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The tumour microenvironment regulates tumour progression and the spread of cancer in the body. Targeting the stromal
cells that surround cancer cells could, therefore, improve the effectiveness of existing cancer treatments. Here, we show
that magnetic nanoparticle clusters encapsulated inside a liposome can, under the influence of an external magnet, target
both the tumour and its microenvironment. We use the outstanding T2 contrast properties (r2 5 573–1,286 s21 mM21) of
these ferri-liposomes, which are ∼95 nm in diameter, to non-invasively monitor drug delivery in vivo. We also visualize the
targeting of the tumour microenvironment by the drug-loaded ferri-liposomes and the uptake of a model probe by cells.
Furthermore, we used the ferri-liposomes to deliver a cathepsin protease inhibitor to a mammary tumour and its
microenvironment in a mouse, which substantially reduced the size of the tumour compared with systemic delivery of the
same drug.

C
ancer is the second leading cause of death after cardiovascular
diseases in developed countries. Despite rapid developments
in medicinal and pharmaceutical chemistry, chemotherapy

is still a major challenge. In the last decade, the development of
effective targeted drug delivery systems for treating cancer has
been a top priority in biomedical technology. However, although
there have been methodological advances, stromal tumour com-
ponents (termed the tumour microenvironment1) are generally
not included in the treatment area. Recently, the tumour-cell-
centred view of the metastatic process has been revised, and research
regarding crosstalk between tumour cells and their surrounding
tissue supports the notion that the microenvironment determines
tumour progression at least as much as the tumour cells2. Thus, tar-
geting the stromal cells that constitute an integral part of the cancer
is a strategy that could greatly increase the effectiveness of tra-
ditional anticancer treatments. The tumour microenvironment
includes many diverse components, including extracellular matrix
components and various stroma cells, so active targeting mediated
by a specific ligand is not possible. An effective delivery system
that will target both tumours and their stromal components
remains to be developed3.

Magnetic drug targeting, using magnetic nanoparticles and an
external magnetic field focused on the target tissue, has already
been described as a promising approach for the specific delivery
of therapeutic agents4–9. Moreover, magnetic nanoparticles have
recently gained additional attention because of their potential as

contrast agents for noninvasive magnetic resonance (MR) imaging
(MRI)10–15. Two types of MR contrast agents are used to enhance
the visualization of properties correlated with patient anatomy
and physiology: T1 contrast agents that shorten the spin–lattice
relaxation time of nearby protons, and T2 contrast agents that
enhance spin–spin relaxation to reduce the signal of media-contain-
ing structures. Currently, the most prominent T2 contrast agents are
based on super-paramagnetic iron oxide nanoparticles, which, in
contrast to the T1 contrast agents, remain intravascular for a
longer time, enabling a longer image-acquisition time window.

We have developed a universal lipidated magnetic nanocarrier
(called a ferri-liposome) that has enhanced MRI contrast properties
and is effectively taken up by tumours and their stromal com-
ponents. Chemical compounds within the ferri-liposomes are suc-
cessfully released when administered in vivo and can be visualized
at tissue and cellular levels.

Development and characterization of ferri-liposomes
Ferrimagnetic iron oxide (magnetite, Fe3O4; FMIO) nanoparticles
were prepared by mechanochemical synthesis using saline crystal
hydrates16. The use of saline crystal hydrates instead of conventional
methods using anhydrous salts changes the solid-phase mechanism
to a soft mechanochemical synthesis in aqueous media, resulting in
a significantly increased reaction rate. This modification also results
in ultrasmall spherical particles with diameters of 3–14 nm (.70%
of particles were less than 8 nm; Fig. 1a,b).
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The main limiting factor in using magnetic nanoparticles in vivo
is their low colloidal stability. Therefore, to prevent their agglomera-
tion, we developed an optimized two-step procedure for preparing a
biocompatible aqueous colloidal system from powdered FMIO
nanoparticles, leading to a narrower particle size distribution of
nanoclusters (Fig. 1c; see Supplementary Methods). The concen-
tration of FMIO nanoparticles was measured by flame atomic
absorption spectrometry, and the unit average size of nanoparticles
was determined by dynamic light scattering (DLS) (Fig. 1d). The
resulting FMIO nanoparticles had a negative surface zeta
potential of 27.9+4.3 mV at pH 7.4 and 37 8C. In addition, their
suspension exhibited high colloidal stability under physiological
conditions as well as at other pH values and ionic strengths
(Supplementary Fig. S1).

