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Horwitz, Gregory, E. J. Chichilnisky, and Thomas D. Albright.
Blue-yellow signals are enhanced by spatiotemporal luminance
contrast in macaque V1. J Neurophysiol 93: 2263–2278, 2005;
doi:10.1152/jn.00743.2004. We measured the color tuning of a pop-
ulation of S-cone-driven V1 neurons in awake, fixating monkeys.
Analysis of randomly chosen color stimuli that were effective in
evoking action potentials showed that these neurons received opposite
sign input from the S cones and a combination of L and M cones.
Surprisingly, these cells also responded to LM cone contrast irrespec-
tive of polarity, a nonlinear sensitivity that was masked by conven-
tional linear analysis methods. Taken together, these observations can
be summarized in a nonlinear model that combines nonopponent and
opponent signals such that luminance contrast enhances color pro-
cessing. These findings indicate that important aspects of the cortical
representation of color cannot be described by classical linear analy-
sis, and reveal a possible neural correlate of perceptual color-lumi-
nance interactions.

I N T R O D U C T I O N

Color perception results from a complex neuronal computa-
tion. The early steps of this computation are well understood:
the sensitivity of the cone photoreceptors to lights of various
wavelength has been characterized thoroughly (Baylor et al.
1987; Wandell 1995) as has the subsequent synergistic and
antagonistic combination of cone signals in the retina and
lateral geniculate nucleus (Derrington et al. 1984; DeValois
1965; Gouras 1968). How color information is processed in
cortex, however, is less clear. The goal of the current experi-
ments was to extend our understanding of how neurons in the
primary visual cortex (V1) combine signals that originate in the
cones.

One possibility is that V1 neurons combine cone signals
linearly. This assumption has been made, either implicitly or
explicitly, in studies that employ cone-isolating stimuli to
estimate the weights with which cone inputs are integrated
(Conway 2001; Johnson et al. 2001; Landisman and Ts’o
2002). While the linearity assumption is justified for many V1
neurons, it is clearly inappropriate for others (Conway 2001;
Hanazawa et al. 2000; Hubel and Wiesel 1968; Lennie et al.
1990; Vautin and Dow 1985). For example, a V1 neuron that
responds to S cone stimulation, but only when L- and M-cone
excitations are appropriately balanced, does not integrate cone
inputs linearly and thus cannot be characterized with cone-
isolating stimuli (Hanazawa et al. 2000).

Recently developed data-analysis tools have provided new
ways to characterize neurons that combine inputs nonlinearly
(de Ruyter van Steveninck and Bialek 1988; Paninski 2003;

Rust et al. 2004; Schwartz et al. 2001; Sharpee et al. 2004;
Simoncelli et al. 2004; Touryan et al. 2002). Here we use one
of these techniques to reveal a surprising nonlinear computa-
tion performed by blue-yellow neurons in V1.

We excited V1 neurons in awake monkeys with a dynamic,
randomly colored stimulus and analyzed the stimulus se-
quences that preceded spikes. Analysis proceeded in two steps.
First, we computed the average stimulus that preceded a spike.
This analysis identified a group of S-cone-dominated, color-
opponent neurons. Had these neurons combined cone signals
linearly, this analysis would have characterized their color
tuning completely. The second step in our analysis, however,
demonstrated that approximately half of these neurons were
fundamentally nonlinear. An analysis of the variability of the
stimuli that preceded spikes revealed that these cells received
a rectified nonopponent signal from L and M cones, which
combined synergistically with the opponent signal. This inter-
action between opponent and nonopponent signals emphasizes
color information in regions of a visual scene with high
luminance contrast and may be related to enhancements of
color vision that occur with the addition of luminance contrast.

M E T H O D S

Subjects

Four alert rhesus monkeys (Macaca mulatta), weighing between 8
and 10 kg, served as subjects in these experiments. Animals had
normal color vision and no significant refractive error. Experimental
protocols were approved by the Salk Institute Animal Care and Use
Committee and conform to U.S. Department of Agriculture regula-
tions and to the National Institutes of Health guidelines for the
humane care and use of laboratory animals.

Animal preparation

Procedures for surgical preparation, behavioral training, and elec-
trophysiological recording were routine and similar to those described
previously (Dobkins and Albright 1994). Briefly, each monkey was
implanted with a stainless steel head post and monocular scleral
search coil. During neural recording, head movements were prevented
by securing the head post to a mating piece on the monkeys’ chair.
Three monkeys had craniotomies over the occipital operculum from
which single units were isolated. The fourth monkey had a craniotomy
that allowed access to the thalamic lateral geniculate nucleus (LGN).

Visual stimuli

Stimuli were generated using an 8-bit graphics card (ELSA GLoria
Synergy) controlled by PC software (Cortex 5.94, NIMH), and were
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displayed on a 19-in CRT monitor refreshed at 100 Hz (Sony F500).
Phosphor emission spectra were measured in 4-nm bins using a
spectraradiometer (PR-650, Photoresearch). The intensity of each
phosphor was measured at 35 levels spanning its dynamic range, and
all of our stimuli were constructed to compensate for the nonlinear
voltage-intensity relationship. Monitor calibration routines were
adapted from those included in the Matlab Psychophysics Toolbox
(Brainard 1997). We verified that spectra produced by mixtures of the
three phosphors were well predicted by linear combinations of the
three component spectra, and we recalibrated the monitor periodically
to compensate for slow changes in CRT characteristics that occurred
over the course of data collection.

Monkeys were trained to maintain visual fixation while a randomly
flickering 8 � 8 stimulus grid, shown in Fig. 1, was presented at the
receptive field (RF) of one or more individually isolated V1 neurons.
The color of each 0.22 � 0.22° square in the grid changed randomly
and independently every 10 ms. Color changes were implemented by
independently modulating the intensities of the phosphors according
to Gaussian distributions. The space-time averaged intensity of each
phosphor was equal to its contribution to the background, which was
metameric with an equal-energy white at 65 cd/m2. The SD of each
distribution was �9% of the range physically achievable, correspond-
ing to luminance contrasts of 3.9, 11.5, and 2.5% for the red, green,
and blue phosphors, respectively.

We also stimulated some V1 neurons and all LGN neurons with a
3° diam uniformly colored disk centered on the RF. The color of this
disk modulated with statistics identical to a single pixel in the 8 � 8
stimulus grid.

