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2Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford,
CA 94305, USA
3Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
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SUMMARY

The marine natural product symplostatin 4 (Sym4)
has been recognized as a potent antimalarial agent.
However, its mode of action and, in particular, direct
targets have to date remained elusive. We report
a chemical synthesis of Sym4 and show that Sym4-
treatment of P. falciparum-infected red blood cells
(RBCs) results in the generation of a swollen food
vacuole phenotype and a reduction of parasitemia
at nanomolar concentrations. We furthermore dem-
onstrate that Sym4 is a nanomolar inhibitor of
the P. falciparum falcipains in infected RBCs, sug-
gesting inhibition of the hemoglobin degradation
pathway as Sym4’s mode of action. Finally, we
reveal a critical influence of the unusual methyl-
methoxypyrrolinone (mmp) group of Sym4 for potent
inhibition, indicating that Sym4 derivatives with
such a mmp moiety might represent viable lead
structures for the development of antimalarial falci-
pain inhibitors.

INTRODUCTION

Malaria is a devastating disease that affects approximately

215 million patients annually, among whom around 650,000

die (WHO, 2011). The spread of the disease can normally be

controlled by a combination of vector control and chemo-

therapy. However, there is widespread resistance of the malaria

parasite to most front-line therapeutics. In recent years, an

emergence of resistance against artemisinin-based combination

therapy, which is the standard of care recommended by the

WHO for uncomplicated malaria, has furthermore been noted

in Southeast Asia (Dondorp et al., 2009). Consequently, alterna-

tive chemotherapeutic strategies for combating malaria are

required at a constantly increasing rate (Guiguemde et al.,

2012; Wells et al., 2009).
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Due to an impressive structural diversity in combination with

often potent bioactivities, natural products have proven to

be valuable lead structures for drug discovery (Mayer et al.,

2010). Their further development into drugs is, however, often

hampered by a lack of knowledge of their mode of action.

Consequently, several strategies for the identification of the

direct targets of bioactive natural products have been developed

in the past few years (Lomenick et al., 2011; Rix and Superti-

Furga, 2009). Among them, proteome labeling strategies such

as activity-based protein profiling (ABPP) have evolved into

reliable tools for the identification of protein targets of potentially

bioreactive natural small molecules (Böttcher et al., 2010;

Cravatt et al., 2008; Deu et al., 2012; Heal et al., 2011; van der

Hoorn et al., 2004).

In 2009, the cyanobacterial secondarymetabolites symplosta-

tin 4 (Sym4, Figure 1A) and gallinamide A were independently

isolated from the species Symploca sp. and Schizothrix sp.,

respectively (Linington et al., 2009; Taori et al., 2009).

Subsequent total syntheses of these two natural products and

structural characterizations revealed that both compounds are

in fact identical (Conroy et al., 2010, 2011). Subsequent biolog-

ical evaluations of Sym4 demonstrated their potent antimalarial

properties: In fact, gallinamide A (and, therefore, Sym4), as

well as three chemically synthesized diastereomers that differed

only in the stereochemistry of their N-terminal isoleucine residue,

turned out to be potent nanomolar growth inhibitors of the

malaria parasite P. falciparum (strain 3D7 and W2, IC50s of

36–100 nM) (Conroy et al., 2010, 2011; Linington et al., 2009).

Notably, no lysis of red blood cells (RBCs) was observed during

Sym4 treatment even at the highest tested concentrations

(>25 mM) (Conroy et al., 2010), indicating that its antiparasitic

effect is not due to permeabilization of the RBC membrane.

The molecular basis of this antimalarial activity, however, re-

mained elusive.

Sym4 (Figure 1A) thereby displays several structural features

that are only rarely found in natural products. For example,

Sym4 features a (4S)-amino-(2E)-pentenoic acid that is linked

with a methyl-methoxypyrrolinone (mmp) unit at its C-terminal

end and an isocaproic acid moiety involved in an ester bond
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Figure 1. Structure and Synthesis of Sym4 and Sym4 Derivatives

(A) Molecular structure of the parent natural product symplostatin 4 (Sym4).

(B) Reagents and conditions: (a) 1. NH(OMe)Me*HCl, Et3N, DCC, DCM; 2. LiAlH4, Et2O, (EtO)2P(O) = CHCOOMe, DCM, 59%; (b) 1. LiOH, THF/MeOH/H2O; 2.

HAlaOMe*HCl, HOBt, HBTU, DIPEA, DCM, 46%; (c) 1. LiOH, THF/MeOH/H2O; 2. Meldrum’s acid, EDC, DMAP, DCM; 3. CH3CN, reflux; 4. PPh3, DEAD, MeOH,

THF, 90%; (d) 1. TFA/DCM (1:1); 2. BocLeuOH, HOBt, HBTU, DIPEA, CH3CN, 99% (4), 85% (5); (e) 1. SOCl2, MeOH/DCM; 2. BocNMeIleOH, DCC, DMAP, DCM,

55%; (f) TFA/DCM (1:1); 2. MeI, DIEA, DMF, 38%; (g) TFA/DCM (1:1); 2. Propargyl bromide, DIEA, CH3CN, 63%; (h) 1. LiOH, THF/MeOH/H2O; 2. 4 (after cleavage

with TFA/DCM [1:1]), HBTU, HOBt, DIPEA, CH3CN, 39% (Sym4mmp/Ala), 53% (hSym4mmp/Ala); (i) 1. LiOH, THF/MeOH/H2O; 2. 5 (after cleavage with TFA/

