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co-variability of different cell types, sex-

related differences, and similarities

between macaque and human.
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SUMMARY
Variation in the neural code contributes to making each individual unique. We probed neural code variation
using �100 population recordings from major ganglion cell types in the macaque retina, combined with an
interpretable computational representation of individual variability. This representation captured variation
and covariation in properties such as nonlinearity, temporal dynamics, and spatial receptive field size and
preserved invariances such as asymmetries between On and Off cells. The covariation of response proper-
ties in different cell types was associated with the proximity of lamination of their synaptic input. Surprisingly,
male retinas exhibited higher firing rates and faster temporal integration than female retinas. Exploiting data
from previously recorded retinas enabled efficient characterization of a newmacaque retina, and of a human
retina. Simulations indicated that combining a large dataset of retinal recordings with behavioral feedback
could reveal the neural code in a living human and thus improve vision restoration with retinal implants.
INTRODUCTION

An emerging frontier in biomedicine is the understanding of vari-

ability between individuals, with implications ranging from the

mathematical modeling of living systems to ethics and personal-

ized medicine. In neuroscience, differences in mental function

among individuals are substantial, yet little is known about the

underlying variation in the information processing performed

by neural circuits, particularly in species similar to humans and

at spatial and temporal scales of neural computations. Further-

more, biological variability is frequently obscured by inevitable

experimental variability, which can severely limit the ability to

test biological hypotheses decisively. These factors have led to

a large gap in our understanding of variability in the neural

code and its implications for translational medicine and

neuroengineering.

Two technical challenges have limited our understanding in

animal models relevant to humans: high-resolution, large-scale

physiological recordings from many individuals; and methods

for deciphering variability in complex circuit-level computations.

In this article, we present a novel method for analyzing variability

in the neural code—both biological and experimental—and

apply that method to a unique, large-scale dataset gathered
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over a decade of recordings in the macaque retina. The results

reveal striking differences in male and female retinas, structure

in variability related to lamination of dendrites, and novel implica-

tions for neuroengineering to replace retinas damaged by

disease.

RESULTS

Modeling the shared features and individual variability
of neural coding
Large-scale multi-electrode recordings from retinal ganglion

cells (RGCs) were performed from isolated macaque monkey

retinas, in which the functional properties of diverse cell types

have been extensively studied (Litke et al., 2004; Frechette

et al., 2005; Field et al., 2007; Greschner et al., 2014; Rhoades

et al., 2019). In total, 21,626 RGCs were analyzed in 112 record-

ings from 75 retinas of 66 animals. These data, gathered over a

decade of experimentation, exhibited significant neural coding

variability across recordings, presumably reflecting a mixture

of biological and experimental variation (see below). As a base-

line to summarize that variability, response properties in each

recording were captured by the parameters of a linear-

nonlinear-Poisson (LNP) encoding model. This widely used
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model (Chichilnisky, 2001) captures light-evoked responses in

RGCs using a spatiotemporal linear filter applied to the stimulus,

followed by an output nonlinearity and stochastic spike genera-

tion. Receptive field sizes of two known RGC types—On and Off

parasol—exhibited substantial variation across recordings. This

variability was evident across retinal eccentricities but was also

present at a given eccentricity (Figures 1A, first column, and

1G). Diversity was also seen in the kinetics of light responses

(Figure 1A, second column), the shape of the output nonlinearity

(Figure 1A, third column), and the autocorrelation function (Fig-

ure 1A, fourth column).

The structure and covariation of these response properties

was explored using a flexible model that combined shared and

recording-specific parameters. The shared component was a

multilayered convolutional neural network (CNN), an extension

of the LNP model, consisting of multiple alternating stages of

spatiotemporal filtering, normalization, and rectification. The

rectification captured nonlinear spatial integration (Shah et al.,

2020), and the convolutional structure captured the known trans-

lational invariance of visual signals in each cell type (cells of the

same type at different locations have very similar response prop-

erties (Chichilnisky and Kalmar, 2002). The model output con-

sisted of one firing-rate map for each cell type. To predict a given

cell’s responses, the model-predicted firing rate was read from

the map at the cell’s location (Figure 1B). Because of the trans-

lational-invariance constraint, the proposed model cannot cap-

ture differences between cells belonging to the same cell type,

resulting in low prediction accuracy compared with models

that allow for cell-specific parameters, such as single-cell LNP

(Chichilnisky, 2001) or other state-of-the-art models (McIntosh

et al., 2016; Batty et al., 2017). However, the translational-invari-

ance constraint enabled the proposed neural network architec-

ture to predict responses across recordings with different

numbers and spatial arrangements of cells. When trained using

On and Off parasol cell responses in each retina separately,

the CNN model exhibited performance superior to the single-

retina LNPmodel with common parameters for all cells of a given
Figure 1. Modeling variability in the neural code

(A) Variability of response properties across recordings. Spatial receptive fields (fir

(third column), and variation in autocorrelation function (fourth column) for Off

response property across recordings). The last row represents the range of resp

means and error bars corresponding to the robust standard deviation. Arrows in

(B) Architecture of the neural network for capturing response variation. The visual s

adaptive batch normalization and rectification at each layer, producing two firing-r

each cell is read off from the value at the cell’s location in the firing-rate map of i

means and standard deviation of the activation values at each layer, determined by

(C) Response prediction across four representative training retinas (columns). T

response predictions for a randomly selectedOff parasol (top row) andOn parasol

noise stimulus using the LNPmodel; neural network model, trained jointly on mult

or without them (no manifold, global NN).

(D) Model error (log likelihood) on test stimuli with varying manifold dimensionality

indicate the standard deviation across retinas.

(E) Prediction accuracy, averaged across cells, for different retinas (points), using

model with shared parameters across cells of a given type in each retina (y axis). P

recorded responses smoothed with a Gaussian filter (s: 11 ms).

(F) Similar to (E), comparing predictions from the neural network with a 15-dimen

(x axis).

(G) Range of eccentricities (x axis) and the average receptive-field sizes (y axis) for

this study.
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type, as expected given its more flexible structure (Figure 1E).

However, when the CNN model was trained on multiple retinas

together, it failed to capture the responses of retinas with low

firing rates, highly modulated responses, or other features that

varied among recordings (Figure 1C, rasters).

