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SUMMARY

Bleomycin hydrolase (BLMH) is a neutral cysteine
aminopeptidase that has been ascribed roles in
many physiological and pathological processes, yet
its primary biological function remains enigmatic. In
this work, we describe the results of screening of a
library of fluorogenic substrates to identify non-natu-
ral amino acids that are optimally recognized by
BLMH. This screen identified several substrates
with kcat/KM values that are substantially improved
over the previously reported fluorogenic substrates
for this enzyme. The substrate sequences were
used to design activity-based probes that showed
potent labeling of recombinant BLMH as well as
endogenously expressed BLMH in cell extracts,
and in intact cells. Importantly, we identify potent
BLMH inhibitors that are able to fully inhibit endoge-
nous BLMH activity in intact cells. These probes and
inhibitors will be valuable new reagents to study
BLMH function in cellular and animal models of hu-
man diseases where BLMH is likely to be involved.

INTRODUCTION

Bleomycin hydrolase (BLMH) is a cysteine aminopeptidase that

is ubiquitously expressed in mammalian tissue (Brömme et al.,

1996). BLMH was initially discovered for its ability to inactivate

bleomycin (Umezawa et al., 1972; Schwartz et al., 1999), a

drug used extensively to treat cancer. BLMH is a cytosolic

neutral protease with a barrel-like structure composed of six

monomers of 50 kDa each (Brömme et al., 1996; O’Farrell

et al., 1999). The active sites of BLMH are located within the bar-

rel (Hibino et al., 2013). After expression, the C terminus of the

protein undergoes self-cleavage yielding an enzyme with

broad-specificity aminopeptidase activity (Joshua-Tor et al.,

1995; Zheng et al., 1998). While the physiological roles of

BLMH remain obscure, it has been suggested to be important

in several physiological and pathological processes. BLMH null

mice have reduced neonatal survival, brain pathologies (Mon-

toya et al., 2007), and a dermatitis phenotype. BLMH is involved

in the production of free amino acids as moisturizing agents in
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the skin (Kamata et al., 2009), and therefore plays an important

role in maintaining epidermal integrity (Kamata et al., 2011).

BLMH has also been shown to play a role in peptide trimming

downstream of the proteasome, and thus has a role in the

production of peptides for antigen presentation (Stoltze et al.,

2000; Kim et al., 2009); however, this role seems to be redundant

(Towne et al., 2007).

In addition to its aminopeptidase activity, BLMH has the ability

to hydrolyze homocysteine lactone, a reactive metabolite pro-

duced from methionine, which causes protein damage and

hyperhomocysteinemia and is implicated in multiple human

diseases, including Alzheimer’s disease. BLMH is implicated in

protection against homocysteine toxicity (Zimny et al., 2006;

Borowczyk et al., 2012). However, recent data showing that

another enzyme exists with higher homocysteine lactonase ac-

tivity has called into question the role for BLMH in homocysteine

detoxification (Marsillach et al., 2014). BLMHpolymorphisms are

also associated with sporadic Alzheimer’s disease (Montoya

et al., 1998; Papassotiropoulos et al., 2000). Ectopic expression

of BLMH increases processing of amyloid precursor, suggesting

a regulatory role for BLMH in the secretion of amyloid precursor

protein and b-amyloid, which are major components of Alz-

heimer’s disease-associated plaques (Lefterov et al., 2000,

2001). However, other studies have shown reduced homocyste-

ine lactonase activity in brains of Alzheimer patients that corre-

lated with a reduction in BLMH levels, thus suggesting a protec-

tive role for BLMH (Suszynska et al., 2010).

At present, BLMH aminopeptidase activity has only been

measured using fluorogenic substrates (Brömme et al., 1996;

Zimny et al., 2006). While these substrates provide a relatively

rapid and simple readout of enzyme activity, the resulting data

are often difficult to interpret because other aminopeptidases

are likely to be active toward the reported substrates (Rut

et al., 2015). Activity-based probes circumvent this problem by

covalently attaching to target enzymes, allowing direct identifi-

cation and quantification of enzyme activity (Sanman andBogyo,

2014). Furthermore, by screening substrate libraries of increased

diversity, it should be possible to identify sequences that are

optimized for BLMH and not cleaved by other aminopeptidases.

