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             Objective.  To determine the therapeutic efficacy and 

immunomodulatory effect of an anti-human death receptor 5 (DR5) antibody, 

TRA-8, in eliminating macrophage subsets in a collagen II-induced arthritis (CIA) 

mouse model. 

             Methods. A chimeric human/mouse (hu/mo) DR5 transgenic (Tg) 

mouse, under the regulation of the mouse 3-kb promoter and a Floxed-STOP 

cassette, was generated and crossed with an ubiquitous Cre (Ubc.Cre) and a 

lysozyme M Cre (LysM.Cre) Tg mouse to achieve inducible- or macrophage-

specific expression. CIA was induced in mice by chicken CII, which were then 

treated with the anti-human DR5 antibody, TRA-8. The clinical scores, 

histopathologic severity, macrophage apoptosis and depletion, and T cell subset 

development were evaluated.  

              Results. In hu/mo DR5 Tg Ubc.Cre mice with CIA, Tg DR5 was most 

highly expressed in CD11b+ macrophages with lower expression on CD4+ T 

cells. In the hu/mo DR5 Tg LysM.Cre mice, Tg DR5 was restrictively expressed 

in macrophages. Near infrared (NIFR) in vivo imaging of caspase activity and 

TUNEL staining demonstrated that TRA-8 rapidly induced apoptosis of 

macrophages in the inflammatory synovium. Depletion of pathogenic 

macrophages by TRA-8 leads to significantly reduced clinical scores of arthritis, 

decreased macrophage infiltration, synovial hyperplasia, osteoclast formation, 

joint destruction, cathepsin activity, inflammatory cytokine expression in joints, 

reduced Th17, and increased Treg cells in the draining lymph nodes (LN).  
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             Conclusion. The anti-human DR5 antibody TRA-8 was efficacious in 

reducing the severity of arthritis by targeted depleting macrophages and 

immunomodulation. Our data provide pre-clinical evidence that TRA-8 is a 

potential novel biologic agent for rheumatoid arthritis (RA) therapy.    
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             Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and 

inflammation, with increased numbers of macrophages, fibroblasts, and 

lymphocytes in the synovium (1-3).  Although the earliest attempts to delete 

CD4+ T cells in the treatment of RA were disappointing (4), specific therapies to 

deplete B cells by anti-CD20 in RA are promising (5, 6). However, not all patients 

respond, and disease relapses can occur after B cell repopulation (7). 

Macrophages are of central importance in the pathogenesis of RA (8, 9), and 

disease severity correlates with the number of activated macrophages in the 

inflamed tissues and in circulation (10). The "professional" antigen-presenting 

role of macrophages has also been implicated in the pathogenesis of RA (9). 

Interactions between macrophages and fibroblasts, B, and T cells regulate 

synovial inflammation (11-13) and suggest that the macrophage is an attractive 

target for RA therapy. However, there has been no clinically proven efficacious 

and safe therapy for specific elimination of inflammatory macrophages in RA.  

              

            Human death receptor 5 (DR5) is a pro-apoptotic molecule and mediates 

apoptosis upon binding with its ligand, TRAIL, or an anti-DR5 agonistic antibody 

(14). While DR5 is found on most examined cell types, its expression is 

upregulated in cancer cells and it is a promising target for cancer therapy (15-

17). Moreover, increased DR5 expression and susceptibility to anti-human DR5-

mediated apoptosis are characteristics of the proliferating synovial fibroblasts in 

RA (18), though the regulation of expression and apoptotic function of DR5 in 

macrophages of human RA is unknown. Investigation of the therapeutic efficacy 
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of anti-DR5 in mouse disease models has been limited by two major obstacles. 

Firstly, although an antibody (MD5-1) has been developed against MK (the 

mouse homologue of human DR5), this antibody exhibits low cell-killing activity 

without a cross-linker and has not been extensively analyzed (19). Secondly, 

engineering a Tg mouse expressing human DR5 for testing of anti-human DR5 

therapy has not been developed.   

 

            We have utilized a Tg mouse expressing a hu/mo-chimeric DR5 receptor 

consisting of the extracellular domain of human DR5 and the transmembrane 

and intracellular regions of mouse MK. This enables the binding of the anti-

human DR5 antibody to the extracellular domain and the induction of apoptosis 

in mouse cells. Treatment with an anti-human DR5 antibody, TRA-8, successfully 

prevented the development of, or ameliorated the severity of, CIA when 

administered before or after the onset of arthritis, respectively. The major target 

of TRA-8 in this disease model was shown to be macrophages in which DR5 

expression is upregulated. Our data provide pre-clinical evidence that the anti-

human DR5 antibody, TRA-8, is a potential anti-arthritic biologic agent that 

preferentially eliminates macrophages and exhibits subsequent 

immunomodulatory effects. 
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MATERIALS AND METHODS 

Mice. C57BL/6, UBC-cre/ESR1)1Ejb/J (Ubc.Cre), and B6.129-Lyzstm1(cre)Ifo/J (Lys 

M.Cre) mice were obtained from the Jackson Laboratory. All animal procedures 

were approved by The University of Alabama at Birmingham Institutional Animal 

Care and Use Committee. 

 

Cell lines, cell preparation, and culture. The mouse NIH3T3 cell line was 

obtained from the American Type Culture Collection (ATCC, Manassas, VA) and 

cultured in DMEM (Invitrogen) supplemented with 10% FBS, 100 units/ml 

penicillin, 100 µg/ml streptomycin (Invitrogen), and 2 mM glutamine (Invitrogen) 

at 37ºC, 5% CO2 in a humidified incubator. Single-cell suspensions from spleen 

and inguinal lymph nodes were prepared and cultured in RPMI-1640 (Invitrogen) 

supplemented with 10% FBS, 10 mM HEPES, and 0.1% 2-mercaptoethanol 

(Invitrogen). 