To capture the variation of light response properties across re-

cordings in a compact and tractable way, data from all record-

ings were used to learn the �100,000 parameters of the shared

CNN, whereas data from each recording were used to estimate a

few recording-specific parameters (see below). A linear transfor-

mation of the recording-specific parameters determined the

mean and standard deviation of signals in the channels in each

layer of the CNN. The collection of these recording-specific pa-

rameters was interpreted as a manifold of neural-coding vari-

ability. When learned using 71 recordings, the low-dimensional

manifold captured variations in background firing rate, sustained

versus transient dynamics, and response nonlinearities (Fig-

ure 1C, rasters). The ability to simultaneously predict responses

across multiple retinas saturated at �15 dimensions of the

learned manifold (Figure 1D), much less than the total number

of CNN parameters, and the performance of the joint model

based on the manifold was only slightly less than that of a

CNN model trained for each retina separately (Figure 1F). Thus,

a simple, low-dimensional representation can efficiently and

accurately capture the biological and experimental variability of

retinal computation.

Neural coding manifold smoothly captures systematic
variation across recordings
The learned manifold smoothly captured variations in the neural

code. For a given recording, a greater perturbation in manifold

location led to a greater decrease in response-prediction accu-

racy (Figure 2G). The manifold geometrically represented varia-

tion in several light-response properties, including firing rate,

receptive field size, time course, output nonlinearity, and spike

train autocorrelation. This was observed by projecting the

average response property for each retina onto its principal
st column), time of zero-crossing of temporal filter (second column), nonlinearity

parasol cells in three representative recordings (rows, same y axis for each

onse parameters across 122 recordings, sorted according to their population

dicate the values of the chosen retinas in the first three rows.

timulus is passed throughmultiple layers of convolution with spatial filters, with

atemaps (one each for On andOff parasol cell types). The Poisson firing rate for

ts cell type. Retina-specific tuning of responses is performed by adjusting the

a linear transformation of the retina’s location in the low-dimensional manifold.

he receptive field mosaics are shown for each retina (middle row) along with

cell (bottom row). Rasters (60 trials) for predicted responses to a 3-s-long white

iple retinas, with retina-specific parameters (15 dimensional manifold, joint NN)

; dimensions = 0 indicates no retina-specific adaptation (global NN). Error bars

a neural network trained on data from each individual retina (x axis) and an LNP

rediction accuracy ismeasured as correlation between predicted firing rate and

sional manifold, trained jointly (y axis) versus trained on each retina separately

On parasol (blue) andOff parasol (magenta) cells across 122 recordings used in



Figure 2. Geometry of manifold

(A) Summary of the steps in subsequent analysis. Left: schematic of the manifold representation of variability. Each recording is summarized by its neural en-

coding function, indicated by a point (gray) in space of all possible neural encoding functions. The observed neural encoding functions lie in a low-dimensional

manifold (depicted as a curved surface but could be more than two dimensional) within this space. Different manifolds (other surfaces) would potentially

correspond to different properties that are invariant across recordings. The training procedure learns a coordinate system (a) within the manifold. Middle: di-

rections corresponding to response features can be identified in the learned coordinate system for representing the manifold. Right: geometry of the subspace

corresponding to the identified directions lead to interpretation of the variations.

(B) Manifold locations for 95 recordings (points), projected onto the two-dimensional (2D) subspace given by the first-principal components of variation in the

output nonlinearity for Off and On parasol cells. Size and color of dots indicate deviation from the mean. Colored lines indicate the direction of maximum

nonlinearity variation for On parasol (blue) and Off parasol (magenta) cells. Insets: lines show output nonlinearities for all cells in representative retinas.

(C–E) Similar to (B), for time course, receptive-field size, and autocorrelation, respectively.

(F) Angle between On and Off parasol directions for particular response properties, as a function of manifold dimension. Arrows indicate the cosine inverse of

Spearman rank correlation computed directly between the response properties.

(G) Change in response-prediction accuracy (y axis) as the manifold location is perturbed from the learned location. Each black dot represents a different

perturbation; the red line is the average.

(H) Random manifold locations (red) were sampled by adding noise to the learned retina-specific locations (black). Responses to a white noise stimulus of 100

cells of each type (On and Off parasol) were sampled from random locations in the visual field using the firing-rate maps for the two cell types associated with

these sampled manifold locations. These simulated responses were then used to fit a LNP model.

(I and J) Relationship between On and Off parasol cells for receptive-field area and zero crossing of response time course, respectively, for recorded (red) and

randomly sampled (black) retinas.
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component across all recordings and then identifying the mani-

fold direction with maximum correlation to that projection. The

Spearman rank correlation between the principal component

projections and the projections along the identified manifold di-

rection was significantly higher than the value observed in

random permutations of the data (p < 0.05 for all response prop-

erties) (Figures 2B–2F).

The geometry of the manifold also captured co-variation in

response properties of different cell types across recordings.

For both firing rate and response nonlinearity, the large angles

between the manifold directions for On and Off parasol

cells (84� and 66�, respectively) were consistent with low

Spearman-rank correlation in these response properties (0.17

and 0.44, respectively). Conversely, for response autocorrela-

tion, time course, and receptive field size, the small angles be-

tween the directions for On and Off cells (49�, 54�, and 13�,
respectively) were consistent with the larger Spearman-rank cor-

relation (0.65, 0.67, and 0.90 respectively). Although high corre-

lation is expected for receptive field size based on variation in the

eccentricity of different recordings, the varying degrees of

covariance for time-course, autocorrelation, output-nonlinearity,

and firing rate have not been previously reported. Hence, the

manifold presents an intuitive, geometric representation of vari-

ation and covariation of response properties.

The manifold also captured known invariances in retinal en-

coding, i.e., properties that were consistent across retinas. To

assesswhether these invariances were present atmany interme-

diate manifold locations not directly sampled in the experiments,

the manifold locations of recorded retinas were perturbed using

Gaussian noise with a standard deviation equal to the median

nearest-neighbor separation (Figure 2H). Light responses were

then generated using these randomly sampled manifold loca-

tions, and the encoding properties were summarized by fitting

a LNP model. For both the recorded and simulated responses,

Off parasol cells had consistently smaller receptive fields (RFs)

(Figure 2I) and slower time courses (Figure 2J) than On parasol

cells, consistent with previously reported asymmetries (Chi-

chilnisky and Kalmar, 2002).

To the degree that these systematic variations represent dif-

ferences among animals, a simple prediction is that recordings

from the same animal should be closer on the manifold than re-

cordings from different animals. The results confirmed that pre-

diction (paired t test, p < 0.01 acrossmanifold dimensions). Note,

however, that animal-specific variations in experimental proced-

ures could also produce that result (seeDiscussion), motivating a

deeper look at variations in the manifold that likely reflect true

biological differences.