DCM [1:1]), HBTU, HOBt, DIPEA, CH3CN, 51% (Sym4), 64% (hSym4); (j) RhN3, CuSO4, TBTA, TCEP, H2O, 23% (RhSym4), 67% (RhSym4mmp/Ala).
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with an N-terminally dimethylated isoleucine residue. The

Michael system in the (4S)-amino-(2E)-pentenoic acid unit is,

thus, potentially bioreactive (Drahl et al., 2005); in fact, covalently

binding cysteine protease inhibitors, proteasome as well as

GAPDH inhibitors, with such Michael acceptor units have been

reported (Clerc et al., 2009a, 2009b; Groll et al., 2008; Kaschani

et al., 2012; Powers et al., 2002). InSym4, this chemical moiety is

uniquely linked to a highly rigid mmp group, which could influ-

ence the bioreactivity and/or target specificity of this natural

product.

The favorable biological activities and intriguing structural

features of Sym4 raise the question of the underlying mode of

action of this antimalarial natural product. To this end, an eluci-

dation of the direct molecular target(s) and of the structural

determinants for bioactivity is highly desirable. Therefore, in

the present study, we chemically synthesized Sym4 and a set

of analogs and characterized their antimalarial properties. In

addition, we identified falcipains as Sym4’s molecular targets

and investigated the role of the mmp group for bioactivity.

RESULTS

Chemical Synthesis of Sym4 and its Derivatives
In order to obtain the required chemical probes for the target

identification studies as well as for the synthesis of Sym4

derivatives lacking the mmp group, we devised a convergent,

fragment-based approach that was used to synthesize Sym4

as well as C- and N-terminally modified Sym4 derivatives (Fig-

ure 1; Supplemental Experimental Procedures available online).

To this end, we retrosynthetically divided Sym4 and the corre-

sponding derivatives into two fragments, i.e., an N-terminal

depsipeptide moiety and a C-terminal tripeptide residue. Such

an approach is beneficial because a ‘‘combinatorial’’ coupling

of differentlymodifiedN- andC-terminal fragments allowsan effi-

cient, cost-effective, and rapid generation of various Sym4

derivatives.

With this plan in mind, we started our synthesis with the

generation of two different C-terminal fragments that varied in

the presence or absence of the mmp group (Figure 1B). Accord-

ingly, Boc-Ala-OH was converted to an a,b-unsaturated methyl

ester 1 in 59% yield using a protocol introduced by Pollini and

coworkers (Benetti et al., 2002). In the next step, ester 1 was

deprotected using lithium hydroxide and coupled with alanine

methyl ester hydrochloride to obtain dipeptide intermediate

2. Dipeptide 2 was deprotected C-terminally with lithium

hydroxide and the resulting intermediate was coupled with

Meldrum’s acid, yielding a highly reactive enol intermediate

that rearranged into a pyrrolidine-2,4-dione moiety upon reflux

in acetonitrile. The use of Mitsunobu conditions (DEAD, meth-

anol, and triphenylphosphine) then transformed this pyrroli-

dine-2,4-dione into the desired mmp-modified dipeptide 3 in

90% yield (Patino et al., 1992). The final C-terminal tripeptide

building block 5 was then obtained in 85% yield by Boc depro-

tection of 3, followed by a coupling step with Boc-Leu-OH and

HBTU/HOBt activation and acetonitrile as the solvent (Jou et al.,

1997). In contrast, the tripeptide building block 4 that lacks

a mmp group but features, instead, an alanine residue was

obtained by acidic Boc deprotection of 2 and subsequent

coupling of the free amine to Boc-Leu-OH, again with
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HBTU/HOBt activation and acetonitrile as the solvent (Jou

et al., 1997).

The two different N-terminal depsipeptide fragments—i.e.,

one building block with an N-dimethylated isoleucine residue

(7) and the other one with an N-methyl-propargyl-modified

isoleucine moiety (8)—were synthesized next. To this end,

(S)-2-hydroxy-isocaproic acid was converted into a methyl

ester and coupled with N-methylated Boc-isoleucine, thereby

yielding the desired depsipeptide 6. The Boc group was cleaved

and the resulting intermediate modified at its N-terminal amino

group with either a methyl (7) or a propargyl group (8).

For fragment assembly, the corresponding N- and C-terminal

building blocks were then coupled with each other.

Accordingly, the N-terminal dipeptide fragments 7 and 9 were

first C-terminally deprotected by saponification with lithium

hydroxide and then directly coupled to the Boc-deprotected

C-terminal tripeptide fragments 4 or 5, using HBTU/HOBt

activation. This approach delivered the desired natural product

Sym4 (51%) and the derivatives for structure-activity rela-

tionship studies (i.e., the alkyne-tagged derivative hSym4

[64%] as well as the corresponding Sym4mmp/Ala [39%]

andhSym4mmp/Ala [53%] derivatives without the mmp group).

Finally, the propargyl-modified analogs hSym4 and

hSym4mmp/Ala were tagged with a rhodamine fluorophore,

using a Cu+-mediated Huisgens [3+2] cycloaddition and Rh-N3

(Kolb et al., 2001; Speers et al., 2003). This approach resulted

in the generation of two fluorescent probes RhSym4 and

RhSym4mmp/Ala that were later used in the ABPP experiments.