In this article, we present a screen of a diverse substrate library

made up of both natural and non-natural amino acids to identify

optimal binding elements for BLMH. Using this approach we

were able to design selective substrates, activity-based probes,

and inhibitors for BLMH. These reagents can be used for

biochemical studies of the purified enzyme as well as to monitor
–1001, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 995
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Figure 1. Screening of a Diverse Fluoro-

genic Substrate Library

(A) Diagram of the fluorogenic substrate library

screening approach.

(B) Ranking of the top BLMH substrates ordered by

kcat/KM values. The substrates containing Lys(2-

Cl-Cbz) and Cys(Bn) are effective, with activities

that are substantially higher than the best natural

amino acid.
and inhibit the endogenous protease target in cellular extracts,

intact cells, and potentially whole organisms.

RESULTS

We screened a hybrid tailored amino acid substrate library that

was recently described and used to find highly efficient sub-

strates of a number of aminopeptidases (Drag et al., 2010; Rut

et al., 2015). This library is made up of a diverse set of natural

and non-natural amino acids linked to a fluorogenic reporter

that provides a signal when the substrate is cleaved by a prote-

ase. Because bleomycin hydrolase is an aminopeptidase, we

screened the library of single amino acid-ACC (7-amino-4-car-

bamoylmethylcoumarin) substrates against the recombinant

protease (Figure 1A). Interestingly, this screen identified non-nat-

ural amino acid-containing substrates that had kcat/KM values

greater than the best natural amino acid, methionine (Figure 1B).

The top two substrates that we chose for further development

into inhibitors and active site probes were Lys(2-Cl-Cbz)-ACC

and S-benzylated cysteine.

To design activity-based probes, we choose electrophiles that

would covalently label the active site nucleophile, but that also al-

lowed incorporation of a tag that would not interfere with the free

aminogroup required for aminopeptidase recognition. Therefore,

we initially used the vinyl sulfone, since this electrophile has been

extensively applied to probes of cathepsins and also the protea-

some (Verdoes et al., 2006; Yuan et al., 2006). We synthesized a

reagent that allows introduction of a vinyl sulfone equipped with

an azide via the Horner-Wadsworth-Emmons (HWE) reaction

(Figure 2A). Diethyl (iodo)methylphosphonate was reacted with

4-aminothiophenol sodium salt to yield aminothioether 1. We
996 Chemistry & Biology 22, 995–1001, August 20, 2015 ª2015 Elsevier Ltd All rights reserve
then chloroacetylated the amine group in

1 and performed a subsequent substitu-

tion reaction to generate azide 2. Oxida-

tion of the thioether yielded sulfone 3,

which can be used as a general reagent

to make vinyl sulfone probes with a Click

handle.We converted commercially avail-

able Boc-Lys(2-Cl-Cbz)-OH (4a) andBoc-

Cys(Bn)-OH (5a) to the corresponding

Weinreb amides and reduced them to

their respective aldehydes (4c and 5c),

and reacted in the HWE olefination reac-

tion to yield the azide-labeled phenyl vinyl

sulfone inhibitors 4d and 5d. We obtained

the final Cy5 modified activity-based

probes WL1256 and WL1259 using Click

chemistry (Figure 2A).
To test the newly synthesized probes we incubated recombi-

nant BLMH (rBLMH) with increasing concentrations of each

probe, then measured labeling by SDS-PAGE analysis followed

by scanning of the gel for fluorescent-labeled protein (Figure 2B).

The labeling confirmed that both probes efficiently labeled the

recombinant protein, as indicated by the presence of a doublet

of 52 kDa corresponding to the expected size of rBLMH. The

appearance of multiple labeled species is likely due to autopro-

cessing of BLMH, as has been previously described (Zheng

et al., 1998). We next tested the limit of sensitivity of the probes

by labeling with a set probe concentration (1 mM) and decreasing

the amount of the rBLMH in the labeling reaction (Figure 2C).

Ultimately, the probe WL1259 showed the most potent labeling

of the target, and was therefore used for validation studies tar-

geting the endogenously expressed enzyme.

To confirm that our optimal probeWL1259was a viable tool for

the study of BLMH function, we performed probe labeling

studies in lysates from fibroblasts derived from wild-type (WT)

and BLMH knockout (KO) mice (Figure 2D). Importantly, these

results confirmed that the probe labeled a protein of the ex-

pected size of 52 kDa in WT lysate that was confirmed to be

native BLMH due to its absence in the KO cell lysate. We

observed similar results when the probe was used to label intact

fibroblast cells derived fromWT and BLMH KOmice (Figure 2E).

These data confirmed that the probe was able to enter cells and

label the native BLMH.

