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Abstract

Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa that is able to infect a wide variety of host cells.
During its active invasion process it secretes proteins from discrete secretory organelles: the micronemes, rhoptries and
dense granules. Although a number of rhoptry proteins have been shown to be involved in important interactions with the
host cell, very little is known about the mechanism of secretion of any Toxoplasma protein into the host cell. We used a
chemical inhibitor of phospholipase A2s, 4-bromophenacyl bromide (4-BPB), to look at the role of such lipases in the
secretion of Toxoplasma proteins. We found that 4-BPB was a potent inhibitor of rhoptry secretion in Toxoplasma invasion.
This drug specifically blocked rhoptry secretion but not microneme secretion, thus effectively showing that the two
processes can be de-coupled. It affected parasite motility and invasion, but not attachment or egress. Using propargyl- or
azido-derivatives of the drug (so-called click chemistry derivatives) and a series of 4-BPB-resistant mutants, we found that
the drug has a very large number of target proteins in the parasite that are involved in at least two key steps: invasion and
intracellular growth. This potent compound, the modified ‘‘click-chemistry’’ forms of it, and the resistant mutants should
serve as useful tools to further study the processes of Toxoplasma early invasion, in general, and rhoptry secretion, in
particular.
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Introduction

Toxoplasma gondii is a widespread, obligate, intracellular parasite

able to infect almost any nucleated mammalian and avian cell

type. It does this through an active penetration process involving

the secretion of discrete secretory organelles: the micronemes,

rhoptries and dense granules [1]. Once inside, Toxoplasma resides

in a parasitophorous vacuole (PV) formed during the process of

invasion.

Microneme proteins are involved in gliding motility and the tight

association of the parasite with the host cell during early invasion

[2]. This is followed by the association of a microneme protein,

apical membrane antigen 1 (AMA1), with rhoptry neck proteins

(RON2, RON4, RON5, RON8) to form the moving junction (MJ)

[3,4,5,6]. Microneme protein 8 (MIC8) has been shown to be

required for the secretion of RON4 and therefore necessary to form

the MJ [7]. MJ formation is followed by the bulk release of

Toxoplasma proteins into the host cell at or around the time of

invasion. This early release is so far known to consist of several

rhoptry proteins, ROP1–4 [8] and ROP18 [9], and the dense

granule protein GRA7 [10]. All of these are found in very small,

bead-like structures organized in long filamentous strings. These

‘beads-on-a-string’ appear to be associated with the nascent PV [8].

Interestingly, some of these proteins can be found secreted as

‘evacuoles’ into host cells even when parasite invasion is impeded

using cytochalasin D, an inhibitor of actin polymerization. This

has been observed for ROP1–4 [8] and GRA7 [11]. Some of the

proteins present in evacuoles and beads-on-a-string have been

shown to also be involved in host-parasite interactions [9,12,13].

A second group of Toxoplasma proteins have also been shown to

be secreted into the host cell. This group of rhoptry proteins

comprises a protein phosphatase 2C designated PP2C-hn to reflect

its ultimate destination, the host nucleus [14], and a putative

protein kinase (ROP16; [15]) that also localizes to the nucleus of

infected host cells. PP2C-hn is known to traffic in this way even

when parasite invasion is blocked using cytochalasin D [14].

ROP16 is involved in modulating host gene expression following

invasion [15].

Virtually nothing is known about the triggers and mechanism of

rhoptry secretion or the means by which rhoptry and microneme

proteins associate. One model to explain how AMA1 and the

RONs interact is that the micronemes fuse to the rhoptry necks. If

this were the case, then AMA1 could form a complex with the

RONs, which could then be secreted through the rhoptry necks.

All host-targeted Toxoplasma proteins might then somehow be

secreted in bulk by the rhoptries during initial invasion, some as

soluble proteins and some in vesicles. This, however, does not

explain the ability of micronemal but not rhoptry proteins to be

released by extracellular parasites. As to how rhoptry proteins

enter the host cell, there is no system known for these parasites that
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is analogous to type III or type IV secretion system systems found

in some bacteria but such a process cannot be excluded.

There are many aspects of Toxoplasma early invasion and protein

secretion where membrane fusion may be involved. Micronemes

may fuse to rhoptries, either or both of these organelles could fuse

to the parasite plasma membrane, and the parasite plasma

membrane may fuse briefly to the host plasma membranes to

allow direct introduction of parasite-derived, exosome-like vesicles.

Phospholipase A2s (PLA2s) have been known to be involved in

membrane fusion and contribute to membrane fluidity [16], and

thus may play a role in Toxoplasma invasion and protein secretion.

A number of PLA2 activities have been identified in Toxoplasma

lysates [17,18], although no actual genes or proteins have been

characterized. Previous research showed that a general, irrevers-

ible phospholipase A2 inhibitor, 4-bromophenacyl bromide

(4-BPB) blocked parasite invasion into the host cell in a

concentration-dependent manner, without metabolically disabling

the parasite [19,20,21]. When host fibroblasts were pre-incubated

with this drug, penetration was not affected [19]. 4-BPB was also

shown to inhibit the PLA2 activity from Toxoplasma lysates [21].

Addition of exogenous PLA2s was shown to increase invasion and

the release of rhoptry proteins into the medium, although the clear

possibility that this latter result was due to parasite lysis in the

presence of the PLA2 was not excluded [18].

We have used 4-BPB to determine the effect of inhibiting PLA2s

on secretion of Toxoplasma proteins. We find that 4-BPB specifically

blocks rhoptry secretion and invasion but not microneme secretion

To gain some clue as to the relevant target of 4-BPB we made

mutants resistant to this drug and synthesized ‘click chemistry’

[22,23] forms of 4-BPB that could be used to covalently tag such

proteins. These results are presented below.