Magnetic nanoparticles encapsulated within a phospholipid
bilayer, forming liposomes, have been reported to have considerable
structural and pharmacokinetic advantages for drug delivery11,17,18.
Owing to their ability to encapsulate both hydrophobic and

hydrophilic therapeutics, they prevent local dilution of the drug
and limit its interaction with the surrounding environment,
enabling reduction of the therapeutic dose and toxicity. In the
present work, stabilized FMIO nanoparticles were encapsulated in
sterically stabilized polyethylene glycol (PEG)-coated liposomes
(PEGylated, Stealth Liposomes), forming ferri-liposomes with a
diameter of 100 nm. Modification of the liposome surface with
PEG is known to greatly reduce the opsonization of liposomes
and their subsequent clearance by the reticuloendothelial (mono-
nuclear-phagocyte) system11,19–21, resulting in a substantially pro-
longed circulation half-life. This was confirmed in a cellular
experiment (Supplementary Fig. S2). The liposomes loaded with
FMIO particles appeared, under atomic force microscopy (AFM),
as spheroids with diameters of 0.09–0.11 mm (Fig. 1e), consistent
with the average diameter of 92.3 nm measured for ferri-liposomes
using DLS (Fig. 1f). Because of their size, hydrophobic and hydro-
philic character and biocompatibility, together with their internal
hollow space (Supplementary Fig. S3), the system of ferri-liposomes
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Figure 1 | Characterization of the magnetic nanocarrier system. Schematic on the left corresponds to the experimental data on the right. a, Transmission

electron micrographs of FMIO nanoparticles. Inset: corresponding electron diffraction pattern. b, Size distribution of FMIO nanoparticles (average size,

D¼ 6.65 nm). c, Field-emission gun scanning electron microscopy of the aqueous colloidal system of FMIO nanoparticles. d, DLS measurement of FMIO

colloidal dispersion showing the distribution of diameters of the nanoparticle clusters and their average size (D¼ 56.56 nm). e, AFM image of liposome-

encapsulated FMIO nanoparticles (ferri-liposome). f, Liposome size as determined by DLS (average size, D¼ 92.3 nm).
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enables simultaneous encapsulation of FMIO nanoparticles with
other substances such as pharmaceutical drugs or DNA, and their
subsequent targeted delivery in an organism.

MR contrast properties of FMIO nanoparticles
The MR contrast properties of the stabilized FMIO nanoparticles
were evaluated in vitro using 1% agarose phantoms (T2 ≈ 80 ms),
which simulate tumour tissue22. The phantoms contained two
types of FMIO nanoparticles with mean hydrodynamic diameters
of 39 nm and 57 nm, respectively. The longitudinal (T1) and trans-
verse (T2) relaxation times were measured at different concen-
trations of FMIO nanoparticles, and the relaxivities were
determined to be r1¼ 12 s21 mM21 and r2¼ 573 s21 mM21 for
the 39 nm nanoparticles and r1¼ 31 s21 mM21 and r2¼
1,286 s21 mM21 for the 57 nm nanoparticles (Fig. 2a). FMIO nano-
particles showed several-fold higher relaxivities than commercially
available super-paramagnetic iron oxide nanoparticles (Feridex,
Bayer HealthCare Pharmaceuticals)23 and the standard gadoli-
nium-based T1 contrast agent Magnevist (Bayer HealthCare
Pharmaceuticals) (Fig. 2a). Moreover, a 20–70% improvement in
the r2 relaxivity was found when compared to the best iron oxide-
based nanoparticles described in the literature24–26. The high r2
relaxivity may be due to clustering of the FMIO nanoparticles24,27,28,
and this is further supported by the higher relaxivity observed for
nanoparticles with a higher hydrodynamic diameter of clusters.
These results show that FMIO nanoparticles are high-performance
MRI contrast agents that enable highly sensitive T2-weighted MRI
measurements.