The SD of our stimulus in the L-, M-, and S-cone excitation directions
was 0.012, 0.012, and 0.013, respectively, which yields 0.11, 0.13, and
0.26 units of cone contrast when each is divided by the corresponding
mean cone excitation due to the background. These contrasts are com-
parable to those used in previous studies (Conway 2001; Johnson et al.
2001, 2004). Unlike stimuli used in these previous studies, however, our
stimulus largely modulated the three cone types together. Thus cone
contrasts in cone isolating directions (e.g., L cone direction conditional
on M and S cone activations constrained to be at their mean levels) were
smaller: (L: 0.03, M: 0.03, S: 0.22). These L and M cone contrasts are
3–10 times smaller than those used by Johnson et al. (2001, 2004) and
Conway (2001), but the S-cone contrast is comparable.

We were concerned that eye movements made during the inter-trial
interval would cause the RFs of recorded neurons to move off the
monitor, thereby causing a profound drop in the light level at the RF
and changing the adaptation state. To mitigate such changes, monkeys
viewed the stimulus through an aluminum-foil-lined tunnel. The
tunnel was rectangular in cross-section (of the same dimensions as the

CRT screen), spanned the distance from the CRT to the monkey’s
chair, and was closed on all four sides except for an opening in the top
through which the experimenter monitored the monkey via a closed-
circuit video camera. Stimulus presentations lasted until the monkey
broke fixation (80% of trials) or until 10 s had elapsed (20% of trials).
The mean stimulus duration was 4.97 � 3.39 (SD) s. The mean
number of trials per cell was 212.

Electrophysiological recording

For V1 recordings, glass-coated platinum-iridium electrodes (Fred-
erick Haer, Brunswick, ME) were lowered through the dura mater via
a hydraulic microdrive. For LGN recordings, parylene-coated tung-
sten electrodes (Frederick Haer) were inserted into transdural guide
tubes and lowered by hydraulic microdrive. Electrical signals were
amplified and filtered, and action potentials were isolated via template
matching algorithms either on-line (Alpha Omega Engineering, Naz-
areth, Israel) or off-line (Plexon, Dallas, TX). Electrode impedances
were 1–4 M� at 1 kHz.

On isolating a neuron, we mapped RF boundaries with oriented bars
and spots of light. We then positioned the 8 � 8 stimulus grid on the
estimated center of the RF and collected quantitative data. In early
recording sessions, we recorded from each stable, well-isolated neu-
ron we encountered that responded well to the stimulus. Later, we
hunted specifically for blue-yellow neurons.

Data analysis

Analyses were performed using custom software written in
Matlab (MathWorks). Stimulus movies were reconstructed and
represented numerically as phosphor intensities at each frame and
pixel in the display. Recorded spike trains were temporally aligned
with the stimulus reconstruction so that each spike served as a
pointer to the frame on which it occurred. We extracted the 20
frames preceding each spike to obtain a collection of stimulus
sequences or “spike-triggered stimuli.” We averaged spike-trig-
gered stimuli together to compute linear RFs. Each linear RF had
3,840 components (64 pixels � 3 phosphors � 20 frames). To
calculate nonlinear RFs, we used a principal components analysis,
as described in the following text.

Color spaces

Colored stimuli can be described in terms of the intensities of the
primary lights used to create the stimuli, or equivalently, as the photon
absorptions in the L, M, and S cones. Because the distribution of our
stimuli was rotationally symmetric in the space of monitor primaries
(phosphors), we used this space to calculate linear and nonlinear RFs
(Chichilnisky 2001). We then transformed linear and nonlinear RFs to
a two-dimensional color space with axes representing S cone weight
and 3L�2M cone weight (“LM”) (coefficients on L and M were
derived from a least-squares fit to the human photopic luminosity
function, V�). Only two color directions are reported here because the
third is poorly constrained by the data (see following text).

R, G, B triplets were transformed to S, LM excitations by multi-
plication with a 2 � 3 matrix, which was derived from the phosphor
emission spectra of our monitor and a set of cone fundamentals
(Stockman et al. 1993). To construct this matrix, we computed the
pairwise dot products of the emission spectra of the three phosphors
(R, G, and B) and the two fundamentals used in this study: S and LM.
This matrix can be represented as

A � � R � LM G � LM B � LM
R � S G � S B � S �� � 0.0533 0.1658 0.0453

0.0018 0.0089 0.1451 �
This matrix transforms lights expressed in R, G, B space to excitations
in S, LM space. The R, G, B values derived from linear and nonlinear
RFs do not represent lights, however, but visual mechanisms (Kno-

FIG. 1. Representative stimulus frames. Each 0.22 � 0.22° pixel in our
stimulus changed color randomly and independently every 10 ms. Color
changes were implemented by modulating the intensities of the red, green, and
blue monitor phosphors according to independent Gaussian distributions.
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blauch and D’Zmura 2001). A light that is orthogonal to a mechanism
in one space must be orthogonal to that mechanism in every space
(e.g., isoluminant lights are orthogonal to the luminance mechanism
irrespective of the color space in which they are represented). This
would not be true in general if lights and mechanisms were trans-
formed identically. The appropriate transformation for mechanisms is
the inverse transpose of the transformation matrix for lights: A�T

(Knoblauch and D’Zmura 2001).
The color direction (3M-2L) that is orthogonal to the two used in

this report (S, and 3L�2M) was largely absent from our display:
stimulus modulation was 7.0 times greater in the 3L�2M direction,
and 5.7 times greater in the S direction, than in the 3M-2L direction.
Tuning estimates in this direction were thus poorly constrained by our
data. The main conclusions of this study: that many blue-yellow
neurons had significant nonlinear RFs, that these nonlinear RFs
revealed sensitivity to LM modulation, and that this signal combined
roughly multiplicatively with an S-cone-dominated cone-opponent
signal did not change when this color direction was included in the
analysis.

Principal-components analysis

The collection of spike-triggered stimuli contains a great deal of
information about the stimulus patterns that caused a recorded neuron
to fire. The linear RF (the average of these stimuli), which is often the
only aspect of these data reported in scientific papers, is a gross
distillation of the raw data and may conceal important stimulus
preferences. Just as a probability distribution is not fully characterized
by the mean, the distribution of spike-triggered stimuli is not fully
characterized by the linear RF. Here we consider another aspect of the
distribution of spike-triggered stimuli: its longest axis, or first princi-
pal component.

Principal-components analysis (PCA) allows high-dimensional data
(such as the collection of spike-triggered stimuli) to be represented in
a lower dimensional subspace in such a way that much of the structure
in the original data is preserved. Principal components are ordered: the
first principal component provides the best one-dimensional descrip-
tion of the data after the average has been subtracted. The second
principal component provides the best one-dimensional description of
the data once the contribution of the first has been taken into account,
and so on.