Results

4-BPB Treatment Has a Minor Effect on Attachment but
Markedly Delays Invasion

To determine the effect of 4-BPB on attachment and invasion of

T. gondii, we pretreated parasites for 15 minutes with different

concentrations of 4-BPB and observed their ability to invade using

immunofluorescence assays to detect differential staining with

antibodies to the parasite surface. Parasites were treated and then

the drug was washed away, since 4-BPB is an irreversible inhibitor.

When parasites were given 30 minutes to invade, 4-BPB

pretreatment showed a concentration-dependent inhibition of

invasion (Figure 1), similar to what was previously reported

[19,20,21]. These parasites remained attached extracellularly, with

most exhibiting protrusion of their conoids (data not shown). 4-

BPB pre-treatment resulted in a slight decrease in the efficiency of

attachment (Figure 1A, B) but this was considerably less than the

effect on invasion. The IC50 for 4-BPB-pretreatment was

,0.022 mM for invasions synchronized by shifting the parasites

from a non-permissive to invasion-permissive temperature

(Figure 1A). When Endo buffer was used to synchronize invasion,

the IC50 for inhibiting invasion increased to 0.98 mM, possibly

because the parasites showed an increase in attachment efficiency

at the same time (Figure 1B). A similar concentration-dependent

inhibition of invasion was seen after parasites were given 1 hr and

3 hrs to invade (data not shown).

When parasites were given 6 hrs and longer to invade, 4-BPB-

treated parasites were able to invade but failed to replicate. It

appeared that the parasites that were previously attached but that

had not yet entered the host cell were eventually able to invade,

possibly due to turnover of the target of 4-BPB. However, at 4-

BPB concentrations greater than 0.5 mM invaded parasites were

inhibited in replication and remained permanently in single-

parasite vacuoles even when they were given 48 hrs to invade and

replicate (Figure 1C) and failed to lyse out of their host cell after 2

weeks (data not shown).

4-BPB Inhibits Parasite Motility but Not Microneme
Secretion

To assess the effects of 4-BPB on motility, we examined the

number and length of Surface Antigen 1 (SAG1) ‘gliding trails’

deposited by parasites pretreated with 4-BPB as they migrated on

glass coverslips. Trails were visible for concentrations up to

0.5 mM. However, we saw virtually no trails deposited at 4-BPB

concentrations of 1 mM and greater (Figure 2). Thus it seems that

4-BPB is able to block gliding motility. These results contrast with

previous reports where 4-BPB was seen to have no effect on gliding

[19]. Presumably, this reflects a difference in the concentration of

active drug used in the two sets of experiments. To determine if

the inhibition of gliding motility might be due to a block in

microneme secretion, we looked at the secretion of microneme

protein 2 (MIC2) both constitutively and in the presence of 1%

ethanol and ionophore A23187. Using immunoblot analysis of

MIC2 release, we saw no effect on microneme secretion at

concentrations up to 25 mM (data not shown) which is much

greater than both the IC50 for invasion (0.022 mM) and the

concentrations at which we saw inhibition of motility (1 mM).

There was a slight inhibition of ethanol-induced MIC2 secretion

starting at higher concentrations (.30 mM) and leading to a

complete inhibition of microneme secretion by 50 mM, probably

due to off-target effects. We also looked at the ability of microneme

proteins AMA1 and MIC2 to localize to the surface of 4-BPB-

pretreated parasites using immunofluorescence and saw no

noticeable difference from untreated parasites even at concentra-

tions up to 50 mM (data not shown).

4-BPB Treated Parasites Do Not Appear to Secrete
Rhoptry Proteins into Evacuoles or Host Nuclei

We looked at the ability of 4-BPB pretreated parasites to secrete

rhoptry proteins by immunofluorescence assay. Upon treatment

with 4-BPB, uninvaded parasites showed rhoptry protein 1

(ROP1) only in their rhoptries, and not in evacuoles (Figure S1).

We also looked by antibody-staining at the ability of 4-BPB-treated

parasites to secrete the rhoptry proteins PP2C-hn and ROP16 into

the host cells (wherein these proteins normally migrate to the host

cell nucleus). No PP2C-hn or ROP16 was detectable anywhere

except for the rhoptries of uninvaded 4-BPB treated parasites (data

not shown). In addition we looked for the downstream effect of

ROP16, the localization of phosphorylated signal transducer and

activator of transcription 3 (STAT3) and STAT6 in the nuclei of

host cells, and failed to see this when parasites were pretreated

with 4-BPB. It should be noted that when parasites eventually

invade after 6 hrs, this was accompanied by rhoptry secretion into

evacuoles and host nuclei (data not shown).

As a more sensitive assay for secretion of rhoptry proteins into

host cells, we used a parasite line where the rhoptry protein

toxofilin has been fused to beta-lactamase [24]. The presence of

beta-lactamase activity inside the host cell can be readily detected

in normal infection using a FRET-based assay involving a

substrate for the enzyme (cephalosporin) linking two fluorescent

molecules (fluorescein and coumarin) in the compound CCF2-

AM. 4-BPB treatment completely blocked all detectable introduc-

tion of the toxofilin-beta-lactamase fusion into the host cell

(Figure 3). In contrast, cytochalasin-D, which is a known inhibitor

of invasion, had no measurable effect in this respect. Hence,

4-BPB Inhibits Rhoptry Release
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4-BPB appears to block invasion at a step upstream of the effect of

cytochalasin-D, i.e., before rhoptry protein release.

4-BPB Does Not Inhibit Parasite Egress
Host-cell exit can be artificially triggered by the use of the

calcium-ionophore A23187 [25]. When infected cells were treated

for 15 mins with up to 50 mM 4- BPB and then exposed to up to

2 mM A23187 for 10 minutes, the efficiency and speed of egress

was not significantly different from that seen in untreated cultures

(data not shown).

4-BPB Treated Parasites Fail to Secrete RON4 and Form a
Moving Junction

The above assays concerned introduction of proteins that

originate in the rhoptry bulbs and are injected into the host cell.