Manifold reveals covariation associated with retinal
connectivity and male-female differences
The RGC types that receive synaptic input from bipolar cells at

similar depths in the inner plexiform layer (IPL) showed greater

covariation in their response properties across recordings than

other RGC types did. To examine covariation between cell types,

the On and Off midget cell types were included with the On and

Off parasol cell types considered thus far. In 85 recordings (53

macaques), the similarity of three response properties—firing

rate, nonlinearity, and time course—across different pairs of
702 Neuron 110, 698–708, February 16, 2022
cell types was measured either directly or in the manifold (Fig-

ures 3A–3C). Using both methods, the greatest correlation in

these physiological properties was observed between cell-type

pairs with the same polarity (On or Off), consistent with the lami-

nation of On and Off cells in the inner and outer IPL, respectively

(Figure 3D). Moreover, for cell-type pairs with opposite polarities,

a greater correlation in physiological properties was observed for

the On-parasol/Off-parasol pair than for the On-midget/Off-

midget pair, consistent with the lamination of parasol cells closer

to the middle of the IPL (Figures 3A–3D). These observations

support the approach of studying the response properties of

newer cell types (such as On and Off smooth-monostratified

cells) (Rhoades et al., 2019) after normalizing to the properties

of more-commonly studied cells with similar synaptic inputs,

thereby minimizing the effects of inter-retina variability.

Surprisingly, recordings from male and female retinas were

separated in the manifold (d0 = 1.8 for 15 dimensional manifold,

Figure 3E) in a way that was not explained by variations in exper-

imental factors (Figure 3I). For both On and Off parasol cells, the

differences between male and female retinas were partially

attributable to differences in firing rate and speed of temporal

filtering. This was determined by computing the direction sepa-

rating the means of male and female retinas in the manifold and

determining the angle between that direction and the directions

most aligned with variation in firing rate and response time

course (cosine[angle] � 0.5 for both; Figure 3H). In principle,

the observed male-female differences could be confounded by

variation in experimental methods, such as dissection procedure

(isolation from the retinal pigment epithelium [RPE]) or tempera-

ture (31�–36�C across recordings). Because higher recording

temperatures were associated with isolation from the RPE for

technical reasons, the directions in the manifold representing

dissection method and temperature variation were aligned

(cosine[angle] � 0.57; Figure 3H). Compared with firing rate

and response time course, these experimental factors were

less aligned to the direction of sex separation (cosine[angle] �
0.26; Figure 3H), suggesting that sex differences were probably

not due to differences in these experimental methods. To elimi-

nate experimental factors more rigorously, the separation of

males and females in the manifold was measured after condi-

tioning the data in several ways. For each condition, a bootstrap

rank test was performed to test whether the mean locations of

male and female recordings differed (seeMethod details). Signif-

icant separation (p < 0.05) was observed for the more-numerous

recordings with RPE-isolated dissections (37 male, 15 female)

and high temperature (R33.5�C) (32 male, 12 female), whereas

the separation was not significant (p > 0.1) for less-numerous

dissections with the RPE attached (12 male, 4 female) and lower

temperatures (<33.5�C) (19 male, 5 female) (Figure 3I). For the

RPE-isolated retinas, the male recordings exhibited higher firing

rates (Figure 3F) and faster temporal integration (Figure 3G) (p <

0.01, see Method details).

Although the conditioning on specific experimental conditions

above revealed statistically significant differences between

males and females, the level of significance was less when

compared with all the recordings (Figure 3I), potentially because

of a reduction in the number of samples when analysis was

restricted to a particular set of experimental conditions. The
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Figure 3. Biological factors underlying variability
(A–C) Relation between the first principal component of (A) firing rate, (B) nonlinearity, and (C) response time course variation for different pairs of cell types. The

relationship is either measured directly using Spearman rank correlation or the cosine of the angle between corresponding directions in the 15-dimensional

manifold.

(D) Distinct lamination depths for the bipolar-ganglion cell synapse for different ganglion cell types (Wassle and Boycott, 1991).

(E) Two-dimensional principle component analysis (PCA) projection of manifold locations for recordings from male (blue) and female (red) retinas.

(F) The average firing rate for On parasol (y axis) and Off parasol (x axis) cells for recordings with isolated RPE. The mean manifold location of male (blue) and

female (red) recordings were different (p < 0.01 for bootstrap and p < 0.05 for hierarchical bootstrap). Black line joins the mean male and female locations.

(G) Similar to (F) for the time course of STA, with separation of male and female retinas (p < 0.01 for bootstrap and p < 0.05 for hierarchical bootstrap) (Saravanan

et al., 2020).

(H) Cosine of the angle (y axis) between the manifold directions corresponding to different pairs of factors, which are either biological (sex, firing rate, or time of

zero crossing of time course) or experimental (temperature or dissection—whether retinal pigment epithelium [RPE] was attached or isolated).

(I) Degree of separation of male and female recordings measured using a resampling test, for all the recordings, conditioned on the subset of recordings with

specific dissection procedure or temperature or all recordings with locations projected orthogonal to directions for dissection procedure and temperature

variation.
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manifold made it possible to separate experimental variations

more efficiently, without reducing the number of data points.

To accomplish that, the data were projected onto axes in the
manifold orthogonal to the two identified directions of experi-

mental variability, namely dissection method and temperature

variation (a separate analysis showed that two directions
Neuron 110, 698–708, February 16, 2022 703
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sufficed to capture these two types of variability; not shown).

This projection increased the statistical significance of separa-

tion between the male and female retinas (p < 10�6) (Figure 3I).

Thus, the geometry of the manifold makes it possible to examine

statistical trends in the data efficiently in spite of potential exper-

imental confounds.

Manifold generalizes to a novel recording
The manifold permitted efficient response modeling of a new,

previously unseen retina by leveraging trends in the large dataset

of retinas used for learning the model. Response modeling can

be performed efficiently by identifying the manifold location of

a new retina in several ways, using limited data. In the absence

of any new data, the ‘‘expected’’ manifold location for a new

retina can be obtained by merely averaging the locations of all

training retinas. In the case of a degenerated retina (in which

no light-evoked response can be recorded), partial information,

such as the firing rate of recorded neurons, can be identified

from spontaneous activity. In this case, the manifold location

can be approximated by averaging the locations of training ret-

inas that have similar firing rates. Finally, in the presence of

measured light-evoked responses, gradient descent can be

used to optimize the manifold location based on the likelihood

of the data, leveraging the training retinas as prior information

(Figure 4A).