Biological Assays Reveal the Critical Role of the mmp
Group of Sym4 for Antimalarial Activity
With these compounds in hand, we first evaluated the effect of

Sym4 and Sym4mmp/Ala on malaria parasite replication during

the erythrocytic cycle. To this end, a culture of P. falciparum

D10 parasites at ring stage and 2% parasitemia was treated

for 75 hr (i.e., one and a half life cycles) with different concentra-

tions of Sym4 and Sym4mmp/Ala (Figure 2A). After 75 hr, the

parasites reached schizont stage with completed DNA re-

plication, thereby allowing an efficient differentiation between

infected and noninfected RBCs via propidium iodide staining

and subsequent parasitemia quantification via flow cytometry

as described previously (Deu et al., 2010). Sym4 (EC50 =

0.7 ± 0.2 mM) was 40-fold more potent than Sym4mmp/Ala

(EC50 = 27 ± 7 mM), indicating that the C-terminal mmp group

significantly contributes to the antiparasitic activity of this

compound.

In order to better understand the mechanism of action of

Sym4, we next investigated whether treatment with these

compounds induces a specific phenotype. To this end, ring

stage parasites were treated with different concentrations of

Sym4 and Sym4mmp/Ala. After 24 hr, their morphology was

visualized by Giemsa-stained thin blood smears. In this assay,

cells treatedwith 0.1 mMSym4 already showed a distinct swollen

food vacuole phenotype (Figure 2B, upper panel). On the other

hand, a 100-fold higher concentration of Sym4mmp/Ala was

required to cause the same effect (Figure 2B, lower panel). In

many cases, such a phenotype is caused by accumulation of

nondigested hemoglobin or oligopeptides in the food vacuole,

generally due to inhibition of proteases involved in this pathway
Elsevier Ltd All rights reserved



Figure 3. Labeling Pattern of RhSym4 and RhSym4mmp/Ala

Labeling of intact parasites with RhSym4 and RhSym4mmp/Ala. Purified

schizonts were pretreated with 10 mM of the nonfluorescent compounds

Sym4, hSym4, Sym4mmp/Ala, hSym4mmp/Ala, or DMSO. This was fol-

lowed by 1 hr incubation with 10 mM RhSym4 or RhSym4mmp/Ala. The

labeling reaction was stopped by boiling the samples in gel electrophoresis

loading buffer. Proteins were resolved by SDS-PAGE and fluorescent proteins

were visualized with a flatbed fluorescence scanner. The figure was assem-

bled using two regions of the same gel. Lanes irrelevant to the conclusion were

omitted (indicated by white box).

See also Figures S3 and S4.

Figure 2. Comparison of the Biological Activities of Sym4 and

Sym4mmp/Ala

(A)Sym4 inhibits P. falciparum growth at ring stage with an EC50 = 0.7 ± 0.2 mM

and thus at significantly lower concentrations than Sym4mmp/Ala (EC50 = 27 ±

7 mM). Error bars indicate SD from three independent experiments.

(B) Sym4 induces a swollen food vacuole phenotype (indicated by arrows)

at concentrations as low as 0.1 mM, thereby indicating inhibition of the

hemoglobin degradation pathway (Rosenthal, 2004, 2011). Intriguingly,

Sym4mmp/Ala, the Sym4 derivative with alanine instead of the methyl-

methoxypyrrolinone unit, requires concentrations of 10 mM to achieve the

same phenotype.

See also Figure S1.
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(Rosenthal, 2004, 2011). In fact, two distinct food vacuole

defects have been reported in the literature: (1) A red swollen

food vacuole that is observed when proteases involved at the

initial stages of hemoglobin degradation are inhibited (falcipains

2/20/3). This results in an accumulation of undigested hemo-

globin that still contains the heme group (red color). (2) A clear

swollen food vacuole was recently reported due to an inhibition

of aminopeptidases (Harbut et al., 2011), which does not block

the initial breakdown of hemoglobin but results in the accumula-

tion of undigested peptides (clear). In the case of Sym4 treat-

ment, we observed a red food vacuole defect, which indicates

that Sym4 blocks the initial stages of hemoglobin degradation.

We did not observe lysis of RBCs with either of the two

compounds, which is in accordance with previously published

data (Conroy et al., 2010). Finally, a dead phenotype was

observed at 100 mM (Figure 2B). This is most likely due to

a general toxic effect caused by the reactivity of the (4S)-

amino-(2E)-pentenoic acid unit found in this class of compounds.

To determine whether Sym4 had any effect on parasite egress

from infected RBCs or erythrocyte invasion, we then treated

trophozoites for 24 hr with different concentrations of Sym4

and analyzed the parasites morphology by Giemsa-stained

thin blood smears (Figure S1). No effects were observed below
Chemistry & Biology 19, 1546–155
10 mM. However, at concentration of 10 mM and above an accu-

mulation of mature schizonts was observed (Figure S1). This

effect was not permanent as these parasites were able to egress

and invade RBCs normally if cultured for another 24 hr in the

presence of Sym4 (Figure S1). Therefore, we assume that this

delay in rupture results from an inhibition of the hemoglobin

degradation by Sym4, which is known to slow down parasite

development.