Rhoptry neck proteins (RONs) are released at the earliest points

of invasion and, in collaboration with AMA1, form the circular

ring of contact between the parasite and host plasma membranes

known as the ‘‘moving junction’’ [3,5]. To determine if release of

these RON proteins is also affected by treatment with 4-BPB, we

looked at the ability of treated parasites to secrete RON4. Using

immunofluorescence assay, we readily detected RON4 only in

the region of the rhoptry necks; parasites were blocked in

invasion with their conoids protruded, no moving junctions were

observed and no RON4 was seen outside the rhoptries (Figure 4).

This is very different from the RON4 localization at the apical tip

of the parasite during early invasion in untreated parasites, or

when parasite invasion was blocked using cytochalasin D, as has

been previously noted [3,5]. RON4 rhoptry neck staining also

remained distinct and apical to rhoptry bulb staining when

parasites were co-stained with RON4 and the rhoptry bulb

marker ROP1 (Figure S2). In fact, the RON4 localization in 4-

BPB treated parasites is similar to what was recently described for

Toxoplasma mutants in which expression of the microneme

protein MIC8 is depleted [7]. Parasites in which MIC8 was

depleted showed no further differences in invasion efficiency

when treated with 4-BPB (Markus Meissner, personal commu-

nication). This could indicate a link between MIC8 and the target

of 4-BPB since if MIC8 acted upstream of the target (perhaps as a

surface receptor triggering this cascade) there would be no

change in the 4-BPB phenotype. Collectively, the above results

indicate 4-BPB blocks the invasion process between release of

micronemal proteins, such as AMA1, and subsequent release of

rhoptry (neck and bulb) proteins.

Figure 1. 4-BPB inhibits parasite invasion, attachment, and replication. The percentage invasion or attachment of 4-BPB treated parasites
was assessed relative to controls. Parasites were added to HFF monolayers under conditions that block invasion (low temperature (A) or ‘‘Endo’’
buffer (B)). 30 minutes after release of the block (warming to 37uC (A) or switching to DMEM (B), invasion and attachment were assayed by
immunofluorescence staining with antibodies to surface antigen 1 (SAG1). Attachment was distinguished from invasion by sequential staining with
mouse- or rabbit-anti-SAG1 before/after permeabilization. Best-fit curves were plotted and the IC50 for invasion was calculated. (C) 4-BPB-treated
parasites were allowed to infect monolayers for 48 hrs and the percentage of total vacuoles that had more than one parasite was plotted across
4-BPB concentrations. Parasites were observed using anti-SAG1 antibodies in an immunofluorescence assay.
doi:10.1371/journal.pone.0008143.g001

4-BPB Inhibits Rhoptry Release
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Chemically Modified Forms of 4-BPB Can Be Used to Tag
Putative Targets

To begin to determine the relevant target of 4-BPB, two

methods were used. The first was to use reactive (‘‘click’’)

derivatives of 4-BPB that would covalently attach to the drug’s

target(s) and which could then be used as a tag to isolate those

targets [22,23]. To do this, organic synthesis methods were used to

replace the 4-bromo of 4-BPB with a 4-propargyl-oxy group that

could be used for ‘click chemistry’. The 4-azido substituted

derivate is commercially available and was purchased. We will

refer to these compounds as 4-propargyl-oxy (4-PPB) and 4-azido

(4-APB). Both 4-PPB and 4-APB showed approximately the same

concentration-dependent inhibition of parasite invasion and

rhoptry secretion as 4-BPB, indicating that the 4-bromo is not

required for the activity of the compound (data not shown).

The propargyl (alkyne) and azido groups are bioorthogonal

reaction partners. That is, they are inert under physiological

conditions but can react with each other under special conditions

(Cu(I) catalysis). Thus, an alkyne-modified protein can be tagged

using an azide-conjugated biotin or, vice versa, an azide-modified

protein can react with an alkyne-derivatized biotin [22,23]. To

apply this technique to our system, purified parasites were exposed

to either 1 mM 4-APB or 0.5 mM 4-PPB for 10 minutes and then

lysed in 1% NP-40 lysis buffer. Next, the click reaction was

performed to tag drug-targeted proteins, and the resulting lysates

were conjugated to biotin and the tagged proteins purified using

Streptavidin beads. These were resolved by SDS-PAGE and silver

staining (Figure 5). The results indicated that the click chemistry

was highly specific for drug-modified targets, since very few bands

were observed when parasites were treated with DMSO or when

the wrong tag-inhibitor combination was used. The many bands

seen when the correct click tag-inhibitor combination was used

and the fact that the patterns were highly similar with both

compounds indicates that 4-APB and 4-PPB react with a large

Figure 3. 4-BPB inhibits secretion of a toxofilin-beta-lactamase fusion whereas cytochalasin D does not. HFF cells were infected with
RH or RH:toxofilin-BLA parasites pretreated with either DMSO, 10 mM 4-BPB or 1 mM cytochalasin D. Invasion was allowed to proceed for 1 hour
followed by loading with the cleavable FRET substrate CCF2-AM for 1 hour. The cells were then washed, trypsinized and examined with a 407 nm
krypton laser on a modified LSR II flow cytometer (BD, San Jose, CA) for side scatter (SSC) and for the detection of cleaved coumarin in the 410–
450 nm channel (‘‘pacific blue’’ channel). Percentage of total events that are positive for coumarin are also indicated in each plot.
doi:10.1371/journal.pone.0008143.g003

Figure 2. 4-BPB inhibits parasite gliding motility. Parasite gliding
motility was indirectly assayed by looking for their ability to lay down
surface antigen 1 (SAG1) trails on coverslips coated with 5% fetal bovine
serum (FBS). Parasites were released from Endo buffer motility block,
exposed to medium (A) or 1 mM 4-BPB (B), and allowed to move for 5
minutes prior to fixation. Fixed cells were incubated with anti-SAG1
antibody to visualize SAG1 trails in an immunofluorescence assay.
Parasites were in a slightly different focal plane than the trails and as a
result are out of focus.
doi:10.1371/journal.pone.0008143.g002

4-BPB Inhibits Rhoptry Release
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number of targets. 4-PPB was also observed to be more reactive

than 4-APB for the click reaction, which is typical of the

propargyl-containing inhibitor in click reactions.