Intuitively, PCA on the collection of spike-triggered stimuli can
reveal sensitivity to complementary stimulus patterns that mask each
other when averaged. For example, an ON cell responds to increments
in light intensity, so the collection of spike-triggered stimuli tend to be
brighter than the background. The average of these stimuli, the linear
RF, is bright and reveals the stimulus preference. In contrast, an
ON-OFF cell responds to both increments and decrements in light
intensity at the same spatial location so both bright and dark stimuli
appear in the collection of spike-triggered stimuli. These stimuli
cancel when averaged, leading to an uninformative linear RF. The first
principal component of the spike-triggered stimuli, the nonlinear RF,
can reveal the stimulus preferences of such a cell.

Previous studies have shown that PCA can reveal stimulus features
that excite complex cells (Rust et al. 2004; Touryan et al. 2002). To
validate our implementation of the technique, we used PCA to reveal
the orientation tuning of a complex cell. Figure 2A shows the orien-
tation tuning curve of the cell measured with an achromatic grating. In
a separate block of trials, we stimulated this neuron with the random
noise stimulus (Fig. 1). As shown in Fig. 2B, the nonlinear RF
accurately predicted the preferred orientation, but the linear RF did
not.

Formally, the principal components are the eigenvectors of the
spike-triggered covariance matrix. The spike-triggered covariance
matrix can be written

C �
1

n � 1�
i

n

�si � a� � �si � a�T (1)

where n is the number of spikes in an experiment, si is the ith
spike-triggered stimulus, (represented as a vector whose entries indi-
cate the intensity of each phosphor at each location and each time
relative to the occurrence of a spike), and a is the spike-triggered

average (that is,
1

n
�i

nsi). The first principal component is the eigen-

vector of this matrix associated with the largest eigenvalue, the second
principal component is the eigenvector associated with the second
largest eigenvalue, and so on (Strang 1988). It can be shown that the
first principal component is the direction in stimulus space along
which the spike-triggered stimuli have the greatest variance, the
second is the direction along which the spike-triggered stimuli have
the greatest variance in the subspace orthogonal to the first, and so on.

By construction, the raw stimuli have equal variance in every
direction. If stimuli in certain regions of the stimulus space increase or
decrease the firing probability, the collection of spike-triggered stim-
uli will not have equal variance in every direction. In this case,
directions along which the collection of spike-triggered stimuli have
particularly high or low variance can reveal the classes of stimuli that
drive the cell. In what follows, we examine the stimulus direction that
exhibited the highest variance, the first principal component.

How large is the first principal component relative to the spike-
triggered average? A natural measure of the former is the square root
of the largest eigenvalue of the spike-triggered covariance matrix. A
natural measure of the latter is its vector norm. Comparison between
these two measures is not straightforward, and a rigorous treatment of
the issue is beyond the scope of this paper. Fortunately, these mag-
nitudes are irrelevant under the class of models that we consider here,
as will be described in the following text in Models (see also
Chichilnisky 2001).

Projecting out the spike-triggered average

In an experiment such as ours, the first principal component of the
spike-triggered stimuli can be redundant with the spike-triggered
average (Schwartz et al. 2001). We were interested specifically in
neurons for which this was not the case. We therefore subtracted from
each spike-triggered stimulus whatever projection it had onto the
linear RF (see following text), prior to performing PCA. All spike-
triggered stimuli were therefore orthogonal to the linear RF and would
therefore be invisible to a linear cell.

FIG. 2. Responses of a V1 complex cell. A: response as a function of the
orientation of a 2 cycle/° achromatic grating drifting at 5 Hz. B: linear and
nonlinear receptive fields (RFs) of the same neuron measured in a separate
block of trials. Although the linear RF was largely unstructured, the nonlinear
RF was structured and suggested a preferred orientation of �22.5° (halfway
between 0 and 45°), in close agreement with the preferred orientation measured
with drifting gratings.
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Formally, the projection, p, of a stimulus, s, onto the linear RF, a,
is defined as

p �
sT � a

�a�2
a (2)

The projection of the stimulus orthogonal to the linear RF can be
written

p� � s � p (3)

The covariance matrix of these projections, Cortho, can be found by
substituting p� for (si � a) in Eq. 1. An equivalent but faster approach
is to calculate the spike-triggered covariance matrix by Eq. 1 and
perform the equivalent matrix projection prior to the eigenvector
decomposition

P � I � a�aT � a��1aT (4)

Cortho � P � C � PT (5)

The matrix P in Eq. 4 is a projection matrix into the subspace
orthogonal to a (Draper and Smith 1998). The transformation of the
covariance matrix in Eq. 5 is equivalent to computing the covariance
of the spike-triggered stimuli, after having multiplied each stimulus
vector by the matrix, P (Leon-Garcia 1994).

Forcing orthogonality between linear and nonlinear RFs guarantees
that they will not be redundant, so we impose this constraint through-
out this report. For the 27 blue-yellow V1 neurons that are the focus
of this report, however, this constraint was inconsequential. Nonlinear
RFs (computed from the raw spike-triggered stimuli) were nearly
orthogonal to linear RFs (median correlation coefficient 	 0.09), even
without this projection. As a result, nonlinear RFs computed from the
raw spike-triggered stimuli were nearly identical to nonlinear RFs
computed from stimulus projections orthogonal to the linear RF
(median correlation coefficient 	 0.99).

Significance testing

Statistical significance of the nonlinear RF was assessed with a
nonparametric randomization test on the largest eigenvalue of the
spike-triggered covariance matrix. To estimate the distribution of this
statistic under the null hypothesis of no relationship between stimuli
and spikes, we randomly shifted spike trains in time relative to the
reconstructed stimulus movie, recalculated the spike-triggered covari-
ance matrix, and obtained the largest eigenvalue. This procedure was
repeated 2000 times. If the largest eigenvalue from the unrandomized
data exceeded 95% of the largest eigenvalues from the randomized
data sets, we concluded that the nonlinear RF was significant at the
0.05 level. Because we project the spike-triggered stimuli orthogonal
to the linear RF prior to performing PCA, linear cells should not have
significant nonlinear RFs, irrespective of any static nonlinearity that
follows linear integration of cone inputs.

Pixel and frame selection

Many pixels in our stimulus fell outside the spatial extent of a given
cell’s RF, and many of the frames we analyzed lay outside a given
cell’s temporal integration window. These “nuisance dimensions” add
appreciable noise to the nonlinear RFs. To focus our analyses on the
pixels and frames that drove each cell most strongly, we used the
following procedure. For each cell, in addition to calculating the
spike-triggered average, we calculated the spike-triggered variance.
Like the average, the variance has 3,840 components (64 pixels � 3
phosphors � 20 frames): it is the variance of the spike-triggered
stimuli, or equivalently, the elements on the main diagonal of the
spike-triggered covariance matrix. We converted means and variances
to z scores by subtracting each from their theoretical means and then
dividing by their theoretical SDs, which were calculated under the null

hypothesis of independence between the stimulus and Poisson-gener-
ated spikes. The formulas for these theoretical means and variances
were

�mean � �

�mean �
�

�n

�var � �2

�var � �2� 2

n � 1

Where � is the mean phosphor intensity, � is the SD of the phosphor
intensities, and n is the number of spikes.