 

Expression constructs, transfection, and ATPLite analysis. Human and 

mouse DR5 cDNAs were obtained from Open Biosystems (Huntsville, AL). The 

extracellular domain of human DR5 was amplified by PCR using primer A 

(huDR5For) 5’-ACTGTCGACGCCCCAAGTCAGCCTGGACACATA-3’ and 

primer B (huDR5Rev) 5’-

TCCTATCCAGAGGCCTAGCTTATGCCAAGAACAGGGAGAGGCAGGAGTCC

CTGG-3’. Similarly, the transmembrane and intracellular domains of mouse DR5 

were amplified by PCR using primer C (MoDR5For) 5’-
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CCAGGGACTCCTGCCTCTCCCTGTTCTTGGCATAAGCTAGGCCTCTGGATA

GGA-3’ and primer D (MoDR5Rev) 5’-

GATGCGGCCGCTCAAACGCACTGAGATCCTCCTGG-3’. The fused chimeric 

DR5 was then generated by PCR using a mixture of the A-B and C-D products 

as template together with primers A and D. The purified final PCR product was 

then digested by SalI and NotI and this chimeric DR5 fragment was used to 

replace the human DR5 in the vector. A 3-kb putative mouse DR5 promoter was 

cloned from mouse BAC RP24-355K8 (Children’s Hospital Oakland Research 

Institute, Oakland, CA) and subcloned upstream of the chimeric DR5. 

Transfection was performed using Lipofectamine 2000 (Invitrogen). Cell viability 

was determined using an ATP luminescence assay kit (PerkinElmer, Waltham, 

MA).  

 

Establishment of the chimeric hu/mo-chim DR5 Tg mouse. The DNA used 

for generation of DR5 Tg mice was based the 3-kb mouse promoter/chimeric 

DR5 construct. To enable tissue-specific expression, a Floxed-STOP cassette 

(Addgene) was introduced between the promoter and chimeric DR5. A 8.3-kb 

DrdI-DrdI fragment was used to generate Tg mice on a C57BL/6 background 

(Transgenic Mouse Facility, UAB). The Tg mice were genotyped using the 

primers specific for the human DR5 extracellular domain.   

 

Generation of hu/mo-chimeric DR5 Ubc.Cre double Tg and hu/mo-chimeric 

DR5 LysM.Cre double Tg mice. The Floxed-STOP chimeric DR5 Tg mice were 
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bred with two different Cre-expressing mice: (i) Ubc.Cre mice which have strong 

tamoxifen-inducible Cre activity in all tissues examined; and (ii) LysM.Cre mice 

which express Cre in myeloid cells. For Cre induction in Ubc.Cre mice, mice 

were treated with tamoxifen (5 mg/mouse/day) for five consecutive days via 

gavage.  

 

Quantitative reverse transcription PCR (qRT-PCR) analysis. Intracardial 

perfusion was performed prior to the processing of organs and tissues. RNA was 

isolated from synovium and other tissues using TRIzol reagent (Invitrogen). The 

first-strand cDNA was synthesized by using random hexamer primers and 

RevertAidTMM-MuLV Reverse Transcriptase (Fermentas Life Science). QRT-

PCR was performed using an IQ5 multicolor RT-PCR detection system as 

described previously (20). Primers used are shown in the supplementary table 1.    

      

Flow cytometric analysis. Single-cell suspensions were stained using 

fluorochrome-conjugated mouse-specific Abs, including APC–anti-CD4 

(Biolegend), FITC–anti-CD8 (BD Biosciences), Alexa 700–anti-CD19 

(eBioscience), FITC–anti-CD11b (BD Biosciences), FITC–anti-CD11c (BD 

Biosciences), PE–anti-mouse DR5 (Biolegend), APC–anti-Gr1(Biolegend), 

PE/Cy7–anti-Ly6C (Biolegend), FITC-anti-IFN-γ (Biolegend), PE-anti-IL-17 

(Biolegend), Alexa 647-anti-IL-23p19 (eBioscience), and PE-anti-Foxp3 

(eBioscience). Tg chimeric DR5 was stained with biotin–anti human DR5 

(Biolegend) followed by Streptavidin eFluor 450 (eBioscience). Prior to staining, 
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Fc receptors were blocked by anti-mouse CD16/32 (Biolegend). Intracellular and 

intranuclear staining was performed following manufacturer’s instruction 

(eBioscience). Before intracellular cytokine measurement, cells were stimulated 

with 25 ng/ml PMA (Sigma) plus 500 ng/ml ionomycin (Sigma) for 2 h with the 

addition of GolgiStop (BD Biosciences) for an additional 3h. Data were acquired 

on a BD LSRII flow cytometer and analyzed using FlowJo software (Tree Star, 

Inc.). 

 

Induction of CIA. CIA was induced and scored in DR5 Tg mice of C57BL/6 

background that were 8- to 16-weeks old as described (21). Briefly, mice were 

immunized by intradermal administration of chicken Type II collagen (Chondrex, 

Inc.) emulsified in complete Freund’s adjuvant (CFA), followed by injection of 

chicken CII in incomplete Freund’s adjuvant (IFA) on day 30 after the primary 

injection. To ensure a higher incidence of CII arthritis, an adenovirus expressing 

mouse IL-17 (AdIL-17, 2x109 pfu/mouse, a generous gift from Dr. Jay Kolls) (22) 

was administered intravenously to all mice 2 days prior to the primary 

immunization with CII.  

 

TRA-8 treatment of CIA mice. TRA-8 (Daiichi-Sankyo, dissolved in PBS, 0.2 mg 

per mouse) or IgG1 isotype control was administered i.v. or i.p. twice/week 

starting on day 0 (early treatment) or on day 30 (late treatment) until mice were 

sacrificed.  
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Histopathologic assessment and immunohistochemical staining. After 

sacrifice, the knee, ankle, and foot joints were fixed in 4% formaldehyde and then 

decalcified. Tissue sections (5 µm) were stained with hematoxylin and eosin and 

examined by light microscopy. Immunohistochemical staining using anti-Mac-3 

(clone M3/84, BD Biosciences) was performed as described previously (23). 