To verify the effectiveness of the FMIO nanoparticles as positive T1
and negative T2 contrast agents, we obtained T1-weighted and
T2-weighted images of the control phantom and of phantoms with
0.017 mM and 0.17 mM each of the 39 nm and 57 nm FMIO nano-
particles (Fig. 2b). The signal intensity of these phantoms was signifi-
cantly diminished on the T2-weighted MR scans, whereas the same
concentration of FMIO nanoparticles demonstrated enhanced MRI
signal on the T1-weighted images compared to the control phantom
(Fig. 2b). Hence, unique simultaneous T1 and T2 MR contrast proper-
ties of FMIO nanoparticles were demonstrated, enabling their use as
single contrast agents for both T1- and T2-weighted MR scans,
thereby enhancing the diagnostic properties of MR imaging.
Moreover, the twofold higher sensitivity of the 57 nm FMIO nanopar-
ticles relative to the smaller 39 nm nanoclusters in T2-weighted MR
scans (Fig. 2b) suggests the former to be extremely effective contrast
agents. However, in drug-delivery applications the smaller 39 nm
nanoclusters, with their still superior contrast properties, are preferable.

To demonstrate the effectiveness of the suspension of magnetic
nanoparticles on targeting and their MRI contrast properties, two
techniques for delivering FMIO nanoparticles into the agarose phan-
toms were used: (i) direct injection of the FMIO nanoparticle solution
with an 0.3 mm needle into the centre of the phantom (sample 2 in
Fig. 2c) and (ii) application of the FMIO nanoparticle dispersion to
the phantom surface by positioning the magnetic field (B¼ 0.33 T)
at the bottom of the vial (sample 4 in Fig. 2c). The MRI signal inten-
sity was compared with pure agarose phantoms (samples 1 and 3 in
Fig. 2c) and normalized to a small probe containing a solution of
CuSO4

.H2O (sample 5 in Fig. 2c). As seen on the T2-weighted MR
image and from the MR signal intensity profile (Fig. 2c), both delivery
methods were effective, demonstrating a clear difference between the
MR signal of the FMIO nanoparticles and the agarose phantom.
Moreover, the MR signal of sample 4 disappeared completely, indicat-
ing successful penetration of the FMIO nanoparticles through the
phantom matter as a result of targeting by an external magnetic
field. Collectively, these results demonstrate that FMIO nanoparticles
can be used for multifunctional targeted delivery, enabling simul-
taneous MR detection. In addition, the MRI contrast properties of
FMIO nanoparticles remain the same after their encapsulation into

the liposomes (Supplementary Fig. S4), supporting the use of ferri-
liposomes in medical applications.

Ferri-liposome as MRI-visible drug delivery system in vivo
To establish the efficacy of the prepared ferri-liposomes for in vivo
applications we used a genetically engineered mouse model of
human breast cancer (MMTV-PyMT), resulting in a widespread
transformation of the mammary epithelium and the development
of multifocal mammary adenocarcinomas29. Ferri-liposomes were
first demonstrated to be non-cytotoxic in mouse embryonic fibro-
blasts (MEFs) and primary mouse tumour cells (Supplementary
Fig. S5). Possible adverse effects of FMIO nanoparticles were also
evaluated in an acute toxicity experiment using rats. No significant
differences in blood biochemistry or histopathological analysis were
observed 7 and 12 days after administration between control
animals and animals treated with 500 mg kg21 FMIO nanoparticles
(Supplementary Table S1 and Fig. S6). Having shown that the
system was suitable for in vivo applications, ferri-liposomes were
injected intraperitoneally into an MMTV-PyMT tumour-bearing
mouse while a magnetic field was applied for 1 h to the first left
inguinal mammary tumour. Tumour tissue with a high MR signal
appears yellow-red on T2-weighted MR images (Fig. 3a), while
FMIO nanoparticles delivered by ferri-liposomes appear as a dark
area, 1 and 48 h post-injection (Fig. 3a, Supplementary Fig. S7),
confirming their successful targeting to the tumour region and
their apparent MRI contrast effect. Furthermore, as well as spread-
ing through the tumour tissue, nanoparticles were detected in the
tumour surroundings, the tumour microenvironment
(Supplementary Fig. S7). This ability of ferri-liposomes could be
of particular value for developing novel strategies to treat cancer,
with the further advantage of the possibility of being regulated by
a magnetic field (Supplementary Fig. S8). The effectiveness of the
system was confirmed by intravenous administration of ferri-lipo-
somes (Supplementary Fig. S9). Collectively, these results demon-
strate both the efficacy of ferri-liposomes for magnetic field
targeted drug delivery and the possibility of monitoring their distri-
bution by non-invasive MRI technology.