We then added the absolute value of the z-scored mean vector to the
z-scored variance vector, and summed across phosphors. This pro-
vided a 1,280-component vector (64 pixels � 20 frames) that reflects
both first- and second-order deviations from chance. The frame and
pixel in which this deviation was greatest was selected for analysis.

Models

Under a linear model, a neuron’s response, r, is equal to the dot
product of a stimulus vector, s, onto the cell’s linear kernel, w

r � w � s (6)

An obvious failure of this model is the existence of spiking thresholds.
This can be formalized as a static nonlinearity that maps a linear
“generator signal” to a nonnegative firing rate (Chichilnisky 2001).
The inclusion of such a static nonlinearity provides a simple nonlinear
model that subsumes the linear model as a special case

r � f �w � s� (7)

The weights with which such a cell combines cone inputs (which may
vary as a function of time and space) are given by w, the cell’s linear
kernel. Conveniently, under the conditions of our experiment, the
spike-triggered average converges to w under either model (Chich-
ilnisky 2001).

A natural extension of the simple nonlinear model in Eq. 3 includes
multiple wis

r � f �w1 � s,w2 � s,w3 � s, . . . ,wn � s� (8)

Under this more general model, the neuron’s response to a stimulus,
s, is a nonlinear function of the stimulus projection onto n different
vectors. If the dimensionality of the subspace spanned by the vectors
{w1. . .wn} is smaller than the dimensionality of the stimulus space,
this model provides a parsimonious description of the neuron’s
response properties. Note that any choice of {w1. . .wn} that spans the
same subspace can lead to an equivalent description since the static
nonlinearity, f(), is unconstrained. Similarly, note that changes in the
relative magnitude of the wi vectors can be compensated for exactly
by a change in the domain of the nonlinearity, f(). The magnitudes of
the wi vectors are therefore arbitrary without specification of f().

In this report, we considered the two-dimensional version of the
model in Eq. 8

r � f�w1 � s,w2 � s� (9)

For each neuron studied, we took the spike-triggered average stimulus
as an estimate of w1 and the first principal component of the spike-
triggered stimuli as an estimate of w2. We have no theoretical reason
to expect that this choice (which is arbitrary apart from its simplicity)
should be interpretable in terms of the underlying biology. That this
was the case for blue-yellow color opponent neurons was fortuitous
(as elaborated in the DISCUSSION).
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The two-dimensional response surface, f(), was estimated by rep-
resenting each stimulus as a vector, projecting these vectors onto the
estimates of w1 and w2, binning projection magnitudes, and calculat-
ing firing rates for stimuli within each bin. To avoid bias, different
portions of the data were used to estimate the wi and the response
surface. This procedure was repeated 100 times with different dataset
partitions, and the resultant response surfaces were averaged together.

R E S U L T S

Linear cells

We studied 158 V1 neurons in three monkeys. For each
neuron, the collection of stimuli preceding spikes was averaged
to derive the spike-triggered average stimulus. For neurons that
integrate cone inputs linearly, the spike-triggered average re-
veals the spatiotemporal pattern of weights with which cone
signals are combined and thus comprises the neuron’s “linear
receptive field (RF).” The left column of Fig. 3 shows linear
RFs for six example V1 neurons. Linear RFs of example cells
1, 2, and 3 had distinct ON and OFF subunits with large LM cone
weights that were in phase with weaker S cone weights.
Example cells 4–6 had spatially opponent linear RFs and
opponent S and LM weights. The presence of multiple RF
subunits with complementary color preferences is consistent
with previous reports (Conway et al. 2002; Gouras 1974;
Hubel and Wiesel 1968; Johnson et al. 2001; Livingstone and
Hubel 1984; Michael 1978; Thorell et al. 1984).

Linear RFs can conceal the stimulus preferences of nonlin-
ear cells. We define the “nonlinear RF” as the first principal
component of the spike-triggered stimuli. This nonlinear RF
has been used to describe the nonlinear properties of complex
cells (see Rust et al. 2004; Touryan et al. 2002) (see also
METHODS). Panels on the right of Fig. 3, show nonlinear RFs of
the six example neurons. Nonlinear RFs of these neurons were
unstructured and not significant (randomization test, P 
 0.05),
consistent with the idea that these cells combine cone inputs
linearly.

Figure 4 shows linear and nonlinear RFs in space and time.
Spatial RF maps are replotted from Fig. 3, and a single pixel is
highlighted in each one, selected according to the criteria in the
METHODS. Next to each spatial map, we plot a “temporal RF”
computed at the highlighted pixel. Temporal linear RFs for
example cells 1–3 were LM-dominated, had a short-duration,
and peaked �50–60 ms before the spike. Temporal linear RFs
for example cells 4–6 showed opposite signs of response to
LM and S-cone excitation, had a longer duration, and peaked
�60–70 ms before the spike. None of the temporal nonlinear
RFs were significant (P 
 0.05).

Nonlinear cells

In contrast to the example cells in Fig. 3 and 4, many cells
in our dataset had responses above and beyond those revealed
by the linear RF. Linear RFs of the cells shown in Fig. 5 were
similar to those shown in Fig. 3 (example cells 4–6), but
nonlinear RFs were importantly different. Each nonlinear RF
contained at least one pixel with a large positive LM weight
adjacent to at least one pixel with a large negative LM weight.
The presence of this pattern in the nonlinear RF implies that
these cells responded either to the particular light/dark pattern
displayed or to the reversed pattern, as explained in METHODS

and verified in Linear and nonlinear RF interaction. These
nonlinear RFs were highly structured and significant (P �
0.05), indicating that these cells did not combine cone inputs
linearly.

Figure 6 shows temporal linear and nonlinear RFs at the
selected pixel. Linear RFs resembled those shown in Fig. 4.
Nonlinear RFs were highly structured, exhibiting mono- or
biphasic modulations of LM cone weights and smaller, usually
in-phase, S cone weight modulations. This pattern is similar to
the linear RFs of example cells 1–3 in Fig. 4. All of the
temporal nonlinear RFs in Fig. 6 were statistically significant
(P � 0.05).