TUNEL assay was performed by using the ApopTag Plus Peroxidase In Situ 

Apoptosis Detection Kit (Millipore), following the manual. Sections were 

counterstained with hematoxylin or methyl green. Cytospin preparations of LN 

cells were fixed with 4% formaldehyde. Tyramide signal amplification was carried 

out according to the manufacturer’s instruction (Invitrogen). 

 

In vivo imaging of arthritis and apoptosis. For cathepsin activity 

determination, mice were injected intravenously with 2 nmol ProSense 750 

(ViSen, Bedford, MA) in 150 µl PBS. Twenty-four hours after injection, mice were 

imaged using the Odyssey Infrared imaging System (LI-COR, Lincoln, 

Nebraska). For apoptosis detection, a caspase-targeted activity-based probe, 

AB50–Cy5, was used as described previously (24).  

 

ELISA cytokine measurement. Cytokine levels in sera were measured by 

ELISA according to the manufacturer’s manual (Biolegend).  

 

Statistics. Figures are representative of at least 3 independent experiments. 

Statistical analyses were performed using two-tailed Student’s t test, one-way 
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ANOVA, and bivariate correlation analysis. P values <0.05 were considered 

statistically significant. 
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RESULTS  

Hu/mo-chimeric DR5 proteins and their apoptosis-inducing function upon 

TRA-8 binding in mouse cells.  

            Mouse and human DR5 exhibit only ~50% homology at the amino acid 

level (Figure 1A) and TRA-8, which binds to the extracellular domain of human 

DR5, however, does not recognize the extracellular domain of mouse DR5. We 

also observed that the death domain of human DR5 does not initiate the 

apoptotic cascade in mouse cells. To overcome this obstacle, we generated 

constructs that express a hu/mo-chimeric DR5 consisting of the extracellular 

domain of human DR5 with the transmembrane and intracellular domains of 

mouse DR5 (Figure 1B, Left).  

 

           To achieve the desired regulation of hu/mo-chimeric DR5 protein 

expression, hu/mo DR5 constructs with different regulatory elements were 

produced that contain the CMV promoter, mouse 1-kb, 3kb DR5 putative 

promoters, first intron, and 3’-untranslated region (3’-UTR) (Figure 1B, Right). 

Hu/mo-chimeric DR5 expression was determined by cell-surface flow cytometry 

using the anti-human DR5 antibody, which recognizes the extracellular domain of 

human DR5 (Figure 1C). As shown, anti-human DR5 recognized the transfected 

human (Construct 1) but not mouse DR5 protein (Construct 2). In mouse NIH3T3 

cells, the CMV, 1-kb and 3-kb promoter resulted in high expression of the hu/mo-

chimeric DR5 (Constructs 3-5) whereas the first intron and 3’UTR of mouse DR5 

exhibited negative regulatory effects on hu/mo-chimeric DR5 expression 
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(Constructs 6, 7). For functional studies, NIH 3T3 mouse cells were transfected 

with these constructs (Figure 1D). TRA-8 (1 µg/ml) was added 24 h after 

transfection, followed by overnight incubation. The ATPLite assay was used to 

measure the cell viability. TRA-8 did not decrease viability in cells transfected 

with the full-length human or mouse DR5 driven by the CMV promoter, which 

lack either the mouse death domain that initiates apoptotic signaling or the 

human extracellular domain that binds TRA-8 (Constructs 1 and 2, Figure 1D). 

However, in cells transfected with the chimeric DR5, significant reduced cell 

viability by TRA-8 was detected, with the 3-kb chimeric DR5 construct resulted in 

the highest apoptosis inducing effect by TRA-8 (Constructs 3-5, Figure 1D). 

Addition of the first intron and the 3’-UTR reduced the TRA-8 killing effect (Figure 

1D). Thus, the chimeric DR5 regulated by the 3-kb promoter (Construct 5, Figure 

1B, C, and D) is the optimal construct for DR5 expression and TRA-8-mediated 

apoptosis and was selected for generation of Tg mice.  

 

Expression of hu/mo-chimeric DR5 and its apoptosis-inducing function in 

hu/mo DR5 Tg+ Ubc.Cre mice. 

           In order to enable temporal and spatial expression of the chimeric DR5, a 

Floxed-STOP was inserted between the 3-kb promoter and the chimeric DR5. 

Founder DR5 Tg mice were crossed with Ubc.Cre mice, which exhibit strong 

tamoxifen-inducible Cre expression ubiquitously. To determine if the tissue 

distribution of the chimeric Dr5 correlates with that of endogenous mouse Dr5, 

the expression of chimeric Dr5 and mouse endogenous Dr5 in tissues harvested 
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from tamoxifen treated DR5 Ubc.Cre mice was determined (Figure 2A). 

Tamoxifen treatment induced the expression of the hu/mo-chimeric DR5 Tg in 

various tissues, including the lymph nodes (LN), brain, lung, spleen, and kidney 

and the expression pattern exhibited a significant correlation with that of the 

endogenous mouse DR5 (Figure 2A). Western blot analysis indicated that the 

hu/mo DR5 Tg protein expression correlated with the mRNA expression with high 

level of protein detected in the LN, spleen and lung (Data not shown).  

 

           To examine the chimeric DR5 expression in different immune cells and 

TRA-8 induced apoptosis, CIA was induced in these mice. Chicken type II 

collagen (cCII) induces arthritis in approximately 60–70% of mice with the H-2b 

background (25). Prior to injection of cCII, we administered mice with an 

adenovirus that expresses IL-17 (AdIL-17) to increase the incidence of arthritis 

and thus facilitate the evaluation of the therapeutic effects of TRA-8 (22). In the 

draining LN of the mice with CIA (two months after primary CII injection), the 

expression of the hu/mo-chimeric DR5 was highest in the CD11b+Gr-1+ 

granulocytes and CD11b+Ly6C+ inflammatory macrophages, with lower 

expression on CD4+ and CD8+ T cells, and minimal expression on CD19+ B cells 

(Figure 2B).  Importantly, both early and late TRA-8 treatment (0.2 mg 

twice/week) reduced the percentage of CD11bhigh -activated macrophages in the 

LN by ~50–60% (Figure 2C), suggesting that TRA-8 can potentially suppress the 

frequency of macrophages during an active inflammatory stage in CIA.   
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            To further assess the effects of TRA-8 on the macrophages, a single-cell 

suspension prepared from the draining inguinal lymph nodes of the cCII-induced 

hu/mo-chimeric DR5 Tg+ Ubc.Cre mice without in vivo TRA-8 treatment was 

stimulated with LPS (5 µg/ml) for 2 days and then treated with or without TRA-8 

for an additional 2 days. As shown in Figure 2D, for LPS-stimulated 

macrophages obtained from hu/mo-chimeric DR5 Tg+ Ubc.Cre mice, thymidine 

incorporation was significantly lower in TRA-8-treated than untreated mice.  

