC to sustained increases in oxygen
tension. In response to sustained normoxia, PKG-la mRNA
and protein expression remains substantially elevated in con-
trol compared with hypertensive PASMC. Our immunohisto-
chemistry studies are consistent with these observations.

In the pulmonary circulation, an acute increase in oxygen
tension (3), shear stress (10), and NO (2) production each
results in perinatal pulmonary vasodilation. Each of these
essential vasodilator stimuli acts through cGMP-mediated ac-
tivation of the K¢, channel (11, 38, 41), thereby causing
membrane hyperpolarization (31) and a decrease in pulmonary
artery smooth muscle cytosolic Ca®", a key determinant of the
SMC contractile state (46). Diminished cGMP kinase and the
decrease in PASMC K¢, channel expression that has been
previously reported in an ovine model of PPHN (12) is entirely
consistent with the persistent elevation of pulmonary vascular
resistance after birth. Several clinical studies have demon-
strated that in a subset of infants with PPHN, neither high
concentrations of inspired oxygen nor inhaled NO causes
pulmonary vasodilation (17). Reduced sensitivity of vascular
smooth muscle to the vasodilatory effects of NO donors, or
nitrate tolerance, is attributed to desensitization of soluble
guanylate cyclase as well as phosphodiesterase upregulation
(32, 33). Our results suggest that the relative insensitivity to
vasodilator stimuli that characterizes PPHN may result, at least
in part, from reduced expression of PKG-la. Because the
large-conductance K¢, channel is a known substrate for
PKG-1a (42), the effect of diminished PKG-1a expression
superimposed on a decreased K¢, channel expression (12)
might severely compromise the ability of the PASMC to
respond to perinatal vasodilator stimuli.

Microfluorimetry data included in the present study are
entirely consistent with the notion that chronic intrauterine
hypertension directly effects PKG-la to compromise the
PASMC response to perinatal vasodilator stimuli. The analog
8-bromo-cGMP decreased cytosolic Ca®* in control but not
hypertensive PASMC. Thus an increase in the concentration of
c¢GMP was incapable of decreasing cytosolic Ca>* in hyper-
tensive PA SMC, a phenomenon that is entirely consistent with
the inability of NO to decrease pulmonary vascular tone in a
subset of infants with PPHN. These data offer support for the
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proposition that diminished PKG-1a is a prime etiologic can-
didate for the attenuated response to perinatal vasodilator
stimuli.

The mechanism that underlies the decrease in PASMC
VOCC and K¢, channel expression that occurs in control
PASMC after exposure to sustained normoxia is unknown. The
change in ion channel expression as well as PKG-1a expres-
sion suggests that each gene is responding to a similar signal.
Whereas the increase in oxygen tension that occurs at birth is
a putative candidate signal for the alterations in gene expres-
sion, there is no known relationship between oxygen tension
and expression of either VOCC or PKG-1a expression. Con-
sistent with the notion that the low-oxygen tension environ-
ment of the normal fetus leads to an increase in K¢, channel
expression, recent data from our laboratory indicate that the
Kca channel gene is regulated by hypoxia. The observation that
chronic intrauterine pulmonary hypertension alters the re-
sponse of each of these three genes to a sustained elevation of
oxygen tension suggests that a common pathway is effected. In
a genetically altered mouse, partial hypoxia-inducible fac-
tor-1a (HIF-1a) deficiency decreases the hypoxic sensitivity of
PASMC (23). Whether elevated pulmonary artery pressure in
combination with fetal oxygen tension affects HIF-1a to mod-
ulate the observed alterations in ion channel and PKG-la
expression is unknown.

After the immediate perinatal period, the pulmonary circu-
lation continues to change. Over time, pulmonary vascular
resistance decreases to 20% of systemic vascular resistance
(24). Postnatal alveolarization of lung occurs concomitantly
with pulmonary vasculogenesis. Exposure to atmospheric lev-
els of oxygen tension may be among the key signals for the
long-term adaptation of the pulmonary circulation, because
perinatal hypoxia (25, 26) results in remodeling of the pulmo-
nary circulation, diminished radial alveolar counts, and in-
creased pulmonary vascular reactivity (43). The present data
suggest that the intrauterine experience of the pulmonary
vasculature influences not only the histology and physiology of
the neonatal pulmonary vascular SMC but also the molecular
response to sustained levels of increased oxygen tension. The
present observations have implications for postnatal alveolar-
ization, because elevated vascular tone likely diminishes lung
growth (6). Because PKG-la has both direct and indirect
effects on the contractile state of vascular smooth muscle cells,
it may be centrally involved in mediating both the immediate
and long-term responses of the pulmonary vasculature to sus-
tained normoxia.

The present findings demonstrate that pulmonary artery
smooth muscle cells exposed to chronic intrauterine pulmonary
hypertension show diminished expression of molecules that
mediate the response of the pulmonary circulation to vasodi-
lator stimuli and promote pulmonary vasodilation. Whereas
control PASMC respond to prolonged exposure to normoxia
with changes in the expression of genes critical for the main-
tenance of low pulmonary vascular tone, the effect of sustained
normoxia on these molecules is attenuated in PASMC derived
from animals with chronic intrauterine pulmonary hyperten-
sion. The present study is the first to report that sustained
exposure to normoxia selectively modulates gene expression to
limit pulmonary artery smooth muscle cell tone. Moreover, the
present data provide evidence that chronic intrauterine pulmo-
nary hypertension affects gene expression even after cells have
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been removed from the hypertensive environment. The long-
lived effects of chronic intrauterine pulmonary hypertension
include an inability of cells to respond to an acute increase in
oxygen tension with an increase in the expression of PKG and
a decrease in the expression of ion channels centrally important
in maintaining the low pulmonary vascular tone that charac-
terizes air-breathing life and promotes postnatal alveolariza-
tion.
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