These three approaches were examined using amodel trained

with 71 recordings and tested with 24 recordings. The proximity

of manifold locations identified by approximation and optimiza-

tion suggested that these approaches accurately capture prop-

erties of the new retina (Figure 4B). To examine the efficiency

benefits of using the manifold, the optimization approach with

limited data was examined in detail. The manifold location

converged quickly as the recording duration increased, with

�3 min of light-response data producing a location similar to

that produced by �30 min of data (Figure 4C). Although optimi-

zation of the manifold location predicted light responses with

similar accuracy as that in training the full model (along with

the CNN) when tested with a large amount of data (15–30 min),

the manifold approach more-accurately predicted light re-

sponses when the data were limited (�8 s) (Figure 4D).

The low dimensionality of themanifold enabled efficient gener-

alization to a new retina, but, in principle, it could also reduce ac-

curacy. On varying themanifold dimensionality, the ability to pre-

dict responses to previously unseen retinas saturated at �15

dimensions (Figure 4E, black line), a value that did not change

with the number of retinas used for training (Figure 4E, colored

lines). Hence, in addition to the previous observation on general-

ization to new stimuli within the collection of retinas used for

learning (Figure 1D), the low-dimensional manifold is able to

generalize in another way—to new, previously unseen retinas.

These findings suggest that themanifold may aid in translating

our understanding of the macaque retina to the human retina, an

important goal for biomedical research. Recent work (Kling et al.,

2020; Soto et al., 2020) has shown that the receptive-field prop-

erties of the four numerically dominant RGC types (On and Off

parasol and midget) are similar to those of their macaque coun-

terparts. To test whether light responses in the human retina fall

within the range observed across many macaque retinas, the
704 Neuron 110, 698–708, February 16, 2022
manifold location of a single human retina was identified using

the three operations described above (averaging, approxima-

tion, and optimization). For eachmethod, the estimatedmanifold

location of the human retina was well within the span of manifold

locations of many macaque retinas (Figures 4B and 4C), and the

responses of a new retina were predicted with similar accuracy

and efficiency in the two species (Figure 4D). Hence, the mani-

fold reveals that the function of certain RGC types in the human

retina can be understood as falling within the range of variation of

macaque retinas.

Given that the macaque retinal code translates accurately to

humans, it may provide a valuable tool for the development of

an advanced artificial retina for treating vision loss. However, a

challenging first step in restoring vision with such a device is to

identify how the neurons in a blind retina should encode visual

stimuli with the implant, based on the particular neural code of

the individual receiving the implant. In this setting, the retina is

no longer light sensitive, so the healthy neural code cannot be

identified directly. However, the human subject could potentially

report the similarity of artificially induced images to a verbally

described object. The neural encoding that produces the

most-accurate perception could then be identified by estimating

the location of the retina on the low-dimensional manifold, using

a psychophysical discrimination task. Such a task was simulated

using the following iterative procedure: (1) sample a few of the

plausible manifold locations, (2) use each of thesemanifold loca-

tions to predict retinal responses for a particular visual stimulus,

(3) stimulate with the implanted device to produce each of these

responses, (4) ask the subject which stimulus produced a visual

sensation that most closely matches a verbal description, and (5)

update the set of plausible manifold locations.

To illustrate the feasibility of this procedure, the above steps

were simulated, assuming (for simplicity) an artificial retina that

has perfect cellular selectivity of stimulation. For updating the

plausible locations, the perceptual accuracy was assumed to

be governed by the Kullbeck-Leibler divergence between the

distribution of neural responses associated with the testedmani-

fold location and the distribution of responses associated with

the true location. The set of plausible locations identified by

the procedure converged to the true location (given by optimiza-

tion; see above) in a small (<20) number of steps (seeMethod de-

tails; Figure 4F). Hence, the low-dimensional manifold could pro-

vide valuable efficiency in translational applications.

DISCUSSION

This work presented a newmethod tomodel individual variability

in the neural code of the macaque retina using data from a large

number of recordings. The approach employed a deep neural

network that captured the shared response properties among

retinas, along with a low-dimensional manifold that captured dif-

ferences between them. The manifold preserved the known in-

variances in neural encoding and captured the inter-dependence

of response properties across cell types. It also revealed previ-

ously unknown sex-related differences in neural encoding and

provided more efficient ways of testing hypotheses on complex

datasets in the face of both biological and experimental vari-

ability. Finally, the low-dimensional manifold enabled novel
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Figure 4. Generalization to new, previously unseen retinas

(A) Efficient identification of manifold location. Training retinas (gray points) are used to define the manifold. Then, the manifold location of a new retina is

determined in one of several ways: averaging (red), compute the mean location of all training retinas; approximation (orange), compute the mean location of a

subset of training retinas with specific features similar to the new retina; and optimization (green), gradient descent on the manifold location to maximize the

prediction accuracy for measured light responses of the new retina.

(B and C) Identified manifold locations using averaging (+; same for all retinas), approximation (orange), and optimization (,) for testing retinas (colors, each pair

joined with a line). Black points correspond to the locations of training retinas. (C) Optimized manifold location for three retinas (colored lines), with varying

duration of recorded responses. Training retina locations (black points) and locations identified by averaging (+) are shown. For (B) and (C), the 15-dimensional

manifold is projected into two dimensions that capture firing rate variation (same as Figure 2E)

(D) Response prediction loss with optimization of manifold location (y axis) versus loss with learning all neural network parameters (x axis), using either 8.33 ms

(red) or 15–30 min (black) of data.

(E) Convergence of prediction loss with optimized manifold location, averaged across 24 testing retinas (y axis) as a function of the number of manifold di-

mensions (x axis). Loss measured as negative log likelihood, averaged across cells. Colored lines indicate loss obtained using fewer training retinas.

(F) Simulation of the discrimination task used to identify manifold location in the retina of a blind person. At each step, the visual stimulus is a letter from English

alphabet (top row). Two-dimensional projection of the manifold with locations of training retinas (black dots) is shown (bottom row). Posterior over the set of

feasible manifold locations approximated using a Gaussian (red circle). At each step, random manifold locations are sampled from the posterior, corresponding

responses are reproduced using the artificial retina, and feedback from the subject is used to update the posterior using Monte Carlo methods (all samples in

green, accepted samples in red). In �20 steps, the estimated manifold location (orange) converges to the true underlying location (blue).
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Figure 5. Sub-manifolds associated with variations in experimental

and biological factors

Each submanifold is defined by the manifold locations spanned by the varia-

tion in one factor, keeping the other factors fixed. In the illustration, red (blue)

curves correspond to variation in a particular experimental (biological) factor,

keeping other factors fixed. Different settings of the fixed factors correspond

to a transformation of the submanifold (different curves) for a given varying

factor.
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methods for identifying the neural code in a new recording,

paving the way for exploiting large-scale datasets to optimize

artificial vision with a retinal implant.