Labeling of Infected Blood Samples with RhSym4
Reveals One Major Target for Sym4
To clarify whether Sym4 covalently modifies its targets, we

compared the labeling patterns of P. falciparum-infected blood

samples treated with RhSym4 and RhSym4mmp/Ala. To this

end, intact schizonts were incubated with the rhodamine-

modified compounds in the presence or absence of their respec-

tive nonfluorescent derivatives. After incubation, proteins were

isolated and resolved by denaturing PAGE, and the fluorescently

labeled proteins were visualized using a flatbed fluorescence

scanner (Figure 3). In the case of RhSym4, two strongly labeled

protein bands in the 28 kDa region became visible. The labeling

event was sensitive to preincubation with the natural product

Sym4, as well as with the closely related analog hSym4,

indicating that the interaction is indeed dependent on the struc-

ture of the compounds and not an artifact caused by the rhoda-

mine group. On the other hand, the same experiment with

RhSym4mmp/Ala revealed only weak labeling in the 28 kDa

region. Importantly, these results correlate well with the different

potency of Sym4 and Sym4mmp/Ala in the parasite assays

(Figures 2A and 2B).
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Figure 4. Characterization of Sym4 Specificity Using Activity-Based

Protein Profiling with Cy5-DCG-04

(A) P. falciparum D10 lysates (in 50 mM NaOAc, pH 5) were preincubated for

30 min with different concentrations of Sym4 or Sym4mmp/Ala, followed by

addition of 1 mM Cy5-DCG-04. After 1 hr, the reaction was stopped by adding

SDS-PAGE loading buffer and boiling for 5 min. Proteins were resolved by

SDS-PAGE and visualized by in-gel detection of fluorescence on a flatbed

fluorescence scanner. Sym4 inhibited FP2/20/3 at low nanomolar concentra-

tions and FP1 at concentrations above 1.6 mM. In contrast, Sym4mmp/Alawas

a much weaker FP2/20/3 inhibitor and did not inhibit FP1 at the concentrations

used. DPAP1, dipeptidyl aminopeptidase 1 (Arastu-Kapur et al., 2008;

Greenbaum et al., 2002b).

(B) Sym4 inhibits the falcipains in living parasite. A culture of P. falciparum at

trophozoite stage was treated for 1 hr with different concentrations of Sym4.

Parasite pellets were separated fromRBCs by saponin lysis and residual PLCP

activities were measured by lysing the pellets in acetate buffer containing 1%

NP40 and 1 mMof Cy5-DCG-04. After 1 hr, the reactionwas stopped by adding

SDS-PAGE loading buffer. Proteins were resolved by SDS-PAGE and visual-

ized by in-gel detection of fluorescence on a flatbed fluorescence scanner.

Sym4 inhibited falcipains 1, 2/20, and 3 at high, low, and medium nanomolar

concentrations (IC50
FP1 = 140 ± 23 nM, IC50

FP2/20 = 8.5 ± 1.3 nM, IC50
FP3 = 22 ±

8 nM), respectively. Sym4 did not inhibit DPAP1 at 1 mM.

See also Figures S2–S5.
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Competitive Activity-Based Protein Profiling Identifies
Falcipains as Sym4 Targets
The formation of a food vacuole defect by Sym4, the known bio-

reactivity of vinyl amino acid derivatives toward cysteine prote-

ases, and the labeling of proteins at 28 kDa by RhSym4 strongly

suggested that one ormore of the food vacuole’s falcipains (FP2,

FP20, and FP3) (Rosenthal, 2004, 2011) might be targets of

Sym4. These proteases are plasmodial papain-like cysteine

proteases (PLCPs) that are known to migrate at 28 kDa in an

SDS-PAGE and are important for the proper development of

the parasite in the blood stages (Greenbaum et al., 2002b; Pan-

dey et al., 2006). FP1 is the only falcipain outside of the food

vacuole and is believed to play a role in RBC invasion (Green-

baum et al., 2002b). FP2, FP20, and FP3 are involved in the

hemoglobin degradation pathway, which is the main source of

amino acids for the developing parasite (Sijwali and Rosenthal,

2004). Importantly, inhibition of these three proteases causes

the same phenotype as the one observed for Sym4 treatment

(i.e., a swollen food vacuole and block of parasite replication;

Figure 2) (Moura et al., 2009; Rosenthal et al., 1988). The pheno-

type observed with Sym4 is also reminiscent of the initial

phenotype reported for the P. falciparum FP2 knockout strain.

Parasites lacking FP2 undergo a transient food vacuole swelling

at trophozoite stage that resolves in the schizont stage due to

concomitant expression of FP3 (Sijwali and Rosenthal, 2004;

Sijwali et al., 2006).

In order to probe if Sym4 targets falcipains 2, 20, and 3, we

performed competitive ABPP experiments with the activity-

based PLCP probe Cy5-DCG-04 (Greenbaum et al., 2000). In

competitive ABPP experiments, biological samples are first pre-

incubated with the small-molecule inhibitors of interest, followed

by visualization of residual enzyme activity by a fluorescent

probe (Clerc et al., 2011; Cravatt et al., 2008; Fonovi�c and

Bogyo, 2008; Jeffery and Bogyo, 2003). In general, such an

approach allows the evaluation of inhibitory potency and speci-

ficity under physiologically relevant conditions.

To this end, parasite lysates were incubated first with different

concentrations of Sym4 or Sym4mmp/Ala and then labeled with

Cy5-DCG-04. Subsequently, proteins were separated by elec-

trophoresis and visualized by in-gel fluorescence detection (Fig-

ure 4A). The advantage of using Cy5-DCG-04 is that its targets in

P. falciparum-infected RBCs have already been identified in

previous studies (Greenbaum et al., 2002a, 2002b; Pandey

et al., 2006). Therefore, a reduction in the intensity of one of

the known signals reveals this PLCP as a target of the tested

compounds. Satisfyingly, Sym4 was found to be an astonish-

ingly potent inhibitor of FP2, FP20, and FP3, inhibiting these

proteases at low nanomolar concentrations (1.5 nM). FP1 was

also inhibited, but at significantly higher concentrations

(>1.6 mM). In contrast, Sym4mmp/Ala proved to be much less

potent, inhibiting Cy5-DCG-04 labeling of FP2, FP20, and FP3

only at concentrations above 25 mM, while no inhibition

of FP1 labeling was observed. Interestingly, hSym4 and

hSym4mmp/Ala showed an inhibition pattern similar to their

corresponding parent compounds (Figure S2), indicating that

the N-terminal part of the protein is not essential for target

inhibition.