The intracellular delivery of targeted ferri-liposomes was vali-
dated in tumour and stromal cells using a fluorescent marker
(Alexa Fluor 555) as a model drug. The Alexa Fluor 555- functiona-
lized ferri-liposome suspension was incubated for 3 h with primary
MMTV-PyMT tumour cells and MEFs. Fluorescence microscopy
analysis revealed very efficient internalization of the Alexa Fluor
555 by both types of cells (Fig. 3b). Moreover, compartmentalization
of fluorescent particles in intracellular vesicles of primary tumour
cells and fibroblasts provides clear evidence for successful endocyto-
sis of the ferri-liposome cargo. This carrier system therefore rep-
resents a promising candidate for targeted drug delivery into both
the tumour and its microenvironment, enabling more effective
cancer therapy.

To confirm the release of drug encapsulated in ferri-liposomes
in vivo, we crossed MMTV-PyMT mice (PyMTtg/þ) with the
FVB/N mouse strain expressing firefly luciferase under the control
of the ß-actin promoter (FVB.luctg/þ)30. The resulting double trans-
genic mice (FVB.luctg/þ;PyMTtg/þ) develop breast tumours with
simultaneous expression of luciferase throughout the body. Twenty
four hours after administration and targeting of ferri-liposomes
loaded with the luciferase substrate (D-luciferin) to the tumour, a
luminescent signal was imaged exclusively in the tumour region
exposed to the 0.33 T magnet (Fig. 3c), indicating effective release
of the cargo from the targeted ferri-liposomes in vivo. The efficiency
of the system was also confirmed by intravenous administration of
ferri-liposomes (Supplementary Fig. S10). Furthermore, nanopar-
ticles were successfully excreted from the body without any evident
accumulation (Supplementary Fig. S11, S12), which fulfils another
critical parameter for their in vivo application.
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Ferri-liposome delivers cargo to inhibit tumour growth
Initial testing of the ferri-liposome system for targeted drug delivery
was performed with a standard cancer chemotherapy drug, doxo-
rubicin. Even a single-dose treatment with doxorubicin targeted
by ferri-liposomes resulted in a 90% reduction of tumour volume
two weeks after administration, compared with a 60% decrease
obtained by standard doxorubicin administration (Supplementary
Fig. S13). However, we aimed at a bigger challenge: to convert a
compound known to be ineffective due to poor bioavailability

into an effective one. For this purpose we selected JPM-565, a
small-molecule broad-spectrum inhibitor of cysteine cathepsins31,32,
which is very potent in treating pancreatic islet cell cancer in a
mouse model33,34. However, due to its very poor bioavailability,
JPM-565 is not effective in the MMTV-PyMT mouse breast
cancer model35, but, through genetic ablation of several cathepsins,
tumour progression in this breast cancer model can be attenuated36–38.
There is increasing evidence that cysteine cathepsins contribute to
tumour progression via several possible mechanisms, including
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Figure 2 | MR contrast properties of electrostatically stabilized FMIO nanoparticles. a, Spin–lattice 1/T1 (left) and spin–spin 1/T2 (right) relaxation rates of

39 nm and 57 nm FMIO nanoparticles at different concentrations, compared to commercially available MR contrast agents (Ferridex17 and Magnevist).

Relaxivity rates r1 and r2 were obtained by comparing the measured (symbols) and theoretical (lines) values. b, T1- and T2-weighted MR images of agarose

phantoms at different concentrations of 39 nm and 57 nm FMIO nanoparticles. c, Schematic (left) and T2-weighted MR image (right) of four phantom-

probes containing 1% agarose (samples 1 and 3), and 3.4 mM FMIO nanoparticles either injected into the centre of the 1% agarose gel (sample 2) or

diffused into the 1% agarose in the presence of a magnetic field (sample 4). Bottom panel shows signal intensity profiles along lines i and ii. Sample 5 is a
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activation of the extracellular proteolytic cascade(s), degradation of
the extracellular matrix, and inactivation of adhesion molecules
such as E-cadherin37,39. Their inhibition could therefore form a
potent strategy for tumour treatment40. Moreover, the cysteine cathep-
sins participating in multiple stages of tumour progression37,38,41–43

originate largely from the cells of the microenvironment36,44,45,
thereby offering the opportunity to simultaneously validate the

novel concept of targeting the tumour microenvironment as well as
the novel drug delivery system in order to improve cancer treatment.