 

TRA-8 treatment prevents the development of, and ameliorates established 

arthritis in hu/mo DR5 Tg+ Ubc.Cre mice. 

            After CIA induction (Figure 3A and B, arrows), both the isotype-treated 

hu/mo DR5 Tg+ Ubc.Cre (DR5 Tg+) mice and the control DR5 Tg− Ubc.Cre (DR5 

Tg−) mice developed joint swelling and erythema indicated by the arthritis score 

(Figure 3A and B, gray squares). Early TRA-8 treatment (0.2 mg twice/week) of 

the hu/mo-chimeric DR5 Tg+ Ubc.Cre mice resulted in a significant reduction in 

the early-stage arthritis, as well as the late-stage arthritis that was associated 

with the CII boost (Figure 3A, filled circles). Moreover, initiation of the TRA-8 

treatment (0.2 mg twice/week) 2 days before the CII boost significantly inhibited 

the late phase of CIA (Figure 3A, open circles). In contrast, TRA-8 treatment of 

the control DR5 Tg− Ubc.Cre mice did not affect the development of arthritis in 

response to either the primary or secondary CII injection (Figure 3B). 

Histopathologic analysis of the joints from cCII-injected hu/mo-chimeric DR5 Tg+ 

Ubc.Cre mice 2 months after TRA-8 treatment revealed a dramatic reduction in 
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the severity of synovial hyperplasia (H), and bone erosion (E), as well as 

significant attenuation of inflammatory cell infiltration in the joints (Figure 3C, left 

panels) compared to DR5 Tg− control (Figure D, left panels). 

Immunohistochemical analysis of the synovium revealed that the numbers of 

Mac-3+ macrophages (M) were much lower in the TRA-8-treated, CII-injected 

hu/mo-chimeric DR5 Tg+ Ubc.Cre mice than their untreated counterparts (Figure 

3C and D, right panel).     

 

TRA-8 treatment specifically eliminates inflammatory macrophages and 

ameliorates established arthritis in hu/mo DR5 Tg+ LysM.Cre mice. 

         To test whether targeted depletion of macrophages with TRA-8 is feasible 

in vivo, we restricted expression of the chimeric DR5 to myeloid lineage cells by 

crossing the Floxed-STOP chimeric DR5 Tg mice with mice in which Cre is 

driven by the lysozyme M (Lys.M) promoter (26). CIA was induced as described 

above.  At day 60, FACS analysis showed that CD11b+ macrophages from the 

draining LN of hu/mo-chimeric DR5 in DR5 Tg+ LysM.Cre (DR5 Tg+) mice 

exhibited increased cell surface binding to anti-human DR5 compared with that of 

the control mice (Figure 4A, upper panel). A similar result was also confirmed by 

cytospin (Figure 4A, lower panel). There was a very low frequency of CD4+, 

CD8+ T cells and CD19+ B cells that expressed hu/mo-chimeric DR5 (<1%) in 

these mice (Figure 4B). TRA-8 treatment of these mice reduced the percentage 

of CD11b+ macrophages from 4.3% to 1.5% (Figure 4C), whereas the TRA-8 

depletion effect was not significant in DR5 Tg- mice (Figure 4C). Within the 
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CD11b+ cells, the percentage of the Ly6C+ inflammatory macrophage 

subpopulation was reduced from 3.1% to 0.75% (Figure 4D) and this effect was 

not significant in DR5 Tg- mice. TRA-8 treatment did not change in the 

percentage of total CD4+ and CD8+ T cells, CD19+ B cells, or CD11c+ dendritic 

cells in all these four groups of mice (data not shown).  

 

          TRA-8-induced apoptosis was assessed by a non-invasive in vivo imaging 

method and a TUNEL staining. LysM.Cre hu/mo-chimeric DR5 Tg+ and control 

LysM.Cre mice were induced to develop CIA. At 8 weeks after induction, 

baseline-levels of caspase activity were measured in vivo using the caspase 

imaging probe AB50–Cy5 (24). Mice were then treated with TRA-8 (0.2 mg on 

day 0 and day 3) and apoptosis imaging was repeated on the same mice. 

Apoptosis reached the peak 6 days after the first dose of TRA-8 administration 

(Figure 5A, right panel and B). There was a significant increase in the caspase 

probe signal in mice with arthritis post- compared with pre-TRA-8 treatment 

(Figure 5A, right panel and 5B). Our result demonstrated that TRA-8 can induce 

apoptosis in vivo in the joints of arthritic mice. 

 

           Apoptosis analysis by TUNEL assay was carried out on joint sections of 

the same mice after acute TRA-8 treatment, as described above. At this early 

time point after short term TRA-8 treatment, there was no significantly difference 

in synovial hyperplasia (H), bone erosion (E), and macrophage infiltration (M)  

between LysM.Cre hu/mo-chimeric DR5 Tg+ (Tg DR5+) and control LysM.Cre 
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DR5- Tg (Tg DR5-) mice (Figure 5C, left and middle panels). There was a 

significantly increased TUNEL staining (TU) after short term TRA-8 treatment in 

the hu/mo-chimeric DR5 Tg+ mice but not in control DR5 Tg– mice (Figure 5C, 

right panels). Serial section staining indicated that the TUNEL staining was most 

prominent in macrophages (M) within the intima and sublining of the synovium 

(Figure 5C, right panels). Apoptosis of macrophages and fibroblasts was also 

quantified by calculating the percentage of apoptotic cells in the Mac-3+ and Mac-

3- regions (Figure 5D).  