Given the success of the activity-based probes in both lysates

and intact cells, we used the same general scaffolds to generate

inhibitors of BLMH that could be used to block its function in vivo.

We initially synthesized phenyl vinyl sulfone derivatives of

Lys(2-Cl-Cbz) and Cys(Bn), as these most closely matched the
d



Figure 2. Synthesis and Evaluation of BLMH Probes Based on the Library Screening Result

(A) Synthesis scheme for the azide-intermediate and final Cy5-labeled probes.

(B) Labeling of 1 mg rBLMH over a range of probe concentrations. Samples were analyzed by SDS-PAGE followed by scanning of the gel using a flatbed laser

scanner to detect the Cy5 signal.

(C) Labeling of decreasing amounts of rBLMH using 1 mM of each of the two primary Cy5 probes.

(D) Assessment of BLMH labeling by the selected probe,WL1259 inwild-type (WT) andBLMH knockout (KO) fibroblast lysates. rBLMH is shown in the first lane as

a standard, but appears as a slightly higher molecular weight than the native enzyme due to the presence of HIS6 tag.

(E) Intact WT and BLMH KO cells were incubated with WL1259 (10 mM) for 3 hr at 37�C, then cells were lysed and analyzed by SDS-PAGE as in (D).

The location of BLMH is indicated by a star and is only visible in the WT cells treated with the probe.
activity-based probes WL1256 and WL1259. We also synthe-

sized the methyl sulfone versions of the compounds to see

whether the smaller methyl group would reduce steric hindrance

in the active site and result in greater potency. Both classes of

vinyl sulfone compounds were generated using the same chem-

istry as described for the probe synthesis (Bogyo et al., 1997).

We also synthesized the acyloxymethyl ketone (AOMK) and phe-

noxymethyl ketone (PMK) version of the lead compounds, as

these two electrophiles have been extensively used to target
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cysteine proteases (Powers et al., 2002; Kato et al., 2005; Deu

et al., 2010). The synthesis of all the potential BLMH inhibitors

is shown in Figure 3A (Wang et al., 2004). To measure the inhib-

itory potencies of the inhibitors, we used a fluorogenic substrate

assay with the reported BLMH substrate Met-AMC and rBLMH

(Figure 3B). We found that while the original vinyl sulfone com-

pounds had overall good potencies, the AOMK and PMK were

more potent inhibitors of BLMH by several orders of magnitude

(Figure 3C). These data confirm that our chosen scaffold can
–1001, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 997



Figure 3. Synthesis and Evaluation of BLMH Inhibitors

(A) Synthesis of six inhibitors for BLMH containing multiple different cysteine-reactive electrophiles.

(B) Fluorogenic substrate assay using rBLMH to determine the IC50 of inhibitors. Fluorogenic substrate experiments were performed in triplicate for each point

and were normalized. Error bars represent SEM.

(C) Calculated IC50 and ki values for the BLMH inhibitors. ki values were derived from curve fitting of the normalized data and are presented as the average ± SD.
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Figure 4. Inhibition of Endogenous BLMH in Intact Cells Using the Optimized Inhibitors

Embryonic fibroblast cells derived from wild-type (WT) and BLMH knockout (KO) mice were incubated with inhibitors at the indicated concentrations for 3 hr at

37�C. Cells were washed and lysed, and the lysate incubated with 1 mMWL1259 for 1 hr at 37�C. Samples were analyzed by SDS-PAGE followed by scanning of

the gel by a flatbed laser scanner to observe fluorescence. The box indicates the location of native BLMH that is absent in the knockout (KO) cells.
be used to yield highly potent inhibitors that are effective in the

low nanomolar concentration range.

As a final test of potency and cell permeability, we treated

intact mouse embryonic fibroblasts (MEF) or BLMH KO mouse

fibroblasts with a range of doses of each inhibitor. We then lysed

cells and labeled them with WL1259, and measured residual

activity of the native BLMH enzyme by SDS-PAGE analysis (Fig-

ure 4). We found that all of the vinyl sulfones were able to pene-

trate cells and completely inhibit BLMH, but only at micromolar

concentrations, consistent with the measured potencies of

the compounds against the recombinant enzyme. The AOMK

(WL911) and PMK (WL920) derivatives, on the other hand,

were able to completely block activity of the native BLMH at

mid to high nanomolar concentrations. Thus, we have identified

a class of highly potent inhibitors of this enigmatic protease that

can be used on intact cells to block enzyme activity and allow

studies of protease function.