Another class of plasmodial PLCPs is the dipeptidyl amino-

peptidases (DPAPs). DPAP1 and DPAP3 are essential cysteine
1550 Chemistry & Biology 19, 1546–1555, December 21, 2012 ª2012
proteases during the erythrocytic cycle and are involved in

hemoglobin degradation (Klemba et al., 2004; Deu et al., 2010)

and parasite egress (Arastu-Kapur et al., 2008), respectively.

Competitive ABPP with either the probe Cy5-DCG04 or the

DPAP activity-based probe FY01 showed that neither DPAP1

(Figure 4) nor DPAP3 (Figure S3) is inhibited by Sym4. Conse-

quently, these experiments indicate that Sym4 does not act as

a general inhibitor of P. falciparum cysteine proteases but rather

preferentially inhibits food vacuole falcipains.

After these encouraging results, we turned our attention to the

determination of the inhibition potency of Sym4 in intact para-

sites. To this end, purified schizonts were treated with different
Elsevier Ltd All rights reserved
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concentrations of Sym4 for 1 hr, RBCs were lysed with saponin,

and the residual activity of PLCPs in the parasite pellets was

again labeled with Cy5-DCG-04 (Figure 4B). This assay

confirmed that Sym4 is a nanomolar inhibitor of falcipains in

intact parasites, although this time we also observed potent inhi-

bition of FP1. Quantification of the gel labeling pattern thereby

revealed a preferential inhibition of FP2/20 over FP3 or FP1

(IC50
FP2/20 = 8.5 ± 1.3 nM, IC50

FP3 = 22 ± 8 nM, IC50
FP1 = 140 ±

23 nM; Figure 4B).

To further characterize the inhibitory potency of Sym4, we

subsequently determined the kinetics of substrate turnover

inhibition, using recombinantly produced FP2 or FP3 at different

inhibitor concentrations (Figure S5). As expected, this experi-

ment confirmed that Sym4 is an irreversible inhibitor of these

two falcipains. Moreover, and in accordance with the competi-

tive ABPP experiments, FP2 turned out to be more potent than

FP3 (FP2: ki = kobs / [I] = 58,600 ± 1,400 M�1s�1 versus FP3:

ki = kobs / [I] = 7,030 ± 250 M�1s�1).

In order to evaluate the bioreactivity pattern of Sym4, we next

investigated if Sym4 also inhibits mammalian PLCPs or the pro-

teasome. To this end, we performed additional competitive

ABPP experiments with bone marrow-derived mouse macro-

phages in vivo. This mammalian cell line was preincubated

with 0.5 mM and 5 mM of Sym4, hSym4, Sym4mmp/Ala,

or hSym4mmp/Ala. Then, selected residual protease activities

were determined by incubating protein extracts with a broad-

band PLCP ABP (Greenbaum et al., 2002a) (Figures S4A and

S4B) or with a proteasome-specific ABP (Kolodziejek et al.,

2011) (Figures S4C and S4D). In these assays, Sym4, hSym4,

Sym4mmp/Ala, or hSym4mmp/Ala did not inhibit the protea-

some (Figures S4CandS4D). In contrast, we observed a concen-

tration-dependent inhibition of cathepsins in these experiments.

Both Sym4 and hSym4 were found to inhibit cathepsin L at

0.5 mM (Figure S4A). At the 5 mM concentration, cathepsins B,

H, S, and Z were also inhibited. As observed with the falcipains,

the Sym4 derivatives lacking the mmp group were less active.

Sym4mmp/Ala orhSym4mmp/Ala did not inhibit any cathepsins

at 0.5 mM, but did inhibit cathepsin L at 5 mM (Figure S4B). We

then tested the labeling properties of the fluorescent probes

RhSym4 and RhSym4mmp/Ala also with bone marrow-derived

mouse macrophages (Figure S4E). Interestingly, the obtained

labeling profile indicates, as expected from the competitive

ABPP experiments, that the predominant target of Sym4 in

mammalian cells is cathepsin L.

DISCUSSION

Half of the human population is threatened by malaria, and the

urge to develop novel antimalarial therapies is becoming more

and more pressing (Guiguemde et al., 2012). Compounds with

antimalarial activity are frequently reported in the literature

(Nogueira and Lopes, 2011), but further development of these

compounds into drugs is often hampered by their difficult chem-

ical synthesis (or limited availability via natural product isolation)

and/or their unknown mode of action.

The natural product symplostatin 4 (Sym4) has been identified

as another promising antimalarial compound (Conroy et al.,

2010, 2011). To investigate the mode of action of this promising

antimalarial agent, we synthesized several analogs to (1) identify
Chemistry & Biology 19, 1546–155
its direct molecular targets and (2) characterize the underlying

structure-activity relationships and correlate them to the antima-

larial activities.