 

           Following establishment of CIA, TRA-8 treatment (0.2mg twice/week) 

significantly attenuated the severity of the arthritis in the hu/mo-chimeric DR5 Tg+ 

LysM.Cre (Tg DR5+) mice (Figure 6A, upper panel), but not in control DR5 Tg– 

LysM.Cre (Tg DR5-) mice (Figure 6A, lower panel), suggesting that targeted 

depletion of macrophages can ameliorate CIA. Production of high levels of 

cysteine cathepsins is clinically associated with arthritis severity (27). 

Assessment of cathepsin activity using the ProSense 750TM protease probe 

confirmed high levels of activity in the ankles, tarsal joints, and digits of control 

DR5 Tg- LysM.Cre mice with and without TRA-8 treatment, and in hu/mo-

chimeric DR5 Tg+ LysM.Cre mice that were not treated with TRA-8. In marked 

contrast, only minimal protease activity was found in the TRA-8-treated hu/mo-

chimeric DR5 Tg+ LysM.Cre mice (Figure 6B, C). Histopathologic analysis of the 

joints from cCII-injected chimeric DR5 Tg mice (Figure 6D, left panels) treated 

with TRA-8 for one month revealed a dramatic reduction in the severity of 
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synovial hyperplasia (H), inflammatory cell infiltration, bone erosion (E) in the 

joints, and a significant decrease in Mac3+ macrophages (M) in synovium 

compared to DR5 Tg- control mice (Figure 6D, right panels). TRAP staining (TR) 

further indicated that TRA-8 treatment also lead to the reduced activity of 

osteoclasts in the joints (Figure 6D).  

 

TRA-8 treatment decreases the expression of pro-inflammatory cytokines 

and exhibits immunomodulatory effects in hu/mo DR5 Tg+ LysM.Cre mice. 

           To further investigate the immune response regulated by the depletion of 

inflammatory macrophages, sera and synovial cytokines were assessed on day 

60. TRA-8 treatment significantly reduced the protein levels of IL-6 and IL-17A in 

the sera (Figure 7A) as well as Tnfa, Il6, Il23a(p19) and Il17a transcripts in the 

joints of DR5Tg+ LysM.Cre mice treated with TRA-8 (Figure 7B) compared to 

control DR5Tg- mice with CIA. In the CD11b+ cell population from the draining 

LN, the percentage of IL-23+ inflammatory macrophages was reduced from 5.8% 

to 0.2% (Figure 7C), which is consistent with the observation that the expression 

of Irf5, a signature transcription factor of inflammatory macrophages (28), is also 

reduced in the synovium of the TRA-8 treated mice (Figure 7B).  IL-23 is a pro-

inflammatory cytokine that has been proposed to play a central role in the 

development of arthritis (29-31), which is related to the dysregulated balance 

between IL-23/Th17 axis and regulatory T cells (Tregs) (32). We further identified 

that TRA-8 treatment can restrain Th17 while promoting Tregs cell development. 

Th17 cells were reduced from 2.9% to 1.4% whereas Tregs were increased from 

Page 20 of 48

John Wiley & Sons

Arthritis & Rheumatism



 21

3.9% to 6.3% (Figure 7D) in the DR5Tg+ LysM.Cre mice treated with TRA-8 

compared with the control DR5Tg- mice with CIA. Consistent with this, there were 

decreased expression of the Il-17a and increased expression of Foxp3 in the 

synovium (Figure 7B). IFNγ-producing Th1 cells were also reduced by TRA-8 

treatment in these mice (Figure 7D).  
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DISCUSSION 

            The present results are the first to show that in vivo administration of 

TRA-8 can directly induce apoptosis of a subpopulation of macrophages and 

attenuate CIA. The predominant cell types targeted by TRA-8 therapy are a 

subpopulation of inflammatory macrophages which produce high levels of 

cytokines, including TNF-α and IL-6 (33). TRA-8 therapy has a novel cell 

depletion mechanism of directly triggering apoptosis of the targeted cells. TRA-8 

and its humanized version, tigatuzumab (CS1008), have been shown to be 

effective in elimination of tumor cells in xenograft cancer models and well-

tolerated in a phase I clinical trail (34, 35).  

 

TRA-8 exhibits higher selectivity than TRAIL and it does not recognize 

mouse MK (14). The existing anti-mouse MK monoclonal antibody (MD5-1) is not 

efficacious in inducing apoptosis without cross-linkers (19). Furthermore, we 

have found that the neither human DR5 nor mouse MK initiated TRA-8-mediated 

apoptotic cascades in mouse cells (Figure 1D). To investigate the efficacy and 

the mechanism of TRA-8 therapy in mouse models, we generated a chimeric 

hu/mo-chimeric DR5 Tg comprised of the extracellular domain of human DR5 

and the transmembrane and intracellular domains of mouse MK with regulatory 

elements. The expression of the chimeric DR5 was comparable to endogenous 

mouse MK. We observed that the chimeric DR5 is predominantly expressed in 

CD11b+ macrophages of DR5 Tg mice crossed with both Ubc.Cre and LysM.Cre 
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mice after induction of CIA. This suggested that the mouse MK 3-kb promoter is 

active in macrophage during arthritis pathogenesis. 

 

          DR5 is broadly expressed in most human tissues (36, 37). In tumors, its 

expression is highest in melanoma and lung cancers (36). Although human DR5 

is widely expressed, anti-DR5 treatment induced apoptosis only occurs in 

selected cells (38). The present study indicated the high selectivity of TRA-8-

mediated killing in CD11bhi Ly6C+ macrophages. Ly6C is a 

monocyte/macrophage differentiation antigen regulated by interferon-γ (39), 

which has been shown to facilitate apoptosis signaling in macrophages and 

cancer cells (40, 41). Inflammatory macrophages express much higher levels of 

Ly6C distinguished from those residing normally in the tissues (42). In CIA and 

K/BxN serum transfer-induced arthritis, reduction of Ly6C+ synovial macrophages 

has been associated with GM-CSF blockade and reduction in disease severity 

(43), suggesting that Ly6Chi macrophages are associated with GM-CSF-

mediated arthritis response.  Our results suggest that TRA-8 treatment can 

shape the heterogeneity of macrophages, leading to the homeostasis of the 

myelomonocytic cells in the inflammatory conditions.    