We recorded from 44 blue-yellow neurons (31 dominantly
blue-ON/yellow-OFF and 13 dominantly blue-OFF/yellow-ON

cells). Receptive fields of these 44 neurons ranged in eccen-
tricity from 2.3 to 7.7° (mean: 5.3°). Twenty-seven (60%) of
these neurons had significant nonlinear RFs (P � 0.05). This is
strong evidence against the hypothesis that this class of V1 cell
combines cone inputs linearly. Importantly, this is true irre-
spective of any static nonlinearity (e.g., spike thresholds) that
occurs after a linear combination of cone signals (see METH-
ODS). Neither chromatic aberration nor eye movements can
account for this result (see Eye movements and Chromatic
aberration). Similar results were obtained when we omitted the
first 2 s of each trial from the analysis, suggesting that the
nonlinear RFs we observed were not due to transient processes
associated with the onset of visual stimulation (data not
shown).

Cone weights of linear and nonlinear RFs

Linear and nonlinear RFs in Fig. 6 had strikingly different
spectral signatures: linear RFs were S-dominated whereas
nonlinear RFs were LM-dominated. To quantify the color
tuning of linear and nonlinear RFs, we considered the single
pixel selected by the criteria provided in METHODS, thereby
minimizing errors incurred by pooling across differently tuned
subunits. Figure 7A illustrates the procedure we used to esti-
mate cone weights. First, we calculated temporal linear and
nonlinear RFs in the space of monitor phosphors. These tem-
poral RFs were approximately separable in color and time, so
we used a singular value decomposition to find the R, G, B
triplet that best characterized the color tuning (Strang 1988).
We then transformed this R, G, B triplet into S and LM cone
weights as described in METHODS.

The distribution of estimated cone weights is plotted as an
angular histogram in Fig. 7B. Linear RFs (gray wedges) had
relatively large S cone weights that were either positive or
negative and usually had an LM contribution of the opposite
sign. Nonlinear RFs (black wedges), in contrast, had large LM
weights with smaller, usually nonopponent S cone weights.

Linear and nonlinear RF interaction

Neither the linear nor the nonlinear RF, in isolation, char-
acterizes completely the responses of the neurons we studied.
Instead, each reveals a different aspect of the stimuli that
excited the cell. To explore how neural responses depended on
the stimulation of both RFs jointly, we reconstructed our
stimulus movie and, on each frame, measured the degree of
excitation to the linear and nonlinear RFs (see METHODS). We
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FIG. 3. Linear and nonlinear spatial RFs of 6 example cells. Each row is data from a single cell. Linear and nonlinear RFs are shown as grayscale maps of
S and LM cone weights and in color representing the superposition of these 2 maps. Cone weights were scaled by the SD of the cone weights computed at a
noncausal delay. This scaling equates the noise level across different linear RF maps and is an arbitrary choice for the nonlinear RF maps. Magenta dots represent
weights that were 
3 SD away from 0. Magenta dots are not plotted on nonlinear RFs as dependencies across the pixels render this analysis uninterpretable.
Prespike delays for calculation of linear and nonlinear RFs was 50, 60, 50, 70, 70, and 60 ms for the 6 example cells, respectively.
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FIG. 4. Linear and nonlinear RFs of 6 example cells. Each row is data from a single cell. Results from 4 analyses are shown: spatial linear RF (1st column),
temporal linear RF (2nd column), spatial nonlinear RF (3rd column), and temporal nonlinear RF (4th column). White boxes in spatial linear RFs indicate the
pixel selected for temporal analysis by the criteria provided in METHODS. Blue traces in the temporal plots represent S cone weights and brown traces represent
LM weights. Dashed lines in temporal plots indicate a cone weight of 0.
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FIG. 5. Linear and nonlinear RFs of 6 example nonlinear blue-yellow cells. Conventions are as in Fig. 3. Prespike delays for calculation of linear and nonlinear
RFs was 70 ms for all of the cells except cell 1 for which the delay was 60 ms.
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FIG. 6. Linear and nonlinear RFs of 6 example nonlinear blue-yellow cells. Conventions are as in Fig. 4.
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then pooled stimuli according to how strongly they excited the
linear and nonlinear RFs and calculated the responses these
stimuli produced. Repeating this process for nonoverlapping
groups of stimuli allowed us to construct a two-dimensional
response surface for each neuron that showed how neural
response depended on RF stimulation. The results of this
analysis were qualitatively similar whether we considered
spatial or temporal RFs (data shown are from the temporal
analysis).

Figure 8 shows response surfaces for the six example neu-
rons shown in Figs. 5 and 6 (cells 1, 2, etc. appear in A, B, etc.).
Within each panel, firing rates increased from bottom to top,
indicating that stimuli that activated the linear RF elicited more
spikes than stimuli that did not. Importantly, however, for any
given level of linear RF stimulation, the firing rate increased
with either positive or negative stimulation of the nonlinear
RF. The neurons thus responded well to stimuli that matched
the linear RF but even more strongly to stimuli that matched
the superposition of the linear RF and the nonlinear RF. These
composite stimuli resemble blue (or yellow) patches superim-
posed on achromatic edges.

To quantify the influence of the nonlinear RF on firing rate,
we considered responses to stimuli that excited the nonlinear
RF weakly (Fig. 8G, inset, E), and compared this response to
that driven by stimuli that excited the nonlinear RF strongly
(Fig. 8G, inset, �). Critical to this analysis, the two sets of
stimuli excited the linear RF identically. The percent change in
the firing rate between these two conditions is shown as a
histogram in Fig. 8G. On average, exciting the nonlinear RF

increased responses by 42%. The nonlinear RFs thus plays a
substantial role in driving these 27 blue-yellow neurons.

In principle, response surfaces could be difficult to describe
succinctly, but we found that each was determined almost
perfectly from its one-dimensional (1-D) marginals. For each
response surface, we fit a separable model by multiplying
together the 1-D X and Y marginal functions, so that each row
(column) in the fitted response surface was constrained to be a
scaled version of every other row (column). Correlations be-
tween model fits and empirical response surfaces were quite
high (mean r: 0.995, SD: 0.005), indicating that the responses
of these neurons can be approximated as the product of two
signals, each of which is the nonlinearly transformed output of
a linear filter (the nonlinearity assigned to each filter is pro-
vided by the corresponding marginal function of the response
surface). For comparison, we also considered a model in which
the response of the neuron was given by the sum of two signals
(i.e., the rows and columns of the fitted response surface were
constrained to be shifted, as opposed to scaled, versions of each
other). This model also fit the data quite well, but demonstrably
less well than the separable model (data not shown).