To overcome the limitations of the transgenic MMTV-PyMT
mouse model having multifocal mammary tumours that are difficult
to follow, and to secure the functional immune system (as compared
to the xenograft approach), an orthotopically transplanted mouse
mammary tumour model was developed by inoculating 5 × 105
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primary MMTV-PyMT tumour cells into the mammary gland of a
congenic immunocompetent recipient mouse (FVB/N mouse
strain) (Fig. 4a). In contrast to the original transgenic model, the
orthotopic transplanted model results in a single tumour that can
be easily monitored due to the lower heterogeneity regarding
tumour latency and growth, thus making it an ideal model for
drug efficacy studies.

Starting with a tumour volume of 125 mm3, ferri-liposomes con-
taining JPM-565 at a concentration of 100 mg kg21 were injected
intraperitoneally 10 times every second day with a magnetic field
focused on the tumour (Fig. 4a). Tumour sizes were measured the
day after each injection. At the end of treatment, tumours were
excised and their volumes determined. The anti-tumour effect of
non-loaded ferri-liposomes and different therapeutic modalities
and forms of JPM-565 were compared (Fig. 4b). Mice treated
with targeted JPM-565 loaded ferri-liposomes displayed a signifi-
cant lag in tumour growth (as exemplified by the smaller
tumours; Supplementary Fig S14) compared with all other groups
(Fig. 4c), suggesting cathepsin inhibition was successful. This was
confirmed by the substantial reduction of cysteine cathepsin activity
measured exclusively in tumour samples from this group (Fig. 4d),
which contrasts with the observation of no difference in cathepsin

expression in all the groups (Supplementary Fig. S15). In agreement
with previous studies33,35, a significant inhibition of cysteine cathepsins
was observed in organs close to the peritoneum (Supplementary
Fig. S16). Subsequent clearance from the peritoneum through the
lymph nodes was also confirmed (Supplementary Fig. S17).

To address the role of cysteine cathepsins in tumour biological
processes, we investigated the effect of cathepsin inhibition on
tumour proliferation, vascularization and invasiveness. Cell prolifer-
ation was quantified by immunohistochemical detection of the pro-
liferation marker Ki67, revealing a significant decrease in the
proliferation rate of tumours treated with targeted JPM-565 compared
to the other groups (Fig. 4e, Supplementary Fig. 18), corroborating
reduced tumour growth in that cohort of mice. Based on the distri-
bution of the endothelial cell marker CD31, no difference in vascular-
ization of the tumour samples was observed following treatment
(Supplementary Fig. 19). However, there was a trend for translocation
of the cell-adhesion protein E-cadherin from the cytosol to the cell
surface following treatment with targeted JPM-565 (Fig. 4f), resulting
in decreased invasiveness and progression of the cancer.

To confirm the targeting of JPM-565 to the tumour, the treat-
ment scheme was mimicked by loading ferri-liposomes with a fluor-
escent marker (Alexa Fluor 546). Evidently, these ferri-liposomes
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administered Alexa Fluor 546-functionalized ferri-liposomes (red) in the tumour microenvironment. Inset: higher-magnification image of an individual cell of

the tumour stroma outlined by the white rectangle in the main panel. b, Haematoxylin and eosin staining of the corresponding section. Stromal (ST) and

tumour (T) compartments of the tumour tissue are indicated, with their boundary demarcated by a dotted line. Scale bars in a and b, 200mm and 20 mm

(inset). c,d, Uptake of Alexa Fluor 555-functionalized ferri-liposomes (red) by both stroma (white arrows) and tumour cells (pink arrows), after double

intravenous injection of ferri-liposomes. Tissues were co-stained with tumour-associated macrophages (CD206-FITC; green) in c and tumour cell marker

(E-cadherin; green fluorescence) in d. Scale bars in c and d, 40 mm.
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were successfully targeted to the tumour site, and uptake of their
content by cells of the tumour microenvironment was clearly estab-
lished (Fig. 5a,b). Moreover, we have demonstrated in vivo that the
marker was compartmentalized in the intracellular vesicles of the
tumour stroma cells (Fig. 5a, inset). The latter is of particular impor-
tance because cathepsins from tumour stroma are believed to play
an important role in the processes leading to tumour progression.