 

  One of the major advantages of DR5 is the inflammation-dependent 

selectivity which is reflected by the fact that while the chimeric DR5 was found to 

be mainly expressed by macrophages, inflammatory Ly6C+ CD11b+ 

macrophages are more susceptible to DR5 mediated apoptosis. This suggested 
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that our approach of using TRA-8 can selectively deplete inflammatory 

macrophages while sparing the anti-inflammatory macrophages. It has been 

reported that one single dosage of intraarticular administration of clodronate 

liposomes leads to macrophage depletion in the synovium of RA patients (44), 

however, such therapy may not be safe for systemic administration and depletion 

of macrophages based on their phagocytotic capacity will be difficult in terms of 

specificity of killing and regulation of activity (45).  

 

           Dysregulated IL-23/Th17 axis and Tregs have been implicated in the 

pathogenesis of RA. Interactions between CD4 T cells and macrophages have 

been shown to be important for polarization of both lineages of cells (30, 46, 47). 

Recently, it has been reported that human Tregs can be converted to Th17 cells 

in the context of inflammatory signals and this differentiation process can be 

enhanced by IL-1β, IL-23, and IL-21 (48). We have determined the polarization 

condition of CD4 T cells in these mice after macrophage depletion by TRA-8. 

Interestingly, we found that there was a significant decrease in the frequency of 

Th17 and Th1 CD4 T cells in the LN isolated from the TRA-8 treated DR5 Tg+ 

LysM.Cre mice compared to control TRA-8 treated DR5 Tg- LysM.Cre mice with 

CIA.  In contrast, the frequency of Tregs in the LN of DR5 Tg+ LysM.Cre mice 

was nearly 2 fold higher than that in the DR5 Tg- LysM.Cre mice. Our results 

suggest that TRA-8, via diminishing the frequency of IL-23+ M1 macrophages, 

can indirectly regulate the balance of pro-inflammatory versus anti-inflammatory 

effector CD4 T cells.   
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           In conclusion, the results of the present study indicate that the anti-human 

DR5 antibody TRA-8 can specifically eliminate inflammatory macrophages 

leading to the rebalance of the IL-23/Th17 axis and Tregs and resolution of 

arthritis in a mouse arthritis model, which suggests that anti-human DR5 can be 

developed into a novel biologic agent for the therapy of RA and other 

macrophage-mediated inflammatory diseases or autoimmune diseases.   
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FIGURE LEGENDS 

Figure 1. Human, mouse and chimeric DR5 and their expression and function in 

inducing apoptosis by TRA-8. A, Amino acid alignment of human and mouse 

DR5.  Junction between human and mouse DR5 in the chimeric molecule, 

transmembrane, and death domain are as indicated. B, Schematic diagram 

representing the human, mouse and chimeric DR5 (left), and human, mouse and 

chimeric DR5 constructs generated with different promoters and regulatory 

elements (right). C, FACS analysis of cell surface expression of DR5 recognized 

by an anti-human DR5 antibody in NIH3T3 cells transiently transfected with the 

indicated constructs. Percentage of the hu/mo DR5+ cells was shown. N ≥ 3. * P 

< 0.05 versus result from construct 1. D, TRA-8 mediated killing in NIH3T3 

transiently transfected with the indicated constructs. Cell viability was determined 

using the ATPLite assay. For panels C and D, the data represent the mean ± 

s.e.m. (n ≥ 3). Hu, human; mo, mouse; chim, chimeric.  * P < 0.05 and ** P < 

0.01 versus isotype control.  

 

Figure 2. Hu/mo-chimeric Tg DR5 expression and function in Ubc.Cre DR5 Tg 

mice.  A, Real-time PCR analysis of the chimeric DR5 expression in the indicated 

tissues obtained from the Ubc.Cre DR5 double-positive transgenic mice after 

induction of Cre expression by tamoxifen. Expression is represented as the ratio 

of copy numbers of chimeric Dr5 or endogenous mouse Dr5 to those of Gapdh. 

The correlation R2 and correlation P value are shown in the upper-right of the 

panel. B, Transgenic chimeric DR5 cell surface expression on different immune 
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cells was analyzed by FACS (left panels). The chimeric DR5 expression is 

representative of three experiments (right panels). C, The percentage of 

CD11bhigh spleen macrophages from mice with and without TRA-8 treatment (0.2 

mg, i.v., twice/week for 2 months) was determined by FACS. Data represent the 

mean ± s.e.m. (n ≥ 3). D, Proliferation of LPS-stimulated spleen cells from DR5 

Tg− Ubc.Cre and hu/mo DR5 Tg+ Ubc.Cre mice treated with TRA-8 or isotype 

control antibody was determined using the [3H]-thymidine incorporation assay (n 

≥ 3). * P < 0.05 versus isotype control. 

 

Figure 3. TRA-8 treatment prevents the development and attenuates the severity 

of CIA in hu/mo-chimeric DR5 Tg+ Ubc.Cre mice. CIA was induced in the 

indicated DR5 Tg+ (A) and DR5 Tg- mice (B) as described in detail in the 

methods section. Chicken type II collagen emulsified in CFA and IFA was 

administered intradermally on day 0 and day 32 respectively (arrows). Early and 

late TRA-8 treatment (0.2 mg/mouse, once per week) was initiated on day 0 and 

day 30 respectively (arrow heads) and continued until sacrifice. Clinical scores 

(0-3 per paw; n=6 per group) were assessed daily until the mice were sacrificed. 

Data are presented as mean arthritis score ± s.e.m.. ** P < 0.01 versus TRA-8-

treated groups at the same time point.  C and D, Representative H&E and Mac-3 

immunohistochemical staining of the knee joint sections from a TRA-8 treated 

hu/mo DR5 Tg+ Ubc.Cre (C) or a TRA-8 treated DR5 Tg− Ubc.Cre (D) mouse.  