Synthesis of Sym4 and Derivatives
We first developed a convergent synthesis to Sym4 and deriva-

tives. In order to establish a synthetic route that allows rapid

access to different Sym4 derivatives, a modular synthesis was

devised. Thus, in contrast to previous synthetic approaches,

which relied on a stepwise assembly of different amino acid

building blocks, we chose a fragment condensation strategy

to assemble the Sym4 framework. Consequently, two different

N- and C-terminal fragments were synthesized via solution

phase peptide synthesis and merged to four different Sym4

derivatives. This approach was used to synthesize not only

the natural product Sym4, but also derivatives lacking the

C-terminal mmp group. In addition, derivatives with a propargyl

group at the N terminus were generated, which enabled the

attachment of a fluorescent reporter rhodamine via a copper-

catalyzed click reaction in an additional reaction step (RhSym4

and RhSym4mmp/Ala).

Altogether, the developed synthetic route allows a rapid and

facile generation of Sym4 and derivatives, using ‘‘standard’’

peptide chemistry manipulations. However, because malaria

mostly affects people in third world countries that cannot afford

expensive medication, the cost of goods of a synthesis is always

an important issue. Although the prices for the required starting

materials (i.e., mainly amino acids and other peptide chemistry

reagents) have decreased significantly in the last few years,

the overall costs of the chemical synthesis of Sym4 derivatives,

even if established on an industrial scale, will most probably

exceed the generally accepted $2 limit. Thus, for a chemothera-

peutic utilization of Sym4, further compound optimization, in

regard not only to its bioactivities but also to the cost of

synthesis, is still required; along these lines, Sym4 derivatives

featuring a structurally less complex N-terminal fragment but

maintaining the biologically relevant C-terminal moieties might

be more appropriate drug candidates.

Falcipain Inhibition Is Responsible for the Antimalarial
Activity of Sym4
The evaluation of the biological activity of chemically synthe-

sized Sym4 confirmed that this natural product is a potent anti-

malarial compound, as was previously reported (Conroy et al.,

2010, 2011). In phenotypic assays, we subsequently showed

that Sym4 causes a distinct food vacuole defect at nanomolar

concentrations (Figure 2). These findings guided our following

target identification studies using competitive ABPP, which

demonstrated all four P. falciparum falcipains as targets of

Sym4 in intact parasites. However, we observed different inhibi-

tion potencies: Sym4most potently inhibited FP2/20, followed by

FP3 and FP1. Among the different falcipains, FP3 is the only one

for which knockout attempts have been unsuccessful, which

suggests it is the most important falcipain during P. falciparum

blood stages. FP1 and FP20 knockout strains have no apparent

phenotype, with FP1 not being essential in the erythrocytic stage

of malaria (Sijwali et al., 2004), while the FP2 knockout showed

a marked food vacuole defect (Sijwali et al., 2004; Sijwali and

Rosenthal, 2004). To the best of our knowledge, the FP2/20
5, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1551
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double knockout has not been attempted, so we cannot rule out

that inhibition of both FP2 homologs is lethal to parasites. With

this caveat inmind, our findings suggest that FP3 inhibitionmight

be the crucial factor for the antimalarial activity of Sym4.

Although we observed the formation of a food vacuole defect

at 0.1 mM Sym4, parasite killing (i.e., the antimalarial activity)

required 7-fold higher concentrations (EC50 = 0.7 mM). The

different concentrations required to induce parasite killing on

the one hand, and the formation of the food vacuole defect on

the other hand, might at least partly result from the falcipain inhi-

bition profile of Sym4. Although at lower concentrations Sym4

first inhibits FP2/20 and thus causes a food vacuole phenotype,

higher concentrations are required for supplementary FP3 inhibi-

tion, thereby inducing parasite killing. In any case, it is important

to note that Sym4 inhibits falcipains in intact parasites with IC50s

in the low tomedium nanomolar range, which is much lower than

the observed EC50 of 0.7 mM in the replication assay. Several

reasons might explain the discrepancy between these two

values. First, high fractional and sustained inhibition of falcipains

might be required to impair parasite replication. This has been

observed for DPAP1, where sustained inhibition of more than

90% of DPAP1 activity for several hours is required to effectively

block parasite replication (Deu et al., 2010). Therefore, the

required concentrations of Sym4 for impairing P. falciparum

replication via inhibition of falcipains needs to be much higher

than the actual IC50 value. The fact that Sym4 does not irrevers-

ibly block egress also indicates that Sym4 does not inhibit other

cysteine proteases involved in schizont rupture, such as DPAP3

(Figure S3) or human calpain-1 (Chandramohanadas et al., 2011;

Millholland et al., 2011). Second, the intramolecular Sym4

concentration and thus the ‘‘reservoir’’ of ‘‘free’’ Sym4 that is

available to target falcipains might be lower than anticipated,

thereby resulting in less efficient falcipain inhibition. Several

mechanisms might lead to such a reduced Sym4 concentration.

For example, although our studies indicate that falcipains are cell

permeable, the uptake of extracellular Sym4 into the cytosol

might be hampered or slowed down. In addition, it is reasonable

to assume that off-target binding to other proteins or cell compo-

nents reduce the amount of ‘‘free’’ Sym4; although some of

these binding events might be reversible, the reaction of Sym4

with host cathepsins such as cathepsin L (Figure 4A), for

example, is most probably irreversible, thereby persistently

reducing Sym4 levels. Finally, intracellular Sym4 might also be

metabolically or chemically instable and thus intracellular

Sym4 levels could be subject to a continuous decline. Interest-

ingly, in our replication assay parasites were treated at ring

stage, while for example FP3 is known to be expressed at

schizont stage (i.e., more than 24 hr after treatment). At this

point, Sym4 concentration may already be significantly reduced,

thereby explaining the observed bioactivity difference between

falcipain inhibition in intact parasites and the EC50 on infected

red blood cells.

