








ARC Is a Protumorigenic Effector of HIF1 Signaling

FIG 5 ARC knockdown decreases cell survival and retards cell growth under normoxia and hypoxia. (A) Western blot showing downregulation of ARC
expression in Cakil cells after infection with two shRNA-expressing lentiviral constructs, leading to cleavage of caspase 3. (B) Caspase 3 activity was assessed using
the fluorescent probe LE22. We observed binding of the probe to caspase 3 in cells where ARC was knocked down but not in shGFP-infected cells, and binding
was abrogated by treatment with caspase inhibitor Z-VAD-FMK. Coomassie-stained gel controls were used for equal protein loading. (C) Cakil cells stably
expressing either shGFP or two different shRNAs targeting ARC were analyzed for apoptosis by flow cytometry. The percentages of annexin V-positive
PI-negative cells are indicated. Results of a representative experiment are shown in panel i. Results in panel ii represent the average percent annexin V-positive,
PI-negative cells = SEM from three independent experiments. *, P = 0.027. (D) ARC knockdown reduces the colony-forming capacity of Cakil cells under
normoxic and hypoxic conditions. Graphs show the average colony numbers per plate in two independent experiments = SEM. *, P < 0.05; ** and #, P < 0.01;
##, P < 0.001.* and **, comparison to Cakil shGFP in normoxia; # and ##, comparison to Cakil shGFP in hypoxia. (E) ARC knockdown retards cell growth of
Cakil cells under normoxic and especially hypoxic conditions. Cell number per plate (y axis) is plotted against days after initial plating at day 0 (x axis). Error bars
represent standard deviations. (F) ARC knockdown contributes to chemosensitization of Cakil cells, and the effect can be rescued by overexpression of siRNA
insensitive ARC cDNA. Cells were treated with 10 ug/ml cisplatin for 17 h or left untreated, and caspase 3 cleavage was assessed by Western blotting. (G) Examples
of ARC-negative and cleaved caspase 3-positive as well as ARC-positive and cleaved caspase 3-negative IHC staining on the RCC TMA. TMA contained just 3 out
of 35 spots that were positive for cleaved caspase 3, and all of them were ARC negative. For panels A and F, experiments were performed under normoxia. shRNA
targeting green fluorescent protein (shGFP) and the vector pLM-CMV-H4-neo-PL3 were used as controls; Hsp-70 (mitochondrial heat shock protein 70) (A)
and a-tubulin (F) are shown as loading controls.
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FIG 6 ARC knockdown leads to suppression of colony formation in RCC4 and RCC10 cells with and without VHL, and the effect of knockdown on cell survival
is more pronounced in VHL-deficient cells. RCC4 and matched RCC4-VHL cells as well as RCC10 and matched RCC10-VHL cells were infected with viruses
encoding shRNA targeting GFP (control) and two shRNAs targeting ARC. After selection on puromycin, 12 acquired cell lines were subjected to colony assays.
Cells were pretreated with 0.5 pg/ml cisplatin or vehicle treated. This experiment was repeated twice in triplicate.

We also assessed ARC and cleaved caspase 3 staining on the
TMA to evaluate if there is a correlation between the two stainings,
confirming the role of ARC as an inhibitor of caspase 3 cleavage in
human tumors. Although the TMA contained just 3 out of 35
spots positive for cleaved caspase 3, all of them were ARC negative
(Fig. 5G). Further studies involving large numbers of tumor sam-
ples with different tumor grades and stages are needed to confirm
this finding and to draw more definitive conclusions.

Expression of ARC in RCC cell lines confers cell survival and
protects them from cisplatin-induced cell death. To evaluate the
effect of ARC knockdown on survival of matched RCC cell lines
with and without VHL, we included four more cell lines in the
study. Genetically matched RCC4 and RCC4-VHL cells and
RCC10and RCC10-VHL cells were infected with viruses encoding
shRNA targeting GFP (control) and two shRNAs targeting ARC.
After selection on puromycin, 12 acquired cell lines were sub-
jected to colony assays. Cells were pretreated with 0.5 pg/ml cis-
platin or vehicle treated (control). Figure 6 shows that ARC
knockdown leads to suppression of colony formation in RCC4
cells with and without VHL and RCCI0 cells with and without
VHL, especially when combined with cisplatin treatment, and the
effect of knockdown on cell survival is more pronounced in VHL-
deficient cells.