Note that, in the present data, biological and experimental

variability for the most part could not be definitively separated.

At least three sources of in vivo biological variability in the neural

code could be present in the data: variation between animals,

differences between the two eyes, and variation across retinal lo-

cations in a given eye. However, these sources of variability are

inherently confounded with variation in three experimental pro-

cedures: euthanasia, eye removal, and ex vivo recording,

respectively. In addition, some of the possible factors of inter-in-

dividual variation, such as the history of experiments and medi-

cal procedures throughout the lifespan of the animal, are neither

entirely biological nor entirely experimental. Thus, although the

relative importance of these three sources of variability could

be studied further, for the most part, it is not possible to reliably

isolate biological and experimental variation in the present data.

An exception is the observed difference in retinal encoding be-

tweenmales and females: there were no known associations be-

tween the ex vivo experimental procedures used and the sex of

the animal. Although there is no way to definitively exclude the

possibility of experimental differences, these analyses strongly

suggest that the male-female differences observed reflect true

biological differences. Additionally, another biological factor,

the proximity of dendritic lamination of specific cell types, is

associated with covariation in measured response properties

across preparations.

Importantly, the tools developed here make it possible to cap-

ture and analyze both experimental and biological variability in a

single framework. This is an asset for understanding the neural

code more completely using experimental data, which are al-

ways imperfect. For example, the low-dimensional manifold

made it possible to project the data into a subspace orthogonal

to known confounds and, thus, to control for them without con-

ditioning on specific experimental variables, thus retaining all the

available data and statistical power.
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The manifold framework can be used to understand biological

and experimental variability in a principled manner. This is an

extension of the idea that individual variability creates a manifold

in the neural response space, with different manifolds corre-

sponding to different possible invariances across recordings

(Figure 2A). Isolated changes in a particular experimental or bio-

logical factor (keeping the other factors fixed) could be concep-

tualized as producing a sub-manifold (Figure 5). Although the

data used for this article are not sufficient to study these sub-

manifolds, we see evidence of additional structure within the

manifold, such as the varying levels of covariation of response

properties across cell-types and their relation to dendritic

lamination.

For certain scientific questions it is not necessary to identify

the underlying cause of variability. For example, attributing the

varying degrees of covariation of different response properties

(temporal kinetics, nonlinearity, and autocorrelation) and cell

types (On versus Off and parasol versus midget) to either biolog-

ical or experimental factors is not crucial for understanding the

dependence on a biological variable like lamination depth. For

this observation, the presence of either biological or experi-

mental variability can be understood as a ‘‘perturbation experi-

ment’’ that reveals the interdependence of features of neural re-

sponses, which presumably has a biological origin.

The neural coding differences observed between male and fe-

male retinas add to a large literature on sex-based differences in

brain structure and function (Cahill, 2006; Choleris et al., 2018;

Poplin et al., 2018). In the retina, genetic differences between

male and female primates (including humans) produce different

variation in cone photopigment spectral sensitivities and, thus,

different color vision, across the population (National Eye Insti-

tute, 2019). However, to our knowledge, differences in neural

coding between males and females have not been reported,

perhaps because of the lack of appropriate physiological record-

ings and/or analysis tools.

Several recent studies have shown that neural responses in

the retina, which have often been described using pseudo-linear

models (Chichilnisky, 2001; Pillow et al., 2008), can be modeled

more accurately using artificial neural networks (McIntosh et al.,

2016; Batty et al., 2017). However, the function of these complex

models can be difficult to interpret. In the present work, the ma-

chine-learning model was used to more accurately capture

shared (and complex) aspects of neural response, but informa-

tion about variability between recordings was summarized in a

simple, interpretable, low-dimensional manifold (Schneidman

et al., 2001). In principle, such an approach could be used for

other applications in which a neural computation of interest is

captured using a simple, low-dimensional manifold, whereas a

machine-learning model improves accuracy by capturing the

possibly complex aspects of the computation that are of less im-

mediate interest.

The manifold of neural coding variability may also be useful in

other neuroengineering applications, such as motor prostheses.

The goal of a motor prosthesis is usually to read out the neural

activity in a paralyzed person to control a computer cursor or a

robotic limb (Bensmaia and Miller, 2014). Similar to the problem

of identifying the neural encoding in a blind person, identifying

the neural mapping in a paralyzed person is limited by the
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absence of simultaneous neural recordings and limb trajectory

measurements and, thus, may benefit from leveraging existing

data that capture the diversity of neural coding across individ-

uals. Specifically, a manifold of inter-individual variation may

be useful for identifying neural decoding in a person with an

implant, perhaps using a task involving imagined movements

to identify the manifold location of a particular person (Shenoy

and Carmena, 2014). Themanifoldmay also be useful for dealing

with the challenge of variability over time in chronic recordings

(Chestek et al., 2011).

The neural coding manifold may also be useful for harnessing

brain plasticity, which could improve vision with an artificial

retina. Indeed, present-day retinal implants make little attempt

to reproduce the neural code of the retina and, thus, implicitly

rely heavily on plasticity to compensate for device limitations

(Beyeler et al., 2017). In motor prostheses, it has been shown

that the brain can more easily adjust its activity to accommodate

perturbations in the artificial neural decoder if those perturba-

tions lie in a low-dimensional manifold (Golub et al., 2018). In

the case of an artificial retina, we hypothesize that the brain

may more readily learn to interpret the neural activity produced

by the implanted device if the visual encoding that it uses is de-

signed to lie within the manifold of retinal coding variability.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nishal P.