To determine the identity of the bands tagged with the ‘‘click’’

reagents, mass spectrometry was used. The bands resolved by

silver staining were excised and analyzed by LC-MS/MS. While

many proteins were thus identified, none were identifiably a

phospholipase and none corresponded to a protein whose

conjugation to the drug would be expected, a priori, to block

rhoptry secretion (i.e., none were related to proteins known to be

involved in membrane fusion or signaling in other systems) (see

Table S1 and Table S2 for a list of the top 100 targets identified

using 4-PPB and 4-APB respectively.)

Generation and Characterization of 4-BPB-Resistant
Mutants

To help identify which of the many targets of 4-BPB is key to

rhoptry discharge, a genetic approach was taken. Wild-type

parasites were treated with the chemical mutagen N-ethyl N-

nitrosourea to generate a library of parasites harboring different

point mutations. These were then exposed to 4-BPB to select

parasites that could grow in the presence of the drug. Unmutagen-

ized parasites were all nonviable after 2 rounds of selection, while

rare individuals within the mutagenized populations were able to

grow and lyse host cells successfully at concentrations up to 5 mM 4-

BPB after 13 rounds of selection. Several clonal lines were obtained

from this population of 4-BPB-resistant parasites and all were shown

to be able to form plaques at 5 mM 4-BPB, a concentration at which

no plaques were formed by wild-type parasites (data not shown). To

determine the nature of the resistance to 4-BPB, seven clones were

analyzed with respect to mean time for invasion and growth rate

once inside the host cells (as described above, 4-BPB both retards

invasion and inhibits growth once inside). In all seven cases, there

was no significant difference in the speed of invasion compared to

wild-type parasites but given enough time, the 4-BPB treated

mutants were able to eventually invade, replicate and lyse out of

host cells, unlike wild-type parasites (data not shown). Hence, for all

seven mutant lines, resistance to the drug appeared to be at the level

of not being inhibited once inside the host cell rather than at the

level of rhoptry secretion and invasion.

Mutants Showed No Difference from Wild-Type by Click
Chemistry

Despite the fact that the 4-BPB-resistant mutants did not have

the desired phenotype in terms of rhoptry discharge and invasion,

Figure 4. 4-BPB blocks secretion of RON4 out of the rhoptry
necks. HFF monolayers were infected with parasites pre-treated with
either DMSO, 10 mM 4-BPB or 1 mM cytochalasin D. Invasion was
allowed to proceed for 3 minutes after which cells were fixed and
visualized by immunofluorescence microscopy. An anti-SAG1 antibody
was used to stain the surface of extracellular parasites, followed by
permeabilization and staining with an anti-RON4 antibody. The
corresponding phase microscopy image is included to the right of
each fluorescence image.
doi:10.1371/journal.pone.0008143.g004

Figure 5. 4-BPB tags a large number of proteins by click
chemistry. Parasites were treated with either DMSO, 4-PPB or 4-APB
and then lysed. The supernatants were then treated with the alkyne- or
azide-conjugated biotin-tags, and click chemistry was used to label the
targets of the 4-BPB click derivatives. These targets were then purified
using streptavidin-conjugated beads and resolved by SDS-PAGE and
silver staining. The resulting bands in the silver-stained gel were cut out
for identification by LC-MS/MS. Parasites were either treated with
DMSO, 0.5 mM 4-PPB or 1 mM 4-APB for 10 minutes, followed by lysis in
1% NP-40 buffer. Each of the lysates was treated with either the 4-APB-
tag or the 4-PPB-tag during the click reaction. Lanes are labeled with
the inhibitor (DMSO (lanes 1,2), 4-PPB (lanes 3,4), 4-APB (lanes 5,6)) and
the click tag (4PPB-tag (lanes 1,3,5) or 4-APB-tag (lanes 2,4,6)) that the
corresponding sample was treated with.
doi:10.1371/journal.pone.0008143.g005

4-BPB Inhibits Rhoptry Release
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we sought to determine the identity of the gene in which a

mutation had conferred a drug-resistant growth phenotype. To do

this, the seven 4-BPB resistant mutants were compared to wild-

type parasites by click chemistry, biotin tagging and SDS-PAGE.

The results showed no differences in the banding pattern between

any of the mutants and wild-type parasites (data not shown). The

nature of the difference in the mutants and how that confers

4-BPB-resistance, therefore, remain unknown.

Discussion

We have shown that 4-BPB is a potent reagent that resolves two

previously inseparable aspects of invasion, microneme and rhoptry

secretion. This provides new information about the initial

secretion events: microneme proteins are able to be secreted onto

the parasite surface despite the inhibition of rhoptry secretion.

This strongly argues that micronemes do not need to fuse to

rhoptry necks to secrete and that formation of the MJ complex, a

mix of microneme and rhoptry neck proteins, most likely occurs at

the parasite surface. This result complements a recent report

showing that two of the MJ proteins, micronemal AMA1 and

rhoptry neck protein RON2, form an extremely tight interaction if

present in the same compartment but pass through the secretory

pathway at different times [4]. These latter authors also argue that

the complex forms only once the components reach the surface of

the parasite. Interestingly, 4-BPB also blocks invasion by

Plasmodium falciparum blood stages (Moritz Treeck, personal

communication), suggesting that the drug is blocking a common

pathway of rhoptry secretion in both parasites.