Absence of nonlinear RFs in LGN neurons

Neurons in the lateral geniculate nucleus (LGN) have been
shown to integrate cone inputs nearly linearly (Derrington et al.
1984), thus providing a natural control on our analysis method.
We studied 78 multiunit sites from the LGN of a fourth
monkey in search of blue-yellow neurons. Eight of these sites
were dominated by one or two single units, yielded clear, stable

FIG. 7. A: procedure for estimating cone
weights from temporal linear and nonlinear
RFs (see text for details). SVD indicates the
singular value decomposition. [R,G,B to LM,S]
is a matrix multiplication (see METHODS). B:
angular histogram of normalized cone weights
of linear (gray) and nonlinear (black) RFs. S
and LM cone weights were derived from each
linear and nonlinear RF and normalized so that
their squares summed to 1. Each pair of S and
LM cone weights can thus be represented as a
2-element vector the angle of which reveals the
relative S to LM cone weight. This plot shows
the distribution of the angles of these vectors,
or equivalently, the arctangent of the normal-
ized S and LM cone weights. The radius of
each wedge corresponds to the number of cells
in each angular bin. The relative sign of S and
LM cone weights is meaningful for both linear
and nonlinear RFs, but the overall sign of the
nonlinear RF is arbitrary, so nonlinear RFs are
plotted on both sides of the origin.
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linear RFs, and exhibited blue-yellow opponency. Here we
consider these eight sites. Importantly, multiunit recording is
conservative with respect to the hypothesis we are testing:
pooling spikes from heterogeneously-tuned neurons would be
expected to increase the significance of the nonlinear RF. RF
eccentricities ranged from 4.2 to 12° (mean: 7.9°). The spatial
substructure of parafoveal LGN RFs is too fine to be resolved
by our display (Fig. 1), so we tested LGN cells with a 3° diam
disk whose color modulated randomly with statistics identical
to a single pixel in the 8 � 8 grid.

Figure 9, A-C, shows linear and nonlinear RFs from three
representative LGN recordings. Every linear RF exhibited a
consistent, short-latency blue-yellow signal, and every nonlin-
ear RF was unstructured and not significant (P 
 0.05). To
control for the possibility that spatially uniform stimulation
never reveals nonlinear RFs, we also stimulated 25 blue-yellow
V1 neurons with the 3° diam disk. Twenty-one of these
neurons had significant nonlinear RFs. Linear and nonlinear
RFs obtained from V1 neurons under spatially uniform stim-
ulation often resembled those obtained with spatially-varying

stimulation (Fig. 9, D–F). The absence of nonlinear RFs in
LGN cells was therefore not a trivial consequence of uniform
spatial stimulation. We conclude that our analysis method does
not create nonlinear RFs where none exist, and that the inter-
action between opponent and nonopponent signals that we
have documented in V1 is unlikely to reflect signal integration
occurring at the level of the LGN or retina.

Eye movements

Monkeys in this study were trained to maintain stable
fixation, and trials were terminated whenever the eye left a
1 � 1° electronically defined window surrounding the fixation
point. Small eye movements within this window, however,
caused the stimulus to shift on the retina.

Critically for this study, fixational eye movements would not
be expected to give rise to the nonlinear RFs we observed. Eye
movements can create nonlinear RFs by moving individual
pixels among subunits, but the color signature of such nonlin-
ear RFs will reflect the combination of the subunits from which

FIG. 8. A–F: firing rate of neurons in Fig. 3 as a
function of linear and nonlinear RF excitation. These
neurons respond most strongly to stimuli that excite the
linear RF positively and the nonlinear RF either positively
or negatively. Color bars at the top of each panel indicate
firing rate ranges. G: histogram of firing rate increases that
result from nonlinear RF stimulation. E, responses to stim-
uli that did not excite the nonlinear RF and �, those that
did compared after subtraction of baseline firing rate (�).
Each neuron had different linear and nonlinear RFs, but on
average, E corresponded to a 46 � 8% (mean � SD)
change in S cone contrast and an 8 � 5% change in LM
contrast (of opposite sign), and � corresponded to a 38 �
13% change in S cone contrast and a 14 � 6% change in
LM contrast.
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it arose. For example, sequential activation of blue and yellow
subunits by a single pixel could give rise to a blue-yellow
nonlinear RF because some spike-triggered stimuli will be blue
and others will be yellow. The nonlinear RFs we observed had
a color signature that was absent in the linear RFs and thus did
not arise from shifts of the stimulus on the retina. Moreover,
significant nonlinear RFs were observed with spatially uniform
stimulation of V1 cells (e.g., Fig. 9, D–F). Because this
stimulus lacked spatial contrast within the spatial extent of the
RF, eye movements would not be expected to alter visual
responses whether reflected in the linear nor nonlinear RF.

The location of the stimulus on the screen and the position
of the eye in the head can be used to compute the position of
the stimulus on the retina. Our measurements thus allowed us,
in principle, to compensate for changes in fixation position.
The quality of our eye position records, however, did not
permit such compensation consistently. Our eye position esti-
mates, although accurate over short time scales (noise �0.01°),
were inaccurate over long time scales during which slow drifts
changed estimated eye position over as much as several tenths
of a degree (
1 pixel width) (Read and Cumming 2003; Tsao
et al. 2003). Some of the slow changes in estimated eye
position were measurement artifacts related to small changes in
room temperature.

Within individual trials, fixation could be measured accu-
rately and was reasonably stable. Seventy percent of eye-
position samples in individual trials were confined to an area
the size of a single stimulus pixel (0.22 � 0.22°). The SD of

eye position (averaged across horizontal and vertical channels)
within trials was 0.07°. As expected, this SD depended on trial
duration (r 	 0.28, P � 0.0001) because small displacements
in eye position accumulate over time. However, eye position
was only slightly more variable (SD: 0.08°) for trials that lasted
the maximal duration (10 s). Seventy-eight percent of saccades
within the fixation window were smaller than the width of a
single stimulus pixel (mean saccade amplitude: 0.16°, SD:
0.10°). Eye movements within individual trials thus affected
our spike-triggered analyses negligibly.