Shah (bhaishahster@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d A subset of the data used in this study is available as Data S1. Due to the immense size of the complete set of data, additional

data used in this study will be shared by the lead contact upon reasonable request.

d Code is available in Data S1.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
METHOD DETAILS

Recordings
Preparation and recording methods are described elsewhere (Chichilnisky and Kalmar, 2002; Litke et al., 2004; Frechette et al.,

2005). Briefly, eyes were enucleated from terminally anesthetized macaque monkeys (M. Mulatta or M. Fascicularis) used by other

experimenters in accordance with institutional guidelines for the care and use of animals. Immediately after enucleation, the anterior

portion of the eye and the vitreous were removed in room light. A single human eye was obtained from a 29 year-old Hispanic male

donor, rendered brain-dead from head and chest trauma in a car accident, through Donor Network West, San Ramon, CA. There

were no known or suspected problems with the health of the retina. The eye was removed immediately after cross-clamp. In both

species, the eye was stored in darkness in oxygenated Ames’ solution (Sigma, St. Louis, MO) at 33�C pH 7.4. Segments of isolated
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or RPE-attached peripheral retina (approximately 3mm x 3mm, taken from 6-15mm temporal equivalent eccentricity (Chichilnisky

and Kalmar, 2002) were placed flat, RGC side down, on a planar array of 512 extracellular microelectrodes arranged in an isosceles

triangular lattice. The electrode spacing was 60 mm in each row, and the array covered a rectangular region measuring 1800 mm x

900 mm. While recording, the retina was perfused with Ames’ solution (31-36�C; typically 32�C for RPE attached and 34�C for

RPE isolated dissections), bubbled with 95% O2 and 5% CO2, pH 7.4. The recordings were performed over the course of 16 years

(2005-2021), with the experimental procedure, rig setup (including electrode arrays, optics, displays, and software) remaining largely

constant. However, there were changes in experimental details such as the personnel, dissection details, sources of animals, and

selection of recordings for experimentation. The source of eyes also changed substantially from labs in the San Diego area to the

labs in the San Francisco Bay Area in 2013, and the frequency of RPE-attached recordings increased steadily over the years.

Voltage signals on each electrode were bandpass filtered (80Hz - 2kHz), amplified, and digitized at 20 kHz (Litke et al., 2004). A

custom spike-sorting algorithm was used to identify and segregate spikes from distinct cells (Litke et al., 2004). Briefly, candidate

spike events were detected using a threshold on each electrode, and voltage waveforms on the electrode and six neighboring elec-

trodes in the 4ms period surrounding the time of the spike were extracted. Candidate neurons were identified by clustering the wave-

forms using a Gaussian mixture model. Candidate neurons were retained only if the assigned spikes exhibited a 1 ms refractory

period and had a stable firing rate for the entire duration of recording. Duplicate spike trains were identified by temporal cross-cor-

relation and removed. For each cell, the autocorrelation function of the recorded spike train was computed as the correlation coef-

ficient for different time lags.

Visual stimuli and cell type identification
Visual stimuli were delivered using the optically reduced image of a CRT monitor refreshing at 120 Hz and focused on the photore-

ceptor outer segments. The optical path passed through a glass coverslip, transparent dialysis membrane, and Ames’ solution, or

through the mostly transparent electrode array and the retina before reaching the photoreceptors. The relative emission spectrum of

each display primary was measured with a spectroradiometer (PR-701, PhotoResearch) after passing through the optical elements

between the display and the photoreceptors. The total power of each display primary was measured with a calibrated photodiode

(UDT Instruments). The mean photoisomerization rates for the cone photoreceptors were estimated by computing the inner product

of the primary power spectra with the spectral sensitivity of each cone type, andmultiplying by the effective collecting area of primate

cones (�0.6 mm2) (Schnapf et al., 1990; Angueyra and Rieke, 2013), resulting in photoisomerization rates of approximately 800–2200,

800–2200, 400–900 for the long-, middle- and short-wavelength sensitive cones, respectively. The stimulus pixel size on the retina

was either 41.6microns (8monitor pixels), 52microns (10monitor pixels) or 83.2microns (16monitor pixels). A newwhite noise frame

was drawn at refresh rates of 60Hz or 30Hz. The pixel contrast (difference between themaximum andminimum intensities divided by

the sum) was 96% for each display primary, with mean intensity equal to 50% of the maximum for each primary. The white noise

stimulus either modulated the three display primaries independently, or coherently, at each spatial location.

In each recording, RGCs were classified into distinct types using properties of the spatial receptive field and response time course

obtained from the spike-triggered average (STA) stimulus (Chichilnisky, 2001; Chichilnisky and Kalmar, 2002; Field and Chichilnisky,

2007). A two-dimensional Gaussian fit to the spatial receptive field was used for determining the center location (Chichilnisky and

Kalmar, 2002). Analysis was restricted to recordings with stable firing rates and nearly complete tiling of ON and OFF parasol cell

receptive field mosaics. For Figure 3, only recordings that also had nearly complete ON and OFF midget cell mosaics were used.

For model fitting, both the visual stimulus and spike times were binned at 8.33ms (120Hz), and the visual stimulus was upsampled

to 8 monitor pixels, resulting in a common 80x40 pixel grid across recordings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Linear-nonlinear-Poisson model
The Linear-Nonlinear-Poisson (LNP) model consists of a linear spatio-temporal filter followed by a point nonlinearity (Chichilnisky,

2001). A filter that is separable in space and time was used (Chichilnisky and Kalmar, 2002), which is equivalent to a cascade of a

spatial filter and a temporal filter. These filters were estimated for each cell in each recording as follows. First, the STA was computed

by averaging the stimulus preceding spikes, over all pixel locations and 250ms (30 frames at 120Hz) prior to the spike. Next, the

spatial filter was computed by choosing the STA frame with the single largest pixel magnitude. The spatial filter was restricted to

a rectangular window around the receptive field. The receptive field was defined as the set of pixels with absolute magnitude greater

than 2.5s, contiguous with the strongest pixel, where s is the robust standard deviation (Rousseeuw and Croux, 1993) of pixels in the

STA, an estimate of the measurement noise. Next, the temporal filter was identified by averaging the time course of all pixels in the

receptive field. Finally, the output nonlinearity was estimated by fitting a 5th order polynomial to the relationship between

the observed responses and the generator signal, which was computed by filtering the stimulus with the estimated spatial and tem-

poral filters (Chichilnisky, 2001).

Neural network model
A convolutional neural network was used to predict RGC responses across multiple recordings simultaneously. Below, the model

architecture and the fitting procedure are described in detail.
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Notation
Themodel fðS; ai; CiÞ, takes as its input the visual stimulus S, recording-specific information about the collection of recorded cellsCi,

and the recording-specific manifold location ai, and yields as its output the predictions for recording-specific response Ri. For

simplicity, the following description is for a single sample stimulus-response pair, but it can be extended to multiple stimuli and cor-

responding responses in a straightforward manner.

The recent history of the visual stimulus is given by S˛Rdx3dy3dz , where R is the set of real numbers, dx3dy are the spatial dimen-

sions (803 40), and dt is the number of time bins (30). Stimuli presented at different spatial or temporal resolutions were upsampled or

downsampled to these dimensions.