We have shown that 4-BPB blocks motility of extracellular

tachyzoites. Micronemes are known to be involved in parasite

gliding motility, but microneme secretion was unaffected at drug

concentrations that affected motility. This suggests that the drug

affected one or more parasite proteins involved in motility but

unrelated to microneme secretion. Since rhoptry discharge has

never been linked to motility, the target of 4-BPB that affects

motility is likely different from the target affecting rhoptry

function. The possibility that rhoptry discharge during invasion

is dependent on motility and that just one target of the drug affects

both processes seems unlikely as release of rhoptry neck proteins

occurs before invasion. The data with the ‘‘click’’ versions of the

4-BPB clearly support the notion that there are multiple targets for

this drug.

Despite its ability to inhibit motility, 4-BPB did not also appear

to have an effect on parasite egress. When monolayers, containing

parasites in intracellular vacuoles, were treated with the drug at

concentrations as high as 50 mM, we saw no effect on egress. It is

unlikely that the absence of an effect on egress is due to the lack of

penetration of the drug, since the drug is predicted to readily enter

the host cell and the parasite vacuole. But this possibility cannot be

discounted. We could not use concentrations higher than 50 mM,

as at those concentrations we started to see toxicity effects on the

fibroblasts.

4-BPB is an irreversible inhibitor, and once parasites were pre-

treated with it, they were inhibited for invasion for about 6 hrs,

despite no drug being present. We also saw no effect when host

cells were pre-treated, so the target(s) involved in invasion and

rhoptry secretion appear to be parasite-specific. The ability of

treated parasites to invade 6 hrs after treatment may be because

the relevant target of the drug is turned over in this time period.

However, despite being able to invade after 6 hrs, these parasites

were still blocked for replication and never formed more than

single-parasite vacuoles. They also appeared unable to exit host

cells for at least the two weeks that cultures were examined. We

were able to get mutants that were resistant to this effect on

replication by selecting mutagenized populations with 4-BPB. The

fact that these parasites were still blocked in early invasion and

rhoptry secretion, however, argues that the mutations were likely

in a drug target unrelated to invasion and secretion. Interestingly,

the parasites seem to be more easily selected for resistance to the

replication target, perhaps because resistance to this represents a

stronger selective pressure on the parasites than a block in early

invasion and rhoptry secretion. This is consistent with the fact that

the effect on invasion is a retardation rather than the absolute

block in replication.

Our results indicate that 4-BPB has many more parasite targets

than previous work had suggested. Our MS analysis failed to

identify candidate PLA2s among them. This may be because

PLA2s are not well conserved between species, and consist of a

very large class of enzymes [26,27]; as a result, there may be

PLA2s among the identified proteins that are not recognizably

such by BLAST analysis. The lack of candidate PLA2s among

4-BPB’s putative targets may also be because, based on its

chemical structure, 4-BPB is predicted to react with any accessible

cysteine or histidine. Thus it could have a substantially broader

class of targets than PLA2s alone, and the target responsible for

the effects we observed may not be a PLA2.

Despite these limitations, our results show that 4-BPB can be

used to specifically uncouple rhoptry and microneme secretion.

The drug affects parasite motility and invasion, but not attachment

or egress. Hence, 4-BPB, the modified ‘click chemistry’ forms of it,

and the resistant mutants, represent useful tools to further study

these processes.

Materials and Methods

Parasite and Host Cell Culture
Toxoplasma gondii tachyzoites of the RH strain were maintained

by serial passage in HFF monolayers. HFFs were grown in

Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen,

Carlsbad, CA) supplemented with 10% heat-inactivated fetal calf

serum (FCS) (Invitrogen, Carlsbad, CA), 2 mM glutamine,

100 U/ml penicillin, and 100 mg/ml streptomycin.

Antibodies
The following monoclonal antibodies were used: DG52 (anti-

SAG1); Cl22 (anti-AMA1; Tg49 (anti-ROP1), a generous gift from

Joseph Schwartzman); 6D10 (anti-MIC2) was provided by Vern

Carruthers; and 9D6 (anti-PP2C-hn) was from Peter Bradley.

Rabbit antibodies to RON4 (Alexander et al. 2005) and SAG1

(provided by Lloyd Kasper) were also used. 3F10, an anti-

Hemagglutinin (anti-HA) antibody was obtained from Roche (Palo

Alto, CA), and antibodies specific for the phosphorylated forms of

STAT3 (phospho-Tyr705) and STAT6 (phospho-Tyr641) from

Cell Signaling Technologies, (Danvers, MA). Fluorescent second-

ary antibodies (Invitrogen/Molecular Probes, Carlsbad, CA) and

Hoechst dye (Polysciences, Inc., Warrington, PA) were also used.

Chemical Handling and Synthesis
Cytochalasin D (Sigma) [28] and A23187 (Calbiochem) [29]

were used as previously described. 4-bromophenacyl bromide

(4-BPB) and 4-azidophenacyl bromide (4-APB) were obtained

from Fluka. These chemicals were highly sensitive to moisture and

lost potency if stored in solution. As a result they were stored as dry

powder at room temperature in the presence of a dessicant.

Working stocks of appropriate concentrations were created fresh

in dimethyl sulfoxide (DMSO) and used within 0.5 hours.
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Synthesis of 4-PPB
The compound 4-propargyl-oxyphenacyl bromide (4-PPB) was

synthesized according to the route depicted in Figure 6. In brief, 4-

hydroxybenzoic acid (Sigma) was esterified under the influence of

thionylchloride (1.1 equivalent) and methanol (0.2 M). After

completion of the reaction, as monitored by thin-layer chroma-

tography (TLC) analysis, the solvent was removed by evaporation

under reduced pressure. To get rid of traces of acid, the residue

was taken up in Ethyl acetate (EtOAc), subsequently washed with

saturated sodium bicarbonate and brine, dried (magnesium

sulfate), filtered and concentrated under reduced pressure. Next,

the hydroxyl group was converted into a propargyl ether using

sodium hydride and propargyl chloride. Briefly, sodium hydride

(1.1 equivalent) was added to a solution of the starting material in

N,N-dimethylformamide (DMF; 0.2 M concentration) cooled in

an ice bath. After ,15 minutes, propargyl chloride (1.1 equivalent)

was added and reaction progress was monitored by TLC analysis.

