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Abstract

Topic

Contrast Agents and Novel Contrast Mechanisms

Format Type
¢ Scientific Sessions or SCMR/ISMRM Co-Provided Workshop

Presentation Type

e OQOral Presentation or Traditional Poster

Background

Recent developments in diffusion gradient waveform design enables in vivo cardiac Diffusion Tensor Imaging
(cDTI) as a feasible and reliable approach!’-3l, Exploration of cDTI has proven to be a useful clinical tool to
assess several types of cardiomyopathies*2l. Spin-echo approaches use high-order motion compensation
that increases the echo time (TE) and thus the temporal footprint of diffusion encoding. Although the efficacy
of motion compensated diffusion encoding strategies have been demonstrated in silicol’ and in vivol'-3], it
remains unclear how residual motion affects the accuracy of the diffusion measurement. The objective of
this work was to evaluate the accuracy and precision of quantitative tensor invariants with various motion
compensated diffusion encoding strategies using a programmable linear motion stage.

Methods

An isotropic agar phantom was connected to a programable MRI compatible linear motion stage (Shelley
Medical) programmed and triggered to simulate cardiac motion with a sinusoidal motion trajectory (x5mm,
1000ms R-R).

Imaging was performed at 3T (Skyra, Siemens) using a 32-channel array. Images were acquired with and
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without programmed motion at one slice location using a custom spin-echo EPI cDTI sequence (b-values: 0,
350s/mm?; 6 directions; 1.5 x 1.5 x 5.0mm?; 5 averages; TR=1000ms) with different orders of motion
compensation (position moment nulling: Mg, velocity moment nulling: M4, acceleration moment nulling: M5)
for which the TEs were 82, 115, and 112ms, respectively.

cDTI was measured at three time points spanning a mix of velocities and accelerations (Fig. 1). Motion
compensation with and without programmed motion was compared using mean diffusivity (MD) and fraction
of anisotropy (FA).

Results

Fig. 2 shows DWI, MD, and FA maps with and without programmed motion. Fig. 3 shows MD and FA plots for
the Mgy, Mp+M; and Mg+Mq+M; sequences for the static phantom and three moving timepoints. In the
presence of motion, the My and My+M4+M, sequences show a change in the mean MD value and an
increased standard deviation, with respect to the static data. MD values measured with the Mg+M; sequence
were most similar to the static phantom at the three imaging times. FA values were expected to be ~0
(isotropic phantom) and the measurements show a small change across all sequences.

Conclusion

Moment nulling, as previously shown, is an efficient way to mitigate cardiac motion in cDTI acquisitions.
However, these controlled experiments indicate that higher moment nulling does not always correlate with
more accurate quantitative results when imaged under the same conditions. Additional experiments that:
emphasize encoding motion around the refocusing pulse; test different encoding durations; evaluate more
combinations of acceleration and velocity; and include deformation are required for more insight on the
effects of residual moments due to motion.

Uploaded File(s)

Images

Figure 1. Position (top left), velocity, (middle left), and acceleration (bottom left) curves of the 1D
programmable linear motion stages shown with the corresponding start time for each sequence. Inset
plots show the separation of sequence start times for MO (red), M1 (green) and M2 (blue) which each
sharing the same center of k-space acquisition to acquire slices in the same exact location. The pulse
sequence diagrams for for MO (top right), M1 (middle right), and M2 (bottom right) show the diffusion
footprint and TEs for each. It should be noted that on the M1 sequence, crushers (labeled C and colored
orange) are required.

Effects_of_MoCo_cDTI_Figure_1.pdf

Figure 2. Example acquisition from the M2 nulled sequence acquired at Time Point 2 both without (top
row) and with motion (bottom). From left to right, the images are: non-diffusion weighted, diffusion
weighted, Mean Diffusivity (MD) maps, and Fraction of Anisotropy (FA) maps.
Effects_of_MoCo_cDTI_Figure_2.pdf
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Figure 3. Quantitative box and whisker plots for Mean Diffusivity (top) and Fractional Anisotropy
(bottom). Baseline timepoints, labeled as Static, are compared with moving Time Point 1 (minimum
absolute velocity and maximum absolute acceleration), moving Time Point 2 (non-zero velocity and non-
zero acceleration), and moving Time Point 3 (maximum absolute velocity and minimum absolute
acceleration) for different orders of motion compensation (M0, M1, and M2). M1 motion compensation
shows stable MD and FA across all timepoints with respect to the Static phantom.

Effects_of_MoCo_cDTI_Figure_3.pdf
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