Cakil cells with downregulated ARC expression show de-
creased tumorigenic potential in SCID mice. In light of the ef-
fects the downregulation of ARC expression had on survival and
growth of renal cancer cell lines in vitro, we decided to investigate
the effect of ARC inhibition on tumor forming potential in im-
munodeficient mice. It is important to mention that currently
there is no robust mouse model to study RCC primary tumor
formation and metastasis. Cakil cells are a low-VHL-expressing
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cellline and form subcutaneous (s.c.) tumors with long periods of
latency and do not metastasize. We used Cakil cells, which we also
used in our in vitro work, for in vivo studies, since they are low-
VHL-expressing cells and are frequently used by others for animal
studies of RCC (36—38). We injected Cakil cells stably transduced
with shGFP, shARC no. 1, and shARC no. 2 s.c. into the dorsal
flanks of SCID mice. After 13 weeks, tumor dimensions were mea-
sured with calipers, and tumor volume was calculated. The results
clearly showed that ARC expression led to impairment of tumor
initiation ability in Cakil cells (Fig. 7). Nine out of 10 injections of
shGFP Cakil cells grew into tumors. In contrast, only one out of
14 injections of shARC Cakil cells formed a tumor. These results
indicate that elevated levels of ARC in CC-RCC are essential for
initiating tumor growth.

DISCUSSION

In this study, we showed that the antiapoptotic protein ARC con-
fers RCC the capacity to maintain their neoplastic phenotype in
vitro and in vivo: ARC downregulation is accompanied by de-
creased cell survival and impairment of growth in vitro and by
inhibition of tumor-forming ability in vivo. Although ARC regu-
lation at the posttranslational level through ubiquitination and
proteasomal degradation was rigorously studied (15, 16), actual
factors binding to its promoter and regulating its expression just
start to be elucidated. The indirect effects of the Ras/MEK/extra-
cellular signal-regulated kinase pathway on ARC promoter stim-
ulation and of the p53 pathway on ARC promoter repression were
previously reported (17, 18), along with a recent report of HIF-
dependent ARC regulation (39) (see discussion below). In the
present study, we have shown that increased ARC expression is
stimulated by direct HIF1 binding to ARC promoter under hyp-
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FIG 7 ARC knockdown decreases the tumor-forming ability of Cakil cells.
Cakil cells stably expressing shGFP, shARC no. 1, or shARC no. 2 shRNA
lentiviral constructs were injected s.c. into the right and left flanks of SCID
mice. In this analysis, mice in the shARC no. 1 and shARC no. 2 groups were
pooled and designated a shARC group. Representative pictures of mice are
shown for each group. Average tumor volumes were calculated at the end of
the study. *, P = 0.0153.

oxia in cells with WT VHL or under normoxia in cells with mu-
tated/lost VHL. Solid tumors are known to be invariably less well
oxygenated in comparison to their normal tissue of origin, making
low oxygen tension, or hypoxia, a critical hallmark of cancer de-
velopment (40). Our findings of ARC regulation by hypoxia and
HIFI in CC-RCC deserve further investigation in solid tumors of
other tissue origin, aiming at better defining the contribution of
ARC to tumor cell survival and possibly therapeutic resistance.
The antiapoptotic function of ARC appears to be well con-
served in different cell types, including cancer cells as well as cells
in normal tissues (14, 41-43). In agreement with our data, ARC
was shown to inhibit cell death potently in cancer cells (HeLa,
MCF7, and HCT116) (43) and in cardiomyocytes (14, 41, 42).
However, the regulation of ARC expression by hypoxia or other
injuries (ischemia/reperfusion) shows cell type and/or species
specificity. Unlike our observations in a variety of human cancer
cell types, hypoxia treatment of rat H9C2 cardiomyocytes and
ventricular myocytes led to decreased ARC levels in a manner that
correlated with the induction of apoptosis and/or necrosis (41).
On the other hand, in the recent report by Zaiman et al., ARC was
shown to be induced by hypoxia in isolated rat pulmonary arterial
smooth muscle cells (44). Interestingly, the putative HIF1a bind-
ing site identified in our study appears to be conserved in primates
but is not present in the mouse or rat ARC promoter (Fig. 8).
Importantly, we could not detect ARC expression in mouse em-
bryonic fibroblasts (MEFs) under normoxia and hypoxia by
Western blotting, which is in line with the fact that MEFs are
highly susceptible to apoptotic death under hypoxia (45). Thus,
the mechanism of ARC regulation by hypoxia might be complex,
and tissue specificity and/or species-specific regulation should be
taken into consideration. Studies by Nam et al. (15) and Foo et al.
(16) have shown the role of ARC ubiquitination and proteasomal
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67204220
67204215|
Human GCTGGACGTGTGGGG
Chimp GCTGGACGTGTGGGG
Gorilla GCTGGACGTGTGGGG
Orangutan ACTGGACGTGTGGGG
Rhesus ACTGGACGTGTGGGG
Baboon ACTGGACGTGTGGGG
Marmoset ATTGGACGTGTGGGG
Mouse-Lemur GCCAGACGAGTGAGG
Mouse GCTGGACAAGTGAGA
Rat GCTGGACAAGTGAGA

FIG 8 Genomic DNA alignment of regions containing HRE2 HIF binding site
in ARC promoter among different species, as indicated. The numbers above
the sequences correspond to coordinates in the UCSC Genome Browser, hu-
man, February 2009 (GRCh37/hg19 assembly).

degradation in regulation of its expression at the protein level in
cells of rat and mouse origin. Further studies are needed to clarify
the contribution of proteasomal degradation and transcriptional
upregulation by hypoxia in ARC expression and its subsequent
impact on cell survival/proliferation in human cancer.