After completion of the reaction, several drops of methanol were

added to quench the excess base. The reaction mixture was

evaporated to dryness under reduced pressure. The residue was

taken up in EtOAc and washed with saturated sodium bicarbonate

and brine, dried (magnesium sulfate), filtered and concentrated

under reduced pressure. This was followed by purification by

column chromatography. Next, the methyl ester was saponified

with sodium hydroxide. The starting material was dissolved in

100% methanol (cooled in ice) and 1.1 equivalent of a 1 M sodium

hydroxide solution was added dropwise. The reaction mixture was

brought to room temperature and stirred until complete (as

determined by TLC analysis). Most of the methanol was

evaporated, and EtOAc was added to the residue. The water

layer was acidified with 1N HCl, and extracted twice with EtOAc.

Combined EtOAc layers were washed with brine, dried

(magnesium sulfate), filtered and concentrated. The bromomethyl

ketone function was introduced as described previously [30].

Briefly, this involved a three step process: the carboxylic acid was

converted to the acid chloride using thionylchloride in dichloro-

methane and this activated species was reacted with diazomethane

to form a diazomethyl ketone, which was converted to the final

bromomethyl ketone upon exposure to hydrogen bromide in

acetic acid. The final product was purified by column chroma-

tography and analyzed by mass-spectrometry and nuclear

magnetic resonance spectroscopy, which confirmed indicated

structure.

Parasite Purification
Monolayers were mechanically lysed by passage through a 27-

gauge needle. Large debris was removed by centrifugation at

1006g for 5 min at 10uC. The resulting supernatant was then

centrifuged at 3006g for 10 min at 10uC. The 3006g pellet,

which contains intact parasites and membranous material from

infected HFFs, was resuspended in 2.5 ml of phosphate buffer

saline (PBS) and loaded onto a PD-10 desalting column (GE

Healthcare, Piscataway, NJ) pre-equilibrated with 30 ml PBS. An

additional 3.5 ml of PBS was added to the column, and the

displaced buffer was collected as the elution fraction. The elution

fraction is enriched for intact parasites while secreted proteins and

debris from the infected HFF lysate remain on the column. To

avoid clogs, no more than 2.56107 infected HFF equivalents were

added to each column.

Immunofluorescence
Purified parasites in room-temperature PBS were treated for 15

minutes with different concentrations of freshly prepared 4-BPB or

with DMSO as a control. Parasites were spun down and washed

twice with PBS, following which HFF monolayers on glass cover slips

were infected with parasites at a multiplicity of infection (MOI) of

,10. To synchronize invasion, parasites were allowed to attach to

HFF monolayers seeded on cover slips for 20 minutes at ,1uC, a

temperature that prevents invasion. The cover slips were then shifted

to 37uC, an invasion-permissive temperature, for 15 minutes before

fixation. Alternatively, invasion was synchronized using Endo buffer

(44.7 mM K2SO4, 10 mM MgSO4, 106 mM sucrose, 5 mM

glucose, 20 mM Tris–H2SO4, 3.5 mg/mL BSA, pH 8.2) [31].

Invasion was allowed to proceed for 30 minutes, 1 hr, 3 hrs,

6 hrs, 24 hrs and 48 hrs, after which infected cells were washed

thrice in PBS and fixed in PBS plus 4.0% (w/v) formaldehyde for

20 minutes. The cover slips were washed in PBS and blocked in

PBS plus 3% (w/v) bovine serum albumin (BSA) for 2 hrs. After

staining with rabbit anti-SAG1 antibody, monolayers were

permeabilized using PBS containing 3% BSA and 0.2% (v/v)

Triton X-100 and then incubated with mouse anti-SAG1

antibody. Parasites staining with rabbit-anti-SAG1 were scored

as extracellular, while parasites staining only with mouse-anti-

SAG1 were scored as intracellular.

To assay for the ability of microneme proteins to get to the

parasite surface, parasites on coverslips coated with 5% FBS were

fixed after 30 minutes. They were then stained with anti-SAG1

Figure 6. Synthesis of 4-PPB. The synthesis of 4-propargyl-oxy-phenacylbromide (4-PPB) starting with 4-hydroxybenzoic acid is schematically
presented. For details, see Materials and Methods.
doi:10.1371/journal.pone.0008143.g006
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antibodies, as well as either anti-AMA1 or anti-MIC2 antibodies

without permeabilization.

To detect rhoptry secretion, parasites were allowed to invade for

30 minutes or 1 hr and stained with anti-SAG1 antibody, then

permeabilized and stained with either anti-ROP1 or anti-PP2C-hn

antibodies. Analysis of evacuoles was performed as described

previously [28]. An anti-HA antibody was also used to detect a C-

terminally HA-tagged ROP16 fusion protein secreted by parasites

(described in [15]). Antibodies to phopho-STAT3 and phospho-

STAT6 were also used to assay for signaling downstream of

ROP16 secretion as described previously [15].

To detect secretion of rhoptry neck proteins and moving

junction formation, parasites were allowed to invade for 3 minutes

after shifting them to invasion-permissive temperature, and after

fixation and staining with anti-SAG1 antibody, were permeabi-

lized and then stained with anti-RON4 antibody. Parasites were

also treated with 1 mM cytochalasin D and allowed to invade as

above to contrast RON4 secretion during inhibition of invasion by

cytochalasin D with inhibition by 4-BPB.