Although intraperitoneal administration of therapeutic agents is
an important adjunct to surgery and systemic chemotherapy of
cancer in selected patients46, we have evaluated the effectiveness of
intravenous administration of our delivery system for targeting a
tumour and its microenvironment in the MMTV-PyMT transgenic
female mouse. The fluorescence of ferri-liposome cargo (Alexa
Fluor 555) was found to be co-localized both with the stroma
(Fig. 5c, CD206 marker for tumour-associated macrophages) and
the tumour cells (Fig. 5d, epithelial marker E-cadherin) in the tar-
geted PyMT tumour tissue. These results clearly demonstrate the
potential applicability of the ferri-liposomes in a variety of
therapeutic scenarios.

Conclusion
A new delivery platform for targeting both the tumour and its
microenvironment, based on ferrimagnetic nanoclusters, has been
developed. Ferri-liposomes were shown to act as a universal drug
delivery system, confirmed by targeting of several chemically differ-
ent types of cargo. Furthermore, based on the nanoparticles with
superior MRI contrast properties, the ferri-liposome system could
provide the non-invasive, real-time MRI strategy with unlimited
depth penetration and significantly improved sensitivity. The com-
bination of the favourable biodistribution of these nanoparticles to
tumours and their microenvironments, as well as their prominent
MRI properties, offers the exciting possibility of the simultaneous
delivery and detection of therapeutic agents in vivo. The feasibility
of this approach was confirmed in vivo by the use of the MR tech-
nique and fluorescent and bioluminescent markers, revealing ferri-
liposomes to be highly promising candidates for cancer treatment.
As such, the cathepsin inhibitor JPM-565 was targeted by ferri-lipo-
somes to the peri-tumoral region of mouse breast cancer, resulting
in a significant reduction in tumour growth. Overall, we believe that
this multifunctional MRI-visible targeted delivery system based on
FMIO nanoparticles with superior properties constitutes a major
advance in the application of nanotechnologies in medicine, and
has opened up new possibilities for the diagnosis and treatment of
important human diseases such as cancer.

Methods
Preparation of ferri-liposomes. FMIO nanoparticles (magnetite, Fe3O4) were
manufactured by mechanochemical synthesis using saline crystal hydrates as
described16. Sodium chloride, as an inert component, was added in the ratio 1:2. The
mixture was sealed by steel balls in a planetary mill, washed with distilled water and,
optionally, dried in a laminar flow cabinet at room temperature. FMIO nanoparticles
were suspended in a stabilizing buffer (20 mM sodium citrate buffer, pH 7.4,
containing 108 mM NaCl, 10 mM HEPES), sonicated (Ultrasonic Disintegrator,
Branson) and centrifuged to separate the remaining undisrupted agglomerates. The
resulting stable colloidal dispersion of non-aggregating nanoparticle clusters was
characterized using flame atomic absorption spectrometry (SpectrAA 110, Varian),
DLS (using a PDDLS/BatchPlus System, Precision Detectors) and field-emission
gun scanning electron microscopy (SEM) using an FE-SEM SUPRA 35VP (Carl
Zeiss). The zeta potential of FMIO nanoparticles was measured by a PALS Zeta
Potential Analyzer at pH 7.4 and 37 8C.

FMIO nanoparticle-loaded liposomes (ferri-liposomes) were prepared from 95%
L-a-phosphatidylcholine (Avanti Lipids) and 5% 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (Avanti Lipids),
and purified (Supplementary Methods).

For ex vivo and in vivo studies, ferri-liposomes were functionalized with
Alexa Fluor 546-labelled dextran (Invitrogen), non-conjugated Alexa
Fluor 555 (Invitrogen), D-luciferin (Sigma) or JPM-565 (DTP, NCI)
(Supplementary Methods).