A recent paper by Ao et al. identified ARC as a hypoxia-induc-
ible and HIF1-regulated gene (39), although the study did not
investigate if ARC is a target gene of HIF1, HIF2, or both. These
authors identified the GCGTG motif as a HIF1 binding site, which
is different from the ACGTG site identified in our study. The
GCGTG site might represent an alternative HIF binding site, and
it would be important to assess its conservation in different spe-
cies.

Our ChIP data clearly showed that HIF1a and HIF2« are ca-
pable of binding to HRE2 in the ARC promoter. At the same time,
just endogenous HIF1 regulates ARC transcription (Fig. 2), al-
though HIF2 can regulate ARC transcription when exogenously
overexpressed (Fig. 3C). This finding once more strengthens the
notion that binding to the promoter does not equal activation.

The HIF1 dependence of ARC raises the question as to how a
HIF1-regulated gene can have such an essential role in CC-RCC,
considering the largely accepted view that it is rather the silencing
of HIF2« that is sufficient to impair growth of VHL-deficient tu-
mors in vivo (46). There is a current debate in the field as to what
the roles of the family members HIF1a and HIF2« are in initiation
and/or progression of RCC, with an extreme view of the HIFla
gene being a tumor suppressor gene and the HIF2a gene being an
oncogene. Indeed, several lines of evidence support this hypothe-
sis, including loss of the HIF1a locus in a number of RCCs, sup-
ported by functional studies suggesting that overexpression of
HIFlain VHL WT cells restrains tumor growth, whereas suppres-
sion of HIF1a in VHL-deficient cells enhances tumor growth (re-
viewed in reference 47). It is important to note that HIFs are tran-
scription factors regulating a large list of target genes, including
genes with opposite functions. Thus, tumor-suppressive and on-
cogenic functions are intrinsic to HIFs, and the shift in their bal-
ance will depend on the stage of tumor evolution, as well as the
genetic context of a given tumor. We predict that HIF1-mediated
antiapoptotic function will be found to be important at early
stages of tumor development, when just a few antiapoptotic
mechanisms are in play. Later during tumor evolution, more ge-
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netic mutations accumulate and more signaling pathways get re-
programmed, allowing multiple mechanisms of apoptosis eva-
sion. At these later stages, the HIF1 antiapoptotic function
becomes dispensable, and the balance shifts to more tumor-sup-
pressive functions, leading to selective pressure for HIF1 elimina-
tion. A recent and exhaustive study analyzing VHL genotype and
HIFla and HIF2a expression in 160 primary renal tumors iden-
tified three distinct molecular patterns for human CC-RCCs:
those characterized by WT VHL and two subtypes with VHL de-
ficiencies. Among the latter were tumors typified by both HIFla
and HIF2« induction (H1H2 tumors) and those with exclusive
overproduction of HIF2a (H2 tumors) (48). In our study, we
found that the ARC gene is a HIFla-regulated gene which pro-
motes CC-RCC cell survival. Thus, we suggest that ARC might
play an essential role in survival of renal cancer cells in some tu-
mors from the first two groups: tumors with VHL WT and VHL-
deficient tumors (H1H2).

Since CC-RCC is highly aggressive and unresponsive to radia-
tion and chemotherapy, there is a large interest in the field con-
cerning the mechanism of this resistance, especially because p53
mutations are rarely detected in this type of cancer (49) (IARC p53
database [http://www-p53.iarc.fr/]). Several mechanisms of resis-
tance to therapy in relation to p53 have been proposed in the
literature: disrupted USP10-mediated deubiquitination of p53
(50), NF-kB-dependent suppression of p53 (51, 52), and HDM2-
mediated suppression of p53 (53, 54). Our results suggest an ad-
ditional mechanism of cell survival in CC-RCC through increased
ARC expression. Importantly, ARC was shown to be a negative
regulator of p53 function which interferes with p53 tetrameriza-
tion and stimulates p53 nuclear export (13). Additional research is
needed to directly test the role of ARC in the blockade of p53-
dependent apoptosis and cell cycle arrest in CC-RCC.

In conclusion, our data suggest that ARC is a promising ther-
apeutic target for VHL WT and VHL-deficient (H1H2) renal can-
cers and possibly other types of cancer associated with increased
HIFlo activity.
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