Gliding motility was assessed indirectly by immunofluorescence

analysis of SAG1 in trails [32]. After treatment with 4-BPB,

parasites were immobilized in Endo buffer; [33]) and were seeded

onto coverslips that had been coated overnight with 5% fetal

bovine serum. After 20 min at 37uC, the K2SO4 buffer was

removed and replaced with DMEM and the parasites were

incubated for 5 min more at 37uC. The parasites were then fixed

as described before and stained using anti-SAG1 antibody.

Fixed cells were incubated for an hour with primary antibodies

diluted in PBS/3%BSA/0.01% Triton X-100. After 3–5 washes in

PBS, the samples were incubated for one hour with secondary

antibodies diluted in PBS plus 3% BSA. After 3–5 washes in PBS,

samples were mounted in Vectashield (Vector Laboratories,

Burlingame, CA) on microscope slides.

Phase and fluorescence images were captured on a Hamamatsu

Orca100 CCD camera coupled to an Olympus BX60 microscope

and were processed using Image-Pro Plus 2.0 (MediaCybernetics,

Silver Spring, MD) and Photoshop CS4 (Adobe Systems, San Jose,

CA). Image processing was limited to cropping, pseudo-coloring,

merging of individual color channels into single images, and

adjusting of tonal ranges to reproduce observations faithfully.

4-BPB Titration
Data was collected from 10 fields per coverslip, for each 4-BPB

concentration from independent experiments. The number of

parasites staining either only with mouse-anti-SAG1 (intracellular)

or only with rabbit-anti-SAG1 (extracellular) were counted and

this number was used to calculate the percentage of invaded

parasites out of the total staining with either antibody. The total

number of parasites per field at each concentration of 4-BPB was

used as a measure of parasite attachment. Percentage invasion and

attachment at each concentration relative to the DMSO-treated

control parasites was calculated. At time-points of invasion 6 hrs

and longer, the number of vacuoles containing a single parasite

versus multiple parasites was also counted, in order to calculate the

percentage of the total vacuoles that had more than one parasite.

The data was plotted using GraphPad Prism (GraphPad Software,

La Jolla, CA) and the four parameter logistic model was used to

calculate the IC50 of 4-BPB for invasion and attachment.

b-Lactamase Assay
This assay was originally described for assessing introduction of

bacterial effector proteins [34] based on a mammalian reporter

system [35]. It has been adapted for use in Toxoplasma [24]. Briefly,

for visualization of b-lactamase (BLA) activity, RH or toxofilin-

BLA parasites were treated with DMSO, 1 mM cytochalasin D, or

0.5, 5 or 50 mM 4-BPB for 10 minutes. Monolayers of HFF cells

grown on glass chamber slides were infected with the treated

parasites at a nominal MOI of 10 and incubated at 37uC. At

various times post-infection, the infected HFF were incubated with

the BLA substrate CCF2-AM (Invitrogen, Carlsbad, CA) at a 1X

concentration in complete DMEM for 1 hour at room temper-

ature in the dark. Live, infected cells were then visualized using a

Leica SP2 AOBS Confocal Laser Scanning Microscope (Cell

Sciences Imaging Facility, Stanford University, Stanford, CA) with

a blue diode 405 nm laser for excitation and with detection filters

set at 410–450 nm for coumarin and 493–550 nm for fluorescein.

For flow cytometry, RH or toxofilin-BLA parasites were treated

with 1 mM cytochalasin D, 10 mM 4-BPB or with DMSO as a

control for 10 minutes and then added to monolayers of HFF in 6-

well dishes at a nominal MOI of 10. The infected cells were

incubated at 37uC for 1 hour and loaded with the BLA substrate

CCF2-AM at a 1X concentration for 1 hour at room temperature

in the dark. The cells were washed with 1X PBS and trypsinized.

The resuspended cells were examined on a modified LSR II flow

cytometer (BD, San Jose, CA) with the 407 nm krypton laser for

the detection of coumarin (in the pacific blue channel).

Egress
Egress assays were performed as previously described [36].

2 mM A23187 was used for 10 mins and results were observed by

phase microscopy.

Microneme Secretion
For preparation of excretory-secretory antigens (ESA), approx-

imately 108 tachyzoites were washed, treated with 4-BPB as

described above, and resuspended in 1 ml of DMEM containing

20 mM Hepes and 1% FBS. They were then stimulated to

discharge micronemes either by addition of calcium ionophore

A23187 to a final concentration of 2 mM or ethanol to a final

concentration of 1.0%, and incubated at 37uC for 30 minutes, as

described previously [29]. Cells were removed by centrifugation

at 20006g and the supernatant and pellet were analyzed on

immunoblot.

Western Blot Analysis
Protein samples were separated by SDS-PAGE and transferred to

nitrocellulose membranes. Typically, membranes were blocked for

three hours in PBS-T (PBS, 0.1% Tween-20) containing 5% (w/v)

milk, incubated for one hour with primary antibodies, washed thrice

with PBS-T, incubated for one hour with secondary antibodies, and

washed thrice with PBS-T. Primary and secondary antibodies were

diluted in PBS-T plus 1% (w/v) milk. Horseradish peroxidase-

conjugated goat anti-rabbit and goat anti-mouse antibodies (Bio-

Rad, Hercules, CA) were used as secondary antibodies. Horseradish

peroxidase activity was visualized using the SuperSignal West Pico

Chemiluminescent Substrate (Pierce, Rockford, IL).

Protein Labeling and Click Chemistry
Parasites were purified as described above and treated either with

DMSO, 4-PPB or 4-APB at different concentrations for 15 minutes

at room temperature. Parasites were spun down and washed three

times in PBS, and resuspended in 1% NP-40 lysis buffer containing

Complete (Roche) protease inhibitors. After being left on ice for

2 hrs, parasites were spun down for 10minutes at 10006g at 4uC,

and the supernatant was used for the click reaction.