Estimating changes in eye position between trials is more
difficult than estimating changes within trials because of slow
drifts in the eye position signal. To estimate between-trial
fixation variability, we measured differences in median eye
position on consecutive trials, between which relatively little
drift presumably occurred (Read and Cumming 2003). Fifty-
percent of the median differences lay within the single pixel
boundary. The SD of the median differences was 0.14°. We
conclude that measured fixation positions were reasonably
consistent across consecutive trials, although slow drifts in
estimated eye position undoubtedly contributed to the mea-
sured variability. The fact that many of the linear RFs that we
studied (e.g., Figure 3) had distinguishable, adjacent ON and OFF

subunits attests further to the stability of fixation.
Although eye movements would not be expected to lead

artifactually to the nonlinear RFs we studied, the combination
of eye movement and the spatial coarseness of our stimulus
undoubtedly obscured high-frequency structure in the spatial

FIG. 9. Linear and nonlinear RFs from 3 multiunit sites
in the LGN; (A–C) and from 3 single units in V1 (D–F).
- - -, cone weights of 0. Nonlinear RFs for all LGN record-
ings were unstructured and not significant (P 
 0.05).
Nonlinear RFs for all V1 recordings shown are significant
(P � 0.05).
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RFs we studied. One specific possibility is that a spatially
phase-specific LM signal may coexist with the nonlinear LM
signal we report here, but that this signal may have been of
sufficiently high spatial frequency to be masked in our linear
RFs. Experiments in anesthetized animals could test this hy-
pothesis by providing higher resolution spatial maps of linear
and nonlinear RFs.

Chromatic aberration

Any stimulus that varies spatially and spectrally is subject to
chromatic aberration that shifts (transverse chromatic aberra-
tion) and defocuses (axial chromatic aberration) light in a
wavelength dependent fashion. Several lines of evidence indi-
cate that our results did not arise trivially from chromatic
aberration. First, both axial and transverse chromatic aberra-
tions over the spatial extent of our stimulus can be modeled as
linear transformations (Marimont and Wandell 1994; Thibos et
al. 1990). Linear transformation of the stimulus might distort
linear RF estimates but would not manifest as a significant
nonlinear RF in a linear neuron. Second, blue-yellow V1 cells
stimulated with a uniformly-colored 3° diam disk yielded
significant, LM-dominated nonlinear RFs (Fig. 9, D–F). Chro-
matic aberration should not occur within the spatial extent of
the RF with this stimulus because spatial shifts caused by
transverse chromatic aberration would be expected to be only
�0.04° (Thibos et al. 1990), which is small relative to the
distance from the stimulus edge to the RF. Third, the power
spectral density of our stimulus was dominated by low fre-
quency components. Approximately 60% of the power in our
stimulus that was in the optically relevant range (�45 cycles/°)
was �2 cycles/° and an additional 20% lay between 2 and 5
cycles/°. Most of the power in our stimulus was thus affected
minimally by axial chromatic aberration (Marimont and Wan-
dell 1994). Fourth, although chromatic aberration was present
to the same degree in all experiments, we found many cells
without significant nonlinear RFs indicating that one is not an
obligatory consequence of the other. Finally, although signif-
icant nonlinear RFs were common among blue-yellow cells,
some lacked it (Fig. 3, cells 4–6) indicating that a significant
nonlinear RF is not a necessary consequence of sensitivity to
blue-yellow modulation.

D I S C U S S I O N

We studied a class of neurons in macaque V1 with linear
RFs that exhibited S and LM opponency. Principal components
analysis on spike-triggered stimuli revealed that, in addition to
being color-opponent, many of these cells responded to spa-
tiotemporal LM contrast irrespective of polarity. Joint consid-
eration of both response properties revealed that firing rates
could be modeled as a product of opponent and nonopponent
signals. Control experiments showed that this interaction be-
tween opponent and nonopponent signals was not inherited
from the LGN, and, along with arguments provided in the
RESULTS, argue against an artifactual origin from fixational eye
movements or chromatic aberration. In this DISCUSSION, we
relate our results to previous findings, consider the neural
substrate underlying the responses we observed, describe some
promising extensions of the analysis technique used in this
study, and speculate on the perceptual significance of the V1
responses we observed.

Gain control in V1

The interaction we observed between opponent and nonop-
ponent signals is consistent with gain modulation. Gain control
in V1 has been studied intensively and can account for a host
of nonlinear response properties (Albrecht and Geisler 1991;
Heeger 1992). The phenomenon we studied, however, differs
from the classic form of gain control that is thought to imple-
ment contrast normalization. First, classical contrast gain con-
trol is suppressive (Albrecht et al. 1984; Bonds 1991; Schwartz
et al. 2001), whereas the phenomenon we studied was facili-
tatory. Second, suppressive contrast gain control is a nearly
ubiquitous property of V1 neurons (Bonds 1991), but we found
evidence for excitatory nonlinear interactions in only a small
subset of neurons.

Similarly, the nonlinear RFs we observed are not an ex-
pected consequence of nonlinear, LM-tuned surrounds. First,
unlike the phenomenon we studied, nonlinear surrounds are
usually suppressive (Solomon et al. 2004; Ts’o and Gilbert
1988). Second, the energy in the nonlinear RF was usually
spatially coincident with the center of the linear RF, not the
surrounding area (see Fig. 5). Third, the spatial profile of most
nonlinear RFs was an edge, which is inconsistent with any
model in which the LM mechanism gives only one sign of
response (e.g., ON or OFF).

Relationship to previous studies

Nonlinear color tuning has been documented in previous
studies of V1 (Cottaris and DeValois 1998; DeValois et al.
2000; Hanazawa et al. 2000; Lennie et al. 1990; Solomon et al.
2004; Wachtler et al. 2000). Modeling attempts, however, have
focused on a restricted class of nonlinear models, that is: linear
summation of cone inputs followed by a static nonlinearity
(Eq. 7 in METHODS). Although this class of models is a signif-
icant improvement over the strictly linear model, it qualita-
tively fails to explain the color tuning of the blue-yellow
neurons we studied.

Johnson et al. (2001) found that color-luminance cells that
receive strong S cone input tend to prefer high spatial fre-
quency luminance gratings but relatively low spatial frequency
S cone isolating gratings (see also Thorell et al. 1984, Fig.
12B). These neurons may overlap with the population we
studied, in which case this counterintuitive result can be
understood in terms of the spatial frequency tuning of the linear
and nonlinear RFs. As shown in Fig. 5, nonlinear RFs tended
to be tuned for higher spatial frequencies than linear RFs. Thus
an S cone isolating grating, which should stimulate primarily
linear RFs, would drive the cells maximally at a relatively low
spatial frequency, and a luminance grating, which should
stimulate primarily nonlinear RFs, would drive the cells max-
imally at a relatively high spatial frequency. We would predict
that these cells would respond to a drifting S cone isolating
grating with a modulated response and a luminance grating
with a relatively unmodulated response.