The recording specific manifold location is given by ai˛Rn, where n is the manifold dimensionality.

The recording-specific information about recorded cells is given by Ci = fxðcÞ; yðcÞ; tðcÞgc= jCi j
c= 1 , where each cell c is described by

its receptive location ½xðcÞ; yðcÞ� in the dx 3dy visual space and its cell type tðcÞ. For models with only two cell types, tðcÞ˛ f0; 1g
(representing ON and OFF parasol cell types). For models with four cell types, tðcÞ ˛f0; 1; 2; 3g (representing ON parasol, OFF

parasol, ON midget, and OFF midget cell types).

The responses are given by Ri˛Z +
jCi j, where Z + denotes non-negative integers and jCij is the number of cells in recording i. Re-

sponses were binned at the same resolution as the stimulus (8.33ms).

Model architecture
Themodel fðS; ai; CiÞ passes the visual stimulus S through amultilayered convolutional neural network, with each layer consisting of

a convolution (stride 1), retina-specific normalization and a point-wise (softplus) nonlinearity (see Figure 1B). The model output is a

Poisson firing rate in each time bin. This firing rate is used to predict the responsesRi. The number of channels and the filter sizeswere

chosen by cross-validation, as described below. Recording-specific normalization and challenges associated with predicting re-

sponses for varying numbers of cells across recordings are also described below.

Recording-specific normalization is inspired by previous work (Dumoulin et al., 2017), in which a translationally-invariant affine

transformation of the layer activations adapts the model to each recording. The scale and shift coefficients for this affine transform

are determined linearly from the manifold location ai. Let baðx; y; l; tÞbe the activation after convolution at location x; y in channel l of

layer t. First, the mean m and standard deviation s across samples in a batch are computed, and used to calculate normalized ac-

tivations: ~aðx; y; l; tÞ = baðx; y; l; tÞ�m

s
. Next, using the manifold location ai, a learned affine transform determines the desired mean

ð~m =Pai +pÞ and standard deviation ð~s =Qai +qÞ for each layer. Finally, the normalized activations are transformed to give

recording-specific activations aðx; y; l; tÞ)~aðx; y; l; tÞ ~sl; t + ~ml; t. Note that the retina-specific scales and shifts are the same for

each location in visual space, preserving the translational invariance of convolutional networks and reflecting the homogeneous

response properties of the RGCs of a single type.

A potential challenge is that the number of recorded neurons, and hence the number of outputs of fð:Þ, is variable across record-

ings. To address this issue, the model predicts multiple response maps, one for each cell-type, with the same spatial dimensions as

the visual stimulus. The response for each cell is read off from its cell location in the response map of the corresponding cell type.

Specifically, fð:Þ outputs miðx;yÞ, which corresponds to firing rate map of cell-type i. Thus for a cell with type tðcÞand centered at

xðcÞ; yðcÞ the firing rate is given by mtðcÞ½xðcÞ; yðcÞ�.

Model fitting
Estimation of recording-specific parameters ðaiÞ and the shared parameters are performed by maximizing the log-likelihood of

observed responses, summed across all the cells, recordings and stimuli. This is performed by stochastic gradient descent, where

at each step, a randomly sampled batch of stimuli and corresponding responses from a particular recording are used to update the

shared and the corresponding recording-specific parameters. The batch size was 250 and the updates were performed using the

Adam update algorithm (Kingma and Ba, 2014) with learning rate of 0.1. For each recording used for fitting the model, the first

4 min of white noise data were used for testing and the remainder was used for training. The duration of the stimulus varied from

15-90 min (median 30 min) across recordings. A model with 4 layers, 33 3 or 13 1 filter size, 64 channels per layer and a 15 dimen-

sional manifold was chosen based on cross validation and used for subsequent analysis (see Figure 1B for architecture).

Variation of neural coding on the manifold
The following stepswere used to test whether themanifold captured variations in neural response properties across recordings. First,

the manifold direction that was maximally correlated to the variations of a particular response feature was identified by linear regres-

sion. Second, recordings were projected along this direction, and the Spearman rank correlation with the response property was

measured. Statistical significance was measured with a permutation test, where the null distribution was generated by permuting

the recordings with the manifold locations fixed. In Figure 2, the Spearman rank correlation and its statistical significance was

measured for the first principal component projection of various response properties such as firing rate (ON: 0.97, p < 0.0001 and

OFF: 0.95, p < 0.0001) receptive field size (ON: 0.78, p < 0.0001 ; OFF: 0.76, p < 0.0001), time course (ON: 0.83, OFF: 0.85; p <

0.0001), output non-linearity of the LNP model (Spearman rank correlation for ON: 0.92; OFF: 0.92; p < 0.0001) and auto-correlation

(ON: 0.84, p < 0.001 OFF: 0.62, p < 0.05). The interdependence between response properties was either measured directly in raw
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data using Spearman rank correlation, or with the angle between the corresponding manifold directions. Pairwise correlations

between all response properties considered (firing rate, output nonlinearity, time course, autocorrelation & RF area across ON

and OFF parasol cells) was captured in a�6 dimensional space (90% of variance captured). A potential confound for these analyses,

the dependence of manifold location on response instability during the course of recording, was eliminated by observing that the

manifold locations were stable when estimated with subsets of data at the beginning and end of the recording.

Relating the manifold location to biological and experimental factors of variation
The estimated model was examined to reveal the dependence of manifold location on various biological and experimental factors.

For analysis of sex differences, only the subset of recordings (102) from one species (M. Mulatta) were used. Based on the docu-

mentedmedical history, the animals with a gender specific condition (e.g., uterine fibroids) were not considered for this analysis. First,

the separation between male and female recordings was measured by computing the d’ value of the projection of the two distribu-

tions onto the difference in the means. The d’ value observed (�1.8) indicated that the sex-based differences were not large on an

individual basis. Second, a bootstrap test was performed to test whether the mean locations of the male and female recordings were

statistically distinguishable. The distance between the mean manifold locations of male and female retinas was measured and

compared to a null distribution of distances generated by resampling (with replacement) of the manifold locations. The null distribu-

tion was fitted with a normal distribution and the significance level was measured as the probability mass greater than the observed

distance in data. Becausemultiple recordings were frequently recorded from the same animal, a hierarchical variant of this bootstrap

test was also performed, in which resampling was performed according to the hierarchical structure of the data (Saravanan et al.,

2020), by first sampling an animal and then sampling the manifold location of one of the recordings from that animal, both with

replacement. Hierarchical bootstrap is more conservative and biased toward accepting the null hypothesis (Saravanan et al.,

2020). Mean manifold locations for male and female retinas were significantly different (p < 10�6 for bootstrap and p < 0.05 for hier-

archical bootstrap). Identical tests were applied for assessingmale-female differences in firing rate and the speed of temporal filtering

(p < 0.01 for bootstrap and p < 0.05 for hierarchical bootstrap for both quantities).