Despite these drawbacks, our experiments revealed Sym4 as

one of the most potent falcipain inhibitors reported so far

(Teixeira et al., 2011). This potency is accompanied by a distinct

selectivity pattern. By performing comparative ABPP ex-

periments with a specific proteasome probe in living cells

(MVB003), we could verify that Sym4 does not inhibit the

mammalian proteasome at concentrations up to 5 mM (highest
1552 Chemistry & Biology 19, 1546–1555, December 21, 2012 ª2012
tested concentration; Figure S4C). However, a similar assay

testing for activity against mammalian cathepsins using

BODIPY-DCG04 (Greenbaum et al., 2002a) showed that Sym4

also reacts with mammalian cathepsins. Our assays indicated

that among the different cathepsins, Sym4 preferentially reacts

with cathepsin L. In an uninfected mammalian cell line, Sym4

inhibits a large portion of cathepsin L at a concentration of

0.5 mM and thus at a concentration comparable to the observed

antimalarial effect of Sym4. In contrast, the cathepsins B, H, S,

and Z required ten times higher concentrations (i.e., 5 mM) to

reach the same inhibition level (Figure S4A). Although the

observed ‘‘off-target’’ inhibition of cathepsin L is not desirable,

a recent report indicated that only a high fractional inhibition of

cathepsins (i.e., more than 95% inhibition) leads to a consider-

able biological effect (Méthot et al., 2008). Nevertheless, these

findings indicate that further studies are required to evaluate

the impact of off-target cathepsin inhibition for the further

utility of Sym4 as a guiding structure for the development of

antimalarials.

Finally, as a spin-off of our studies, we observed that the syn-

thesized rhodamine analog RhSym4 strongly labels the food

vacuole falcipains in intact parasites (Figure 3). To the best of

our knowledge, this is the first activity-based probe that discrim-

inates between the food vacuole falcipains and FP1, and the first

fluorescent activity-based probe that labels FP2, 20, and 3 in

intact cells. Therefore, development of probes based on the

Sym4 scaffold might prove to be very useful tools for imaging

PLCP activity in cells.

The mmp Group Is Critical for Efficient Inhibition
of Falcipains
In order to better understand the structure-activity relationship of

Sym4, we tested different N- and C-terminal derivatives for their

antimalarial activity. We found that changes at the N-terminal

endwerewell tolerated and had only a slight effect on bioactivity.

For example, the hSym4 derivative showed a similar inhibition

pattern as Sym4 (Figures S2 and S4B). These findings indicate

that the N-terminal part of Sym4 is amenable for at least slight

modifications and not essential for target recognition. These

findings are indeed corroborated by previous synthetic studies

of Sym4 derivatives (Conroy et al., 2010, 2011).

On the other hand, replacement of the C-terminal mmp group

with an alanine (Sym4mmp/Ala) results in severe loss of antima-

larial potency. This is very interesting because the mmp group is

rarely found in natural products, and most falcipain inhibitors re-

ported so far have peptide-like structures at the C-terminal end,

similar to the Sym4mmp/Ala derivative. In parasite assays,

Sym4mmp/Ala proved to be a much weaker inhibitor of the falci-

pains than Sym4 (Figure 4), which explains its reduced antima-

larial activity (Figure 2). Furthermore, our results indicate that

the mmp group has a decisive influence on not only the potency

of falcipain inhibition, but also for other PLCPs (Figures S4A and

S4B). Although we have not further investigated the molecular

basis of the different activity patterns, we anticipate that different

factors might contribute to the observed increase of activity. For

example, the mmp groupmight occupy a distinct binding pocket

in the active site of falcipains. The resulting increase in binding

affinity and thus local concentration of Sym4 would conse-

quently favor the subsequent irreversible reaction with the active
Elsevier Ltd All rights reserved
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site cysteine, resulting in an overall improved inhibition rate.

Alternatively, the mmp group may also increase the overall

chemical reactivity of Sym4. In fact, we observed a stronger

background labeling for RhSym4 versus RhSym4mmp/Ala (Fig-

ure 3), suggesting that higher chemical reactivity may contribute

to the improved inhibition rate. On the other hand, it has been

frequently noticed that attaching fluorescent groups like rhoda-

mine or BODIPY to electrophiles like Michael systems or epox-

ides increases the off-target labeling of these ABPs when

compared to strictly biotinylated ABPs. Taken together, the

mmp group enhances the overall falcipain inhibition rate but

may also increase off-target effects. Therefore, future chemical

derivatizations of the Sym4 structure aiming at the improvement

of its inhibitory potential will have to be complemented by selec-

tivity studies.

Finally, it is important to note that falcipains have been recog-

nized as potential targets for the development of antimalarials

for quite some time, and numerous compound classes have

evolved that address these enzymes (Teixeira et al., 2011).

Among them, peptidic small molecules featuring an electrophilic

warhead such as epoxides or Michael acceptor systems have

proven to be potent inhibitors. Despite intense efforts, none of

these compounds could be developed into a drug and, there-

fore, interest in falcipain inhibitors has slightly decreased in the

last few years. Sym4 is also based on an a,b-unsaturated

Michael acceptor system that is, however, C-terminally linked

to a mmp group, resulting in a structurally novel scaffold that

has, so far, not been investigated. Indeed, our findings indicate

that this unusual combination results in much more potent

inhibitors, suggesting that further studies, for example with

N-terminally modified, less peptidic derivatives, might represent

a feasible approach to finally tackle these drug targets.
SIGNIFICANCE

In summary, we have reported a total synthesis of Sym4 and

the rational synthesis of a series of analogs. Sym4 causes

a food vacuole phenotype in Plasmodium-infected RBCs

and inhibits pathogen replication with an EC50 of 0.7 mM.