Stimulation of V1 neurons with large, uniformly colored
stimuli leads to color-tuning dynamics in some neurons (Cot-
taris and DeValois 1998). We observed qualitatively similar
color-tuning dynamics in our data (e.g., Fig. 9D). These dy-
namics might be expected if opponent and nonopponent signals
act on the cell with different latencies. Indeed, under spatially
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uniform stimulation, nonlinear RFs (which were dominantly
nonopponent) tended to peak before linear RFs (which were
dominantly opponent). This explanation, however, cannot ac-
count for the findings of Cottaris and DeValois First, the
stimulus used by Cottaris and DeValois did not vary in pho-
tometric luminance, so their data may have been affected little
by the nonopponent signal we studied. Second, the temporal
pattern of responses observed by Cottaris and DeValois was
opposite what we would expect from the current results.
Cottaris and DeValois found that many cells carried long-
latency blue-yellow opponent signals, whereas we would have
predicted a short-latency blue-yellow signal, preceded by the
projection of the nonopponent signal onto the isoluminant
plane. The color-tuning dynamics observed by Cottaris and
DeValois is therefore unlikely to arise from the nonlinear
interaction we studied.

Neural substrate of color interaction

We do not know the pathways by which the opponent and
nonopponent signals that we studied reach V1, but previous
physiological and anatomical studies suggest possibilities. For
instance, the magnocellular pathway could provide an LM-
dominated signal (via spiny stellate cells in layer 4C�) that
modulates the gain of blue-yellow signals carried by the
koniocellular (and possibly parvocellular) afferents to layers
4A and 2/3 of V1, as schematized in Fig. 10 (Allison et al.
2000; Chatterjee and Callaway 2003; Lachica et al. 1993;
Nealey and Maunsell 1994; Schiller and Malpeli 1978; Yabuta
et al. 2001). In this scenario, we would expect that ablation of
magnocellular neurons would eliminate nonlinear RFs but
spare linear RFs.

The interaction between cone-opponent and nonopponent
signals we have documented may not be specific to a blue-
yellow system. In our study, linear RFs showed blue-yellow
opponency and nonlinear RFs showed nonopponent sensitivity.
This dissociation suggests that the mechanisms underlying
linear and nonlinear RFs may have been fortuitously close to
orthogonal in the (device-specific) space in which color chan-
nels modulated independently (see METHODS). The possibility
remains that other types of color-opponent V1 neurons are
excited by LM contrast like blue-yellow neurons are, but that
opponent and nonopponent mechanisms are sufficiently non-
orthogonal in these neurons as to yield confounded linear and
nonlinear RFs under the current experimental conditions.

Extensions of the approach

In this study, we ignored all but the first principal component
of the spike-triggered stimulus distribution, but most of the
neurons we studied had multiple significant principal compo-
nents. These additional principal components did not reflect
other gain modulating signals, but rather appeared to reflect a
common underlying LM-dominated mechanism (data not
shown).

Spatially, these principal components tended to resemble
luminance edges of different orientations and spatial phases.
Temporally, principal components tended to resemble phase-
shifted versions of each other, consistent with the integration of
contrast energy in a particular temporal frequency band or the
presence of non-Poisson spiking statistics (Pillow and Simon-
celli 2003). Neither explanation is consistent with the model on
which our analysis is based (Eq. 9 in METHODS). An extension
of the model—including a second linear filtering stage after the
nonlinearity—might account for these multiple principal com-
ponents and provide a concise, biologically plausible charac-
terization of the neurons we studied (Victor 1988; Victor and
Shapley 1979).

Linear and nonlinear RFs are not expected, in general, to
reflect biologically meaningful mechanisms. Thus a general-
purpose technique for recovering the precise characteristics of
the mechanisms underlying linear and nonlinear RFs would
require additional steps (e.g., combination of linear and non-
linear RFs). Support for this idea comes from the fact that
linear and nonlinear RFs of some apparently dissimilar neurons
in our dataset spanned a similar plane in stimulus space. These
neurons may be fed by identical mechanisms that differ only in
their relative contribution to the response. Furthermore, many
response surfaces like those shown in Fig. 8 can be made more
separable with a rotation of the coordinate axes. One area for
future research is the development of techniques for finding
biologically relevant bases that span the subspace of relevant
stimuli.

PCA has the advantage of having well-understood proper-
ties, and it is closely related to the second-order Wiener kernel,
which has been used to characterize nonlinear neurons previ-
ously (Marmarelis and Marmarelis 1978). However, PCA con-
siders only second-order stimulus interactions, and it may be
misleading when applied to neurons whose responses depend
on higher-order stimulus interactions. A generalization of the
approach used in this study is to parameterize a set of stimuli,

FIG. 10. A model that accounts for the re-
sponses of the blue-yellow cells we studied. A
blue-yellow color-opponent signal (perhaps de-
rived from the koniocellular and/or parvocel-
lular pathway) is passed through a monotonic
nonlinearity, and this signal is multiplied with
a nonopponent signal (perhaps derived from
the magnocellular pathway) that has been
passed through a nonmonotonic nonlinearity.
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each of which can then be represented as a point in an abstract
stimulus space, and to characterize the neuron’s responses as
the ratio of the response-triggered stimulus density (spike-
triggered stimulus density, in our study), to the a priori stimuli
density (de Ruyter van Steveninck and Bialek 1988; Sharpee et
al. 2004). The typically high dimensionality of visual stimulus
parameterizations makes a brute force approach impractical,
but any of a number of dimensionality reduction techniques
can render the problem tractable.

Perceptual significance

Monkeys in our study were rewarded for simply fixating, so
we cannot draw firm conclusions about the relationship be-
tween the neuronal responses we recorded and color percep-
tion, but we can speculate on the relationship between our
neurophysiological results and those from human psychophys-
ics. Colored targets are more readily detected when superim-
posed on luminance pedestals (Eskew et al. 1994; Gowdy et al.
1999; Gur and Akri 1992; Hilz et al. 1974; Switkes et al. 1988).
This perceptual phenomenon may be a consequence of LM-
induced facilitation of color-opponent V1 neurons. Luminance
patterns containing sharp edges improve chromatic detection
profoundly (Gowdy et al. 1999), and such patterns would be
expected to activate the nonlinear RFs we observed particularly
strongly (Fig. 5). Chromatic disks are most easily detected �20
ms after a spatially-aligned luminance flash (Eskew et al.
1994), and in our experiments with uniformly-colored disks,
the LM signal in the nonlinear RF often led the blue-yellow
signal in the linear RF by approximately this latency (Fig. 9,
D–F).

A facilitatory interaction between color and luminance could
provide an efficient means to estimate surface reflectance.
Changes in surface reflectance occur preferentially at object
boundaries, which are usually marked by discontinuities in
both luminance and chromaticity (Fine et al. 2003; Kingdom
2003; Ruderman et al. 1998). Enhancement of chromatic sig-
nals at luminance edges may thus be an important step in the
computation of object color.
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