Systematic differences in visual encoding properties were not observed with respect to animal age, laterality of the eye, temporal/

nasal location, circadian time of dissection, month/season of the experiment and the lab from where the retina was obtained. Note

that it is important to be careful when testing multiple statistical hypotheses using the same dataset. For the present data, the male-

female differences were highly significant (p < 10^-6) using the marginalization method, even when compared to a lower Bonferroni-

corrected threshold corresponding to multiple (�10) hypothesis tests.

Invariance of neural coding on the manifold
The ability of the manifold to preserve previously reported invariances of the neural code was tested as follows. First, random mani-

fold locations were sampled by perturbing the learned locations of training retinas with a Gaussian noise of standard deviation equal

to their median nearest-neighbor distance. Second, ON and OFF parasol firing rate maps in response to a white noise stimulus were

computed using neural networks corresponding to these locations. Third, the Poisson firing rates for 200 cells (100 of each type) with

random receptive field locations were read off from the firing rate maps. Finally, these responses were sampled and used to estimate

a Linear-Nonlinear-Poisson model, which served as an interpretable summary of neural encoding captured by the manifold location.

Comparison of average receptive field size and the zero crossing time of the temporal filter revealed known invariances between ON

and OFF parasol cells (Figures 2J and 2K).

Estimation of the manifold location of a previously unseen retina
By fixing the shared parameters after learning, and estimating the recording-specific representation on the manifold, the trained

model was adapted to predict responses in a new, previously unseen recording. Based on the amount of data available, several

methods can be employed to identify the manifold location (Figure 4). These methods are described below in detail.

Averaging
When no data about the new retina are available, the simplest approach is to average the manifold location of all the retinas used for

training.

Approximation
This is similar to averaging, but only using the subset of training retinaswith similar response properties as the new retina. For Figure 4,

locations of five training retinas with the most similar firing rate function were used for approximation.

Optimization
When light response data are available, themanifold location ai of retina iwas determined by Bayesian inference. Bayesian inference

combines a Gaussian prior ½PpriorðaÞ� Nðmprior; spriorÞ� over manifold locations determined from the training retinas and the likelihood
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½PðRn
i

�� Sn;aiÞ� of collection of stimulus-response data fSn; Rn
i gn=N

n= 1 for the new retina i. The posterior Pðai

�� fSn; Rn
i gÞwas maximized

using gradient ascent (learning rate 0.1):

a�
i = argmaxaP

�
ai

�� �Sn; Rn
i

��
= argmaxa

X
n

log P
�
Rn

i

�� Sn; ai

�
+ log PpriorðaiÞ

Discrimination task
When light responses are unavailable, as in the case of a blind person implanted with a retinal prosthesis, themanifold location can in

principle be estimted using a discrimination task. The effectiveness of this proposed approach was validated in simulation. For a

given visual stimulus, the discrimination task involves using the implanted retinal prosthesis to reproduce responses corresponding

to two manifold locations and asking the subject to select the response that yields perception most closely matching a verbally-

described stimulus. Multiple rounds of this task are used to update the posterior on manifold locations.

The discrimination task was simulated under the assumption that the perceptual difference of the responses generated by hypo-

thetical retinas at two manifold locations a1and a2 for a stimulus S is equal to the KL-divergence between the corresponding

response distributions PðRjS; a1Þ and PðRjS; a2Þ. Given atrue as the true underlying manifold location, the subject’s feedback

Yðatrue; a1; a2Þ= 0 if

DKL½P ðRjS; a1Þk PðRjS; atrueÞ� % DKL½P ðRjS; a2Þk PðRjS; atrueÞ�
and Yðatrue; a1; a2Þ= 1 otherwise. For simplicity, sampled responses were used to compute an approximation of the KL-divergence:

DKL

"
PðRjS; a1Þk PðRjS; atrueÞ

#
z

X
Ri�PðRjS; a1Þ

log

�
PðRijS; a1Þ
PðRijS; atrueÞ

�
:

Hence, the posterior over manifold location after k steps of the task is given by:

Pposterior

h
aj �Sk ; a1; k ; a2; k ;Yk

�k =K

k = 1

i
f

Yk =K

k = 1

PðYk j Sk; a1; k ; a2; kÞ PpriorðaÞ

where the prior is estimated from training retinas as a Gaussian distribution: PpriorðaÞ � Nðmprior; spriorÞ.
In the simulations, the visual stimulus S consisted of letters of the English alphabet, flashed for 100 ms and preceded and suc-

ceeded by 50ms of gray screen. At each step, a Gaussian approximation of the posterior PposteriorðaÞ � Nðmposterior; sposteriorÞ was

maintained, and updated using Monte-Carlo sampling. In summary, the steps for the kthiteration of the algorithm are as follows:

1. Sample symmetric a1; k , a2; k around posterior mean: a1; k � PposteriorðaÞ; a2; k = 2mposterior � a1; k .

2. Sample an English letter and a target stimulus Sk .

3. Sample responses R1; k � PðR��Sk ; a1; kÞ; R2; k � PðR��Sk ; a2; kÞ.
4. Get patient feedback Yðatrue; a1; k ; a2; kÞ, based on an estimate of the KL divergence using sampled responses R1; k , R2; k .

5. Update the posterior of plausible manifold locations:

a. Sample N retina locations ai � PposteriorðaÞ for i ˛½1;/;N�.
b. For the set of sampled manifold locations, find the subset that matches user feedback, i.e., with Yðai; a1; l; a2; lÞ=

Yðatrue; a1; l; a2; lÞ for all l ð= 1; :::; KÞ previous steps. Let this subset of be f~ajg.
c. Update the Gaussian approximation to posterior distribution with mposterior = < ~aj> and s2posterior = < ~aj ~aj

T> � mposteriorm
T
posterior :

For the results shown in Figure 4F, atrue was set as the result of optimizing the manifold location using light-evoked responses. In

the simulations, the posterior distribution converged in�20 steps, suggesting that the low-dimensional manifold can be used for effi-

ciently identifying the expected neural code in a blind person. However, the amount of noise in a human subject would probably be

substantially higher, which would imply the need for a larger number of steps to identify the true manifold location, changes to the

estimator of KL divergence and the method to update the posterior of a.
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