We subsequently identified the falcipains as direct molec-

ular targets of Sym4, thereby explaining its potent antima-

larial properties. Finally, we elucidated the C-terminal mmp

unit as a critical component for potent inhibition of falci-

pains. Therefore, our findings not only provide the mecha-

nistic basis for the observed potent antimalarial properties

of the marine natural product symplostatin 4 (Sym4), but

theymay also serve as a valuable guide for the future rational

design of potent falcipain inhibitors. Although an assess-

ment of the drug-like properties of Sym4 has yet to be

done, we anticipate that the synthesis of Sym4-like deriva-

tives opens new possibilities to the design of tool com-

pounds to investigate and develop antimalarial chemothera-

peutics that combat this devastating disease.
EXPERIMENTAL PROCEDURES

Parasite Culture, Harvesting, and Lysate Preparation

D10 P. falciparum were cultured and kept synchronous as previously

described (Arastu-Kapur et al., 2008). Trophozoite stage parasites were
Chemistry & Biology 19, 1546–155
harvested 36 hr postinvasions. Parasites were released and isolated from

RBCs after saponin lysis of the RBC membrane. Proteins were extracted

from parasites by treatment with PBS containing 1% NP40. The soluble

fraction was subsequently separated from the insoluble one by centrifugation

(Arastu-Kapur et al., 2008).

Phenotypic Characterization of Sym4-Treated Parasites

A synchronized culture of the parasite at ring stage (2% parasitemia) was

treated with different concentrations of Sym4, Sym4 analogs, or DMSO. After

24 hr, phenotypic effects were observed by Giemsa-stained thin blood

smears. The food vacuole defect is clearly visible as an enlargement of this

acidic organelle. This is due to the inhibition of proteases in the food vacuole

that leads to the accumulation of undigested hemoglobin.

P. falciparum Replication Assay

A total of 200 ml synchronous D10 parasites at ring stage (2% parasitemia and

0.5% hematocrit) were treated with the corresponding compounds and

cultured in 96-well plates for 75 hr until the DMSO controls reached schizont

stage. Quantification was performed by flow cytometry as previously

described (Wang et al., 2011). All fluorescence activated cell sorting measure-

ments were taken on a BD FACScan flow cytometer (Becton Dickinson). EC50

values for parasite death were obtained by fitting the parasitemia values to

a dose-response curve.

Labeling of Cysteine Protease Activity with ABPs and Competition

of Labeling by Protease Inhibitors

Cy5-DCG04, a cell-impermeable fluorescently tagged activity-based probe

was used to label the activity of DPAP1 and falcipains in lysates. To test the

potency of Sym4 and analogous compounds, parasite lysates (diluted 1:10

in acetate buffer [50 mM sodium acetate, 5 mM MgCl2, and 5 mM DTT at

pH 5.5]) were pretreated with the corresponding compounds for 30 min

followed by labeling for 1 hr with 1 mM of Cy5-DCG04. The reaction was

stopped by boiling the samples in SDS-PAGE loading buffer. Proteins were

resolved by SDS-PAGE and the different cysteine proteases were detected

using a Typhoon 9410 flat-bed fluorescence scanner (Amersham Biosciences,

GE Healthcare).

Labeling of proteins from intact parasites with RhSym4 and

RhSym4mmp/Ala was performed by incubating purified schizonts with

different concentration of RhSym4 for 1 hr in PBS followed by boiling of the

samples in loading buffer and separation of the different proteins by SDS-

PAGE. Labeled bands were detected using the Typhoon 9410 scanner.

To measure falcipain inhibition in living parasites, a culture of P. falciparum

at 20% parasitemia and 2% hematocrit was treated with different concentra-

tions of Sym4. After 1 hr of treatment, a 1 ml aliquot of culture was lysed with

0.15% saponin in PBS buffer, the parasite pellets were harvested, and residual

cysteine protease activity was detected by labeling with 1 mM of Cy5-DCG04

for 1 hr in acetate buffer containing 1%NP40. After SDS-PAGE, the labeling of

FP1, FP2/20, FP3, and DPAP1 was quantified using the ImageJ software

(Abrámoff et al., 2004) and fitted to a sigmoidal dose response curve to obtain

IC50 values.

Ki DeterminationUsing a Biochemical Activity Assay for FP2 and FP3

Inhibition values of recombinantly produced FP2 and FP3 were measured at

25�C in assay buffer (200 mM sodium acetate, 10 mM DTT, 0.01% Triton-X,

3.625% glycerol, pH 6) containing 25 mM of Z-LR-AMC. Substrate turnover

was measured for 2 hr in a 96-well plate at 460 nm (lexcitation = 350 nm and

an emission cutoff filter at 435 nm) in a SpectramaxM5plate-reader (Molecular

Devices).

Accurate ki values (corresponding to kobs / [I]) for Sym4 (second order rate

constant of inhibition) were obtained by incubation of FP2 or FP3 with different

concentrations of Sym4 and by recording the decrease in activity over time.

The rates of substrate turnover relative to the DMSO controls (v/v0) were fitted

to a simple irreversible inhibitor model:

E+ I/
ki

E� I (Equation 1)

v

vo
= expð� kobs$½I�$tÞ:
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Synthesis of Sym4 and Sym4 Derivatives

The synthesis and characterization of compounds 1 to 8 as well as Sym4 and

Sym4 derivatives are described in Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.chembiol.2012.09.020.
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