The magnification of the objective lens used to acquire the indicated images is 
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shown in the left.  E, erosion; H, hyperplasia; M, macrophages, (Scale bar, 100 

µm).  

 

Figure 4. Expression of hu/mo-chimeric DR5 in macrophages and selective 

depletion by TRA-8 in hu/mo DR5 Tg+ LysM.Cre mice with CIA. CIA was induced 

as described in the methods section. A group of mice were treated with TRA-8 

(0.2 mg/mouse, i.v., twice/week) until analysis at day 60 post primary cCII 

injection. A, Flow cytometry analysis of the expression of Tg DR5 as indicated by 

cell surface binding to an anti-human DR5 antibody on CD11b+ cells from the 

draining LN (upper panels). Chimeric Tg DR5 expression on CD11b+ cells by 

immunofluoresence staining of CD11b and hu/mo-chimeric DR5 on cells 

prepared by cytospin without cell permeabilization (lower panels). Chimeric Tg 

DR5 was detected using the Tyramide Signal Amplification (TSA) technique. B, 

Flow cytometry analysis of the expression of Tg DR5 by cell surface binding to 

an anti-human DR5 antibody on the indicated cell types from the draining LN. C 

and D, TRA-8 treatment depleted CD11b+ macrophages and CD11b+Ly6C+ 

inflammatory macrophages from draining LN from the indicated groups of mice 

by dot plot (left) and bar graph (right) analysis. Data represent the mean ± s.e.m. 

(n ≥ 3). * P < 0.05 and ** P < 0.01 between the indicated comparisons.   

 

Figure 5. Apoptosis induced by TRA-8 in the joints of hu/mo-chimeric DR5 Tg+ 

LysM. Cre mice with CIA. A, In vivo imaging of TRA-8 induced apoptosis in 

joints.  B, Quantitation of the imagines. DR5 Tg+ LysM.Cre and control LysM.Cre 
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mice were induced to develop CIA. At 8 week after induction, baseline levels of 

the caspase activity were measured using the caspase-targeted activity based 

probe AB50-Cy5 (left panel). Mice were then treated with TRA-8 (0.2 mg, day 0 

and 3) and apoptosis imaging using AB50-Cy5 was performed on the same mice 

on day 6 after initiating TRA-8 treatment (right panel). C, Immediately after the 

second AB50-Cy5 imaging, the joints were removed, fixed and processed for 

H.&E. (left), Mac-3 staining (middle, counterstained with methyl green), and 

TUNEL (right, counterstained with hematoxyline). D, Quantitative analysis of the 

TUNEL+ cells of the indicated cell types in synovium. The values on the Y-axis 

represent the percentages of TUNEL-positive cells of the indicated cell types. 

Five randomly chosen fields of synovium were evaluated for each section. E, 

erosion; H, hyperplasia; M, macrophages, and TU, TUNEL. Scale bar, 100 µm. 

Data represent mean ± s.e.m. (n ≥ 3). ** P < 0.01 between the indicated 

comparisons.  

 

Figure 6. TRA-8 treatment ameliorates the severity of CIA in hu/mo-chimeric 

DR5 Tg+ LysM.Cre mice. A, CIA was induced in hu/mo DR5 Tg+ LysM.Cre 

(upper panel) and control DR5 Tg– LysM.Cre mice (lower panel). Arrows indicate 

the intradermal injection of chicken type II collagen on day 0 and 30. TRA-8 

treatment was initiated on day 28 (arrow heads). Clinical scores (n = 6 per group) 

were assessed until the mice were sacrificed on day 60. Data are presented as 

the mean clinical score ± s.e.m. * P < 0.05 and ** P < 0.01 versus TRA-8 treated 

group at the indicated time point.  B, Cathepsin activity in joints was measured by 
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in vivo imaging using the NIRF-probe ProSense 750. C, Quantitative analysis of 

ProSense 750 intensity.  Data are presented as the mean ± s.e.m. * P < 0.05 

between the indicated comparisons.  D, Histological assessment of 

representative knee joints from TRA-8-treated DR5 Tg+ LysM.Cre DR5 (left 

panels) and DR5 Tg− LysM.Cre mice (right panels), which included H&E , Mac-3, 

and TRAP staining as indicated (scale bar: 100 µm). Both groups were treated 

with TRA-8 weekly for one month. E, erosion; H, hyperplasia; M, macrophages, 

and TR, TRAP.  

 

Figure 7.  TRA-8 treatment decreases the expression of pro-inflammatory 

cytokines and exhibits immunomodulatory effects in hu/mo DR5 Tg+ LysM.Cre 

mice. CIA was induced in hu/mo DR5 Tg+ LysM.Cre and control DR5 Tg– 

LysM.Cre mice as described in the methods section. TRA-8 treatment was 

initiated on day 28 until analysis at day 60 post primary cCII injection. A, Sera 

levels of IL-6 and IL-17A of indicated mice with TRA-8 treatment were analyzed 

by ELISA. B, Absolute copy numbers of Tnfa, Il6, Il17, Il23(p19), Irf5 and Foxp3 

of synovium of the indicated mice were determined by qRT-PCR and 

represented as copy number x105/Gapdh. C, Percentage of IL-23+ CD11b+ 

macrophages from the draining LN of the indicated mice treated with TRA-8 on 

day 60 (CD11b+ gated) was determined by flow cytometry. D, Percentage of 

Th17 (IL-17+) and Th1 (IFN-γ+) cells (CD4+ gated) and Tregs (CD4+, Foxp3+) 

from the draining LN of the indicated mice treated with TRA-8 on day 60 were 
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analyzed by flow cytometry. Data are presented as the mean ± s.e.m. * P < 0.05 

and ** P < 0.01 between the indicated comparisons. 
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Transmembrane Domain Death Domain