In vitro and in vivo MRI. All MR experiments were performed on a TecMag Apollo
MRI spectrometer with a superconducting 2.35 T horizontal bore magnet (Oxford

Instruments), using a 25 mm saddle-shaped Bruker RF coil. Spin–lattice and spin–
spin relaxation times (T1 and T2) were measured for different concentrations of
FMIO nanoparticles in 1% agarose at room temperature, using inversion recovery
and spin-echo techniques, respectively. The longitudinal (r1) and transverse (r2)
relaxivities were calculated from ri¼ (1/Ti –1/Ti0)/c, where c is the concentration of
FMIO nanoparticles in mM, Ti is the relaxation time at concentration c, Ti0 is the
relaxation time of 1% agarose, and i¼ 1 and 2 for T1 and T2, respectively.

Two-dimensional MR images were taken using a standard multislice spin-echo
pulse sequence with an echo time (TE) of 8.5 ms and a repetition time (TR) of
400 ms for T1-weighted MR images, and with TE¼ 60 ms and TR¼ 2,000 ms for
T2-weighted MR images. The field of view was 40 mm, with an in-plane resolution
of 156 mm and a slice thickness of 1 mm. For in vivo detection see
Supplementary Fig. S7.

Assessment of ferri-liposome internalization ex vivo. Primary MMTV-PyMT cells
and mouse embryonic fibroblasts (MEFs) were isolated (Supplementary Methods)
and cultured with Alexa Fluor 555-functionalized ferri-liposomes in normal culture
medium on Lab-Tek Chamber Slides (Nunc). After incubation for 3 h with
nanoparticles, cells were washed with PBS, stained with Hoechst 33342 (Fluka) and
examined with an Olympus fluorescence microscope (Olympus IX 81) with Imaging
Software for Life Science Microscopy Cellf.

Assessment of ferri-liposome targeting and internalization in vivo by
bioluminescence. For in vivo control of ferri-liposome distribution and content
release, ferri-liposomes functionalized with D-luciferin were administered
intraperitoneally (30 mg kg21 of D-luciferin) to a 10-week-old
FVB.luctg/þ;PyMTtg/þ mouse, and a magnet was attached to the first right pectoral
mammary tumour. Twenty-four hours after ferri-liposome administration, the
magnet was detached and the mouse was imaged non-invasively using an IVIS
Imaging System (IVIS 100 Series). In the control experiment the magnet was
omitted. During the scan, mice were kept under gaseous anaesthesia
(5% isofluorane) and at 37 8C.

Treatment study. Primary MMTV-PyMT tumour cells, obtained as described36,
were culture-expanded, suspended in serum free Dulbecco’s Modified Eagle
Medium (DMEM) (Invitrogen), and 5 × 105 cells were inoculated into the left
inguinal mammary gland of the congenic recipient mouse (FVB/N mouse strain).
The dosing regimen for JPM-565 treatment was determined based on previous
reports33–35,47. JPM-565 had no discernable toxic side effects in the animal trials33,47.
When tumour volume (Tv) reached 125 mm3, mice were treated with stabilizing
buffer containing either of the compounds (Fig. 4b). JPM-565 was administered at a
dose of 100 mg kg21 every second day in 10 intraperitoneal injections, and
progression of tumours was investigated (Supplementary Methods). Histological
measurement of proliferation by Ki67 staining, and tumour vascularization rate by
CD31 staining, were performed as described38,48.

Analysis of ferri-liposome targeted delivery in vivo at the tissue and cellular level.
Alexa Fluor 546-functionalized ferri-liposomes were injected intraperitoneally,
daily, to the orthotopic transplanted breast cancer mouse model for 3 days. Alexa
Fluor 555-functionalized ferri-liposomes were injected intravenously, daily, into the
MMTV-PyMT transgenic breast cancer mouse model for 2 days. A magnetic field
was applied to the tumour for 12 h immediately after each injection. Rabbit anti-
mouse E-cadherin (Abcam) and rat anti-mouse monoclonal FITC-conjugated
CD206 (AbD Serotec) were used for Fig. 5c,d (Supplementary Methods).

Statistical analysis. Quantitative data are presented as means+standard error.
Differences were compared using Student’s t-test. When P-values were 0.05 or less,
differences were considered statistically significant.

Received 31 January 2011; accepted 16 June 2011;
published online 7 August 2011
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