SIGNIFICANCE

Although BLMH has been studied for many years, chemical

tools to study its function have not been reported. Here,

we describe activity-based probes and potent cell-perme-

able inhibitors of BLMH. Given that this enzyme has been

postulated to be involved in many physiological processes

important in human diseases, such as antigen processing,

homocysteine lactone detoxification, and Alzheimer’s dis-

ease, the inhibitors and probes presented here will be highly

valuable reagents for further study of BLMH, and can be
Chemistry & Biology 22, 995
used to shed light on its still enigmatic primary biological

functions.

EXPERIMENTAL PROCEDURES

Synthesis of Inhibitors and Probes

Detailed methods and compound characterization for all inhibitors and activ-

ity-based probes can be found in the Supplemental Materials and Methods

section.

Cloning, Expression, and Purification of rBLMH

Details regarding cloning, expression, and purification of rBMLH can be found

in the Supplemental Information.

Screening of Fluorescent Substrates

BLMH was assayed in 100 mM Tris-HCl (pH 7.5), 1 mM EDTA, and 1 mM DTT.

Assays were performed at 37�C and enzyme was incubated at 37�C for

30 min before adding substrate. Screening of the library was carried out at

2 mM substrate concentration, with 20 nM enzyme. Release of fluorophore

was monitored continuously with excitation at 355 nm and emission at

460 nm for 30–45 min, and the linear portion of the progress curve was

used to calculate velocity. All experiments were repeated at least three times.

Analysis of the results was based on total relative fluorescence units for each

substrate, setting the highest value to 100% and adjusting the other results

accordingly.

Determination of Kinetic Parameters kcat, KM, and kcat/KM

Enzyme assay conditions were as follows: 100-ml reaction with eight different

substrate concentrations. Release of ACC fluorophore was monitored as

above. Absolute ACC concentrations were calculated by the hydrolysis of

three independent ACC-coupled substrates at known concentration, and

average value was determined. Concentration of DMSO in the assay was

less than 1%.
–1001, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 999



Fluorogenic Substrate Assay

BLMH activity wasmeasured in black 96-well plates (n = 3). rBLMH (1 nM) was

incubated with inhibitors (1003 DMSO stock) in 100 mM Tris (pH 7.5), 1 mM

EDTA, and 1 mM DTT for 1 hr at 37�C. Substrate (100 mM Met-AMC) was

added, and 7-amino-4-methylcoumarin (AMC) fluorescence was monitored

every minute for 45 min at 37�C using a Biotek plate reader. Half-maximal

inhibitory concentration (IC50) values were calculated using Graphpad Prism.

ki values were calculated using the formula v/v0 = exp(�ki[I]t).

BLMH KO Mouse Generation

KO mice were bred from frozen heterozygous embryos obtained from Jack-

son. The deletion of the BLMH gene was confirmed by genotyping, and loss

of protein expression was confirmed by western blot. All animal care and

experimentation was conducted in accordance with current NIH and Stanford

University Institutional Animal Care and Use Committee guidelines.

Labeling Experiments in Cell Lysate

Mouse immortalized fibroblasts andmouse BLMH KO immortalized fibroblasts

were cultured on DMEM (Gibco) supplemented with 10% fetal calf serum

(Gibco), 100 units/ml penicillin, and 100 mg/ml streptomycin (Gibco) in a 5%

CO2 humidified incubator at 37�C. Cells were harvested, washed twice with

PBS, and permeated in lysis buffer (50 mM Tris [pH 7.4], 150 mM NaCl,

20 mM MgCl2, 0.5% NP-40, 2 mM DTT) for 20 min on ice and centrifuged at

16,100 relativecentrifugal force for20minat 4�C.Thesupernatantwascollected

and the protein content determined by bicinchoninic acid (BCA) assay (Pierce).

Total lysate (15 or 10 mg total protein) was incubated with the inhibitors (103 so-

lution inDMSO) for 1 hr at 37�C.Reactionmixtureswereboiled in Laemmli buffer

containing b-mercaptoethanol for 3 min before being resolved by 15% SDS-

PAGE. In-gel detection of fluorescently labeled proteins was performed directly

in the wet gel slabs on the Typhoon Variable Mode Imager (Amersham Biosci-

ences) using the Cy3/Tamra settings (lex 532 nm, lem 560 nm) for WL1189

andWL1192, orCy5 settings (lex 650nm,lem670nm) forWL1256andWL1259.