Click chemistry was performed as described previously [22,23].

Briefly, 50 mM of the alkyne- or azide-conjugated biotin-tags (50X
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stock in DMSO), 1 mM tris (2-carboxyethyl)phosphine (TCEP

from Sigma; fresh 50X stock in water), 100 mM tris-(benzyltria-

zolylmethyl)amine (TBTA) ligand (17X stock in DMSO:t-Butanol

1:4) and 1 mM copper sulfate (CuSO4; 50x stock in water) were

added to each sample. These were then allowed to react for 1 hr at

room temperature with rocking. Samples were then either mixed

with sample buffer for SDS-PAGE and subsequent treatment with

streptavidin-HRP (Sigma), or used directly for precipitation.

For precipitations, the samples were incubated for 2 hrs with

UltraLink streptavidin beads (Pierce) that had been pre-washed in

PBS. The beads were then spun down and washed three times each

with 0.05% sodium dodecyl sulfate (SDS), 1 M sodium chloride,

10% ethanol, and once with PBS. After spinning down the beads

and removing the supernatant, the beads were resuspended in

sample buffer, vortexed and boiled for 5 minutes. Following this the

samples were analyzed by SDS-PAGE in precast 12% protein gels

followed by staining with silver stain plus (Bio-Rad). Bands were cut

out and sent for analysis by LC-MS/MS.

LC-MS/MS Analysis
The samples were analyzed using a Thermo Fisher Scientific LTQ

FTMS mass spectrometer, (San Jose, California). The precursor survey

scan was carried out on the FTMS with 100,000 resolution, using a

scan range of 400–1400 m/z. Five MS/MS scans were performed on

the top five peaks following the precursor scan. Data was searched

using the data base search engine Mascot, (London, England).

Mutagenesis
Chemical mutagenesis of RH parasites was done using the

standard protocol with N-ethyl N-nitrosourea (ENU; 75 mg ml21)

at 37uC for 1 h [37]. Mutagenized parasites were passaged twice

in 175 cm2 flasks and split into two independent populations prior

to selection. A control population was treated with DMSO instead

of ENU.

Selection
Parasites from the two mutagenized populations were purified

and treated with 1 mM 4-BPB for 15 mins as described above. The

parasites were spun down and washed three times in PBS before

they were allowed to invade fresh HFFs in 75 cm2 flasks.

Following expansion of these populations, selection with 1 mM

4-BPB was repeated and followed by growing the parasites on

25 cm2 flasks. 3 rounds of selection at 1 mM 4-BPB were followed

by 5 rounds at 2 mM 4-BPB and another 5 rounds at 5 mM 4-BPB.

Parasites that survived these 13 rounds of selection were plated

onto monolayers in a 96-well plate at a limiting dilution to isolate

single clones. Single clones were screened in a plaque assay for

resistance to 5 mM 4-BPB. Seven such mutant clones were

isolated, 4 from one independent population and 3 from the

other. The plaque assay was performed as described previously

[38]. Monolayers of HFF, grown in six-well plates, were infected

with 50–250 tachyzoites per well. After 1 week of incubation at

normal growth conditions (37uC, 5% CO2), cells were fixed for 1

minute with 220uC 100% methanol, stained with crystal violet for

5 minutes and washed once with PBS. Documentation was

performed with a Nikon SMZ 1500 binocular at 70-fold

magnification.

Mutants were characterized by immunofluorescence assays as

described previously, to determine their ability to invade and

secrete rhoptries in the presence of 4-BPB. Click chemistry and

subsequent analysis by immunoblot to compare the mutant clones

to the wild-type parasites was performed as described above.

Supporting Information

Figure S1 4-BPB inhibits secretion of ROP1 evacuoles - HFF

monolayers were infected with parasites pre-treated with either

DMSO or 10 mM 4-BPB or 1 mM cytochalasin D. Invasion was

allowed to proceed for 3 minutes following which monolayers were

fixed and visualized by immunofluorescence microscopy. An anti-

SAG1 antibody was used to stain the surface of extracellular

parasites, followed by permeabilization and staining with an anti-

ROP1 antibody. The corresponding phase microscopy image is

included to the right of each fluorescence image. Characteristic

intracellular ROP1 evacuoles were observed secreted by DMSO-

treated and cytochalasin D treated parasites, but were not

observed to be secreted by 4-BPB treated parasites. ROP1 signal

from inside the rhoptries is extremely weak since the permeabi-

lization condition used (100% ethanol at room temperature) is not

particularly efficient at permeabilizing the rhoptry organelles.

Found at: doi:10.1371/journal.pone.0008143.s001 (7.50 MB TIF)

Figure S2 RON4 and ROP1 show distinct localization in 4-BPB

treated parasites - HFF monolayers were infected with parasites

pre-treated with 10 mM 4-BPB. Invasion was allowed to proceed

for 3 minutes following which cells were fixed and visualized by

immunofluorescence microscopy. Following permeabilization with

100% ethanol, anti-RON4 and anti-ROP1 antibodies were used

to stain the rhoptry neck and rhoptry bulb compartments,

respectively. The corresponding phase microscopy image is

included to the right of the fluorescence image. RON4 did not

colocalize with ROP1 and appeared to show rhoptry neck

localization, apical to and quite distinct from ROP1 rhoptry bulb

localization.

Found at: doi:10.1371/journal.pone.0008143.s002 (1.49 MB TIF)

Table S1 List of top 100 targets identified by LC-MS/MS using

4-PPB, the alkyne click derivative of 4-BPB

Found at: doi:10.1371/journal.pone.0008143.s003 (0.13 MB

DOC)

Table S2 List of top 100 targets identified by LC-MS/MS using

4-APB, the azide click derivative of 4-BPB

Found at: doi:10.1371/journal.pone.0008143.s004 (0.12 MB

DOC)
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