The Effects of Motion Compensated Encoding Waveforms in Cardiac Diffusion Tensor Imaging: A Moving Phantom Study

Submission ID: 943259
Submission Category: Scientific Sessions and/or SCMR/ISMRM Co-Provided Workshop
Submission Status: Active / Locked

Participant(s)

Tyler E. Cork, MSc

Position: Graduate Student
Department: Department of Bioengineering
Organization: Stanford University
Role: Presenting Author; Primary Author

Disclosure Status: Complete
Disclosure: Nothing to Disclose
Signed: Tyler E Cork (09/19/2020, 2:04 AM)

Part 1
I Agree

Part 2
I Agree
Kevin Moulin, PhD

Position:
PostDoctoral fellow

Department:
Radiology

Organization:
Stanford University

Role:
Co-Author

Disclosure Status: Complete
Disclosure: Nothing to Disclose
Signed: Kevin Moulin (09/21/2020, 2:43 PM)

Part 1
I Agree

Part 2
I Agree

Matthew J. Middione, PhD

Position:
Research Scientist

Department:
Radiology

Organization:
Stanford University

Role:
Co-Author

Disclosure Status: Complete
Disclosure: Nothing to Disclose
Signed: Matthew J. Middione (09/10/2020, 4:36 PM)

Part 1
I Agree

Part 2
I Agree

Daniel B. Ennis, PhD

Position:
Associate Professor
Department:
Department of Radiology

Organization:
Palo Alto Veterans Administration Health Care System

Role:
Co-Author

Disclosure Status: Complete
Disclosure: Does Disclose
Signed: Daniel Ennis (09/18/2020, 12:59 PM)

GE Healthcare

Part 1
I Agree

Part 2
I Agree

Abstract

Topic
Contrast Agents and Novel Contrast Mechanisms

Format Type
• Scientific Sessions or SCMR/ISMRM Co-Provided Workshop

Presentation Type
• Oral Presentation or Traditional Poster

Background
Recent developments in diffusion gradient waveform design enables in vivo cardiac Diffusion Tensor Imaging (cDTI) as a feasible and reliable approach\(^1-3\). Exploration of cDTI has proven to be a useful clinical tool to assess several types of cardiomyopathies\(^4-9\). Spin-echo approaches use high-order motion compensation that increases the echo time (TE) and thus the temporal footprint of diffusion encoding. Although the efficacy of motion compensated diffusion encoding strategies have been demonstrated in silico\(^10\) and in vivo\(^1-3\), it remains unclear how residual motion affects the accuracy of the diffusion measurement. The objective of this work was to evaluate the accuracy and precision of quantitative tensor invariants with various motion compensated diffusion encoding strategies using a programmable linear motion stage.

Methods
An isotropic agar phantom was connected to a programable MRI compatible linear motion stage (Shelley Medical) programmed and triggered to simulate cardiac motion with a sinusoidal motion trajectory (±5mm, 1000ms R-R).

Imaging was performed at 3T (Skyra, Siemens) using a 32-channel array. Images were acquired with and
without programmed motion at one slice location using a custom spin-echo EPI cDTI sequence (b-values: 0, 350s/mm²; 6 directions; 1.5 x 1.5 x 5.0mm³; 5 averages; TR=1000ms) with different orders of motion compensation (position moment nulling: M₀, velocity moment nulling: M₁, acceleration moment nulling: M₂) for which the TEs were 82, 115, and 112ms, respectively.

cDTI was measured at three time points spanning a mix of velocities and accelerations (Fig. 1). Motion compensation with and without programmed motion was compared using mean diffusivity (MD) and fraction of anisotropy (FA).

Results

Fig. 2 shows DWI, MD, and FA maps with and without programmed motion. Fig. 3 shows MD and FA plots for the M₀, M₀+M₁, and M₀+M₁+M₂ sequences for the static phantom and three moving timepoints. In the presence of motion, the M₀ and M₀+M₁+M₂ sequences show a change in the mean MD value and an increased standard deviation, with respect to the static data. MD values measured with the M₀+M₁ sequence were most similar to the static phantom at the three imaging times. FA values were expected to be ~0 (isotropic phantom) and the measurements show a small change across all sequences.

Conclusion

Moment nulling, as previously shown, is an efficient way to mitigate cardiac motion in cDTI acquisitions. However, these controlled experiments indicate that higher moment nulling does not always correlate with more accurate quantitative results when imaged under the same conditions. Additional experiments that: emphasize encoding motion around the refocusing pulse; test different encoding durations; evaluate more combinations of acceleration and velocity; and include deformation are required for more insight on the effects of residual moments due to motion.

Uploaded File(s)

Images

Figure 1. Position (top left), velocity, (middle left), and acceleration (bottom left) curves of the 1D programmable linear motion stages shown with the corresponding start time for each sequence. Inset plots show the separation of sequence start times for M₀ (red), M₁ (green) and M₂ (blue) which each sharing the same center of k-space acquisition to acquire slices in the same exact location. The pulse sequence diagrams for for M₀ (top right), M₁ (middle right), and M₂ (bottom right) show the diffusion footprint and TEs for each. It should be noted that on the M₁ sequence, crushers (labeled C and colored orange) are required.

Effects_of_MoCo_cDTI_Figure_1.pdf

Figure 2. Example acquisition from the M₂ nulled sequence acquired at Time Point 2 both without (top row) and with motion (bottom). From left to right, the images are: non-diffusion weighted, diffusion weighted, Mean Diffusivity (MD) maps, and Fraction of Anisotropy (FA) maps.

Effects_of_MoCo_cDTI_Figure_2.pdf
Figure 3. Quantitative box and whisker plots for Mean Diffusivity (top) and Fractional Anisotropy (bottom). Baseline timepoints, labeled as Static, are compared with moving Time Point 1 (minimum absolute velocity and maximum absolute acceleration), moving Time Point 2 (non-zero velocity and non-zero acceleration), and moving Time Point 3 (maximum absolute velocity and minimum absolute acceleration) for different orders of motion compensation (M0, M1, and M2). M1 motion compensation shows stable MD and FA across all timepoints with respect to the Static phantom.

Effects_of_MoCo_cDTI_Figure_3.pdf

References


Keywords

Keyword One:
Diffusion Weighted Imaging

Keyword Two:
Motion Correction

Keyword Three:
Pulse Sequences