Labeling/Inhibition Experiments in Living Cells

Cells (50,000) were seeded and grown overnight. Stock solutions of inhibitors

or probes (1003) were added to 0.5ml ofmedium and the cells were incubated

for 3 hr at 37�C. Cells were harvested and washed twice with PBS, and lysate

was prepared as described above. The protein content was determined by

BCA assay (Pierce). For cells labeled with probe, the lysate was immediately

boiled in Laemmli sample buffer and resolved as described above. Lysates

(20 mg total protein, diluted with lysis buffer) from the inhibitor-treated cells

were labeled with 1 mMprobe D for 1 hr at 37�C, and boiled in Laemmli sample

buffer and resolved as described above. Staining of the gel with Coomassie

brilliant blue was used to confirm equal protein loading.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Materials and Methods and

can be found with this article online at http://dx.doi.org/10.1016/j.chembiol.

2015.07.010.
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L.B., Kalbacher, H., Stevanovic, S., Rammensee, H.G., and Schild, H.

(2000). Two new proteases in the MHC class I processing pathway. Nat.

Immunol. 1, 413–418.

Suszynska, J., Tisonczyk, J., Lee, H.G., Smith, M.A., and Jakubowski, H.

(2010). Reduced homocysteine-thiolactonase activity in Alzheimer’s disease.

J. Alzheimers Dis. 19, 1177–1183.

Towne, C.F., York, I.A., Watkin, L.B., Lazo, J.S., and Rock, K.L. (2007).

Analysis of the role of bleomycin hydrolase in antigen presentation and the

generation of CD8 T cell responses. J. Immunol. 178, 6923–6930.
Chemistry & Biology 22, 995–
Umezawa, H., Takeuchi, T., Hori, S., Sawa, T., and Ishizuka, M. (1972). Studies

on the mechanism of antitumor effect of bleomycin on squamous cell carci-

noma. J. Antibiot. 25, 409–420.

Verdoes, M., Florea, B.I., Menendez-Benito, V., Maynard, C.J., Witte, M.D.,

van der Linden, W.A., van den Nieuwendijk, A.M., Hofmann, T., Berkers,

C.R., van Leeuwen, F.W., et al. (2006). A fluorescent broad-spectrum protea-

some inhibitor for labeling proteasomes in vitro and in vivo. Chem. Biol. 13,

1217–1226.

Wang, D., Schwinden, M.D., Radesca, L., Patel, B., Kronenthal, D., Huang,

M.H., and Nugent, W.A. (2004). One-carbon chain extension of esters to

a-chloroketones: a safer route without diazomethane. J. Org. Chem. 69,

1629–1633.

Yuan, F., Verhelst, S.H., Blum, G., Coussens, L.M., andBogyo, M. (2006). A se-

lective activity-based probe for the papain family cysteine protease dipeptidyl

peptidase I/cathepsin C. J. Am. Chem. Soc. 128, 5616–5617.

Zheng, W., Johnston, S.A., and Joshua-Tor, L. (1998). The unusual active site

of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase,

and peptide ligase. Cell 93, 103–109.

Zimny, J., Sikora, M., Guranowski, A., and Jakubowski, H. (2006). Protective

mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

J. Biol. Chem. 281, 22485–22492.
1001, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 1001

http://refhub.elsevier.com/S1074-5521(15)00260-4/sref19
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref19
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref19
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref20
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref20
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref20
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref20
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref21
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref21
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref22
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref22
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref22
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref22
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref23
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref23
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref23
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref23
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref24
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref24
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref24
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref25
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref25
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref25
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref26
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref26
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref26
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref27
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref27
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref27
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref27
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref27
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref28
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref28
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref28
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref28
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref29
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref29
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref29
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref30
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref30
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref30
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref31
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref31
http://refhub.elsevier.com/S1074-5521(15)00260-4/sref31

	Design and Synthesis of Activity-Based Probes and Inhibitors for Bleomycin Hydrolase
	Introduction
	Results
	Significance
	Experimental Procedures
	Synthesis of Inhibitors and Probes
	Cloning, Expression, and Purification of rBLMH
	Screening of Fluorescent Substrates
	Determination of Kinetic Parameters kcat, KM, and kcat/KM
	Fluorogenic Substrate Assay
	BLMH KO Mouse Generation
	Labeling Experiments in Cell Lysate
	Labeling/Inhibition Experiments in Living Cells

	Supplemental Information
	Acknowledgments
	References