HUMAN  MEQRGQNAPAASGARKRHGPGPREARGARPGLRVPKTLVLVVAAVLLLVSAESALITQQD 60

MOUSE  MEPPGPSTPTASAAARADHYTP----GLRP---LPKRRLLYSFALLLAVLQAVFVPVTAN 53

**  * .:*:**.* : .   *    * **   :**  :*   *:** *     : . :
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MOUSE  PAHNRPAGLQRPEESPSRGPCLAGQYLSEG--NCKPCREGIDYTSHSNHSLDSCILCTVC 111

* :: *. *: ..***.* * .*:::**.  :* .*: * **::* * .*  *: ** *

HUMAN  DSGEVELSPCTTTRNTVCQCEEGTFREEDSPEMCRKCRTGCPRGMVKVGDCTPWSDIECV 179

MOUSE  KEDKVVETRCNITTNTVCRCKPGTFEDKDSPEICQSCSN-CTDGEEELTSCTPRENRKCV 170

...:*  : *. * ****:*: ***.::****:*:.* . *. *  :: .*** .: :**
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Figure 1. Human, mouse and chimeric DR5 and their expression and function in inducing apoptosis by TRA-8. A, Amino acid alignment 
of human and mouse DR5.  Junction between human and mouse DR5 in the chimeric molecule, transmembrane, and death domain are 
as indicated. B, Schematic diagram representing the human, mouse and chimeric DR5 (left), and human, mouse and chimeric DR5 
constructs generated with different promoters and regulatory elements (right). C, FACS analysis of cell surface expression of DR5 
recognized by an anti-human DR5 antibody in NIH3T3 cells transiently transfected with the indicated constructs. Percentage of the hu/mo 
DR5

+
 cells was shown. N ≥ 3. * P < 0.05 versus result from construct 1. D, TRA-8 mediated killing in NIH3T3 transiently transfected with 

the indicated constructs. Cell viability was determined using the ATPLite assay. For panels C and D, the data represent the mean ± 

s.e.m. (n ≥ 3). Hu, human; mo, mouse; chim, chimeric.  * P < 0.05 and ** P < 0.01 versus isotype control.  
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Figure 2. Hu/mo-chimeric Tg DR5 expression and function in Ubc.Cre DR5 Tg mice.  A, Real-time PCR analysis of the chimeric 
DR5 expression in the indicated tissues obtained from the Ubc.Cre DR5 double-positive transgenic mice after induction of Cre 
expression by tamoxifen. Expression is represented as the ratio of copy numbers of chimeric Dr5 or endogenous mouse Dr5 to 
those of Gapdh. The correlation R

2
 and correlation P value are shown in the upper-right of the panel. B, Transgenic chimeric DR5 

cell surface expression on different immune cells was analyzed by FACS (left panels). The chimeric DR5 expression is 
representative of three experiments (right panels). C, The percentage of CD11b

high
 spleen macrophages from mice with and 

without TRA-8 treatment (0.2 mg, i.v., twice/week for 2 months) was determined by FACS. Data represent the mean ± s.e.m. (n ≥ 

3). D, Proliferation of LPS-stimulated spleen cells from DR5 Tg− Ubc.Cre and hu/mo DR5 Tg
+
 Ubc.Cre mice treated with TRA-8 or 

isotype control antibody was determined using the [
3
H]-thymidine incorporation assay (n ≥ 3). * P < 0.05 versus isotype control. 
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Figure 3. TRA-8 treatment prevents the development and attenuates the severity of CIA in hu/mo-chimeric DR5 Tg
+
 Ubc.Cre mice. 

CIA was induced in the indicated DR5 Tg
+
 (A) and DR5 Tg

-
 mice (B) as described in detail in the methods section. Chicken type II 

collagen emulsified in CFA and IFA was administered intradermally on day 0 and day 32 respectively (arrows). Early and late TRA-8 
treatment (0.2 mg/mouse, once per week) was initiated on day 0 and day 30 respectively (arrow heads) and continued until sacrifice. 
Clinical scores (0-3 per paw; n=6 per group) were assessed daily until the mice were sacrificed. Data are presented as mean arthritis 
score ± s.e.m.. ** P < 0.01 versus TRA-8-treated groups at the same time point.  C and D, Representative H&E and Mac-3 
immunohistochemical staining of the knee joint sections from a TRA-8 treated hu/mo DR5 Tg

+
 Ubc.Cre (C) or a TRA-8 treated DR5 

Tg− Ubc.Cre (D) mouse.  The magnification of the objective lens used to acquire the indicated images is shown in the left.  E, erosion; 
H, hyperplasia; M, macrophages, (Scale bar, 100 µm).  
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Figure 4. Expression of hu/mo-chimeric DR5 in macrophages and selective depletion by TRA-8 in hu/mo DR5 Tg
+
 

LysM.Cre mice with CIA. CIA was induced as described in the methods section. A group of mice were treated with TRA-8 
(0.2 mg/mouse, i.v., twice/week) until analysis at day 60 post primary cCII injection. A, Flow cytometry analysis of the 
expression of Tg DR5 as indicated by cell surface binding to an anti-human DR5 antibody on CD11b

+
 cells from the 

draining LN (upper panels). Chimeric Tg DR5 expression on CD11b
+
 cells by immunofluoresence staining of CD11b and 

hu/mo-chimeric DR5 on cells prepared by cytospin without cell permeabilization (lower panels). Chimeric Tg DR5 was 
detected using the Tyramide Signal Amplification (TSA) technique. B, Flow cytometry analysis of the expression of Tg DR5 
by cell surface binding to an anti-human DR5 antibody on the indicated cell types from the draining LN. C and D, TRA-8 
treatment depleted CD11b

+ 
macrophages and CD11b

+
Ly6C

+ 
inflammatory macrophages from draining LN from the 

indicated groups of mice by dot plot (left) and bar graph (right) analysis. Data represent the mean ± s.e.m. (n ≥ 3). * P < 
0.05 and ** P < 0.01 between the indicated comparisons.   
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Figure 5. Apoptosis induced by TRA-8 in the joints of hu/mo-chimeric DR5 Tg
+
 LysM. Cre mice with CIA. A, In vivo imaging of 

TRA-8 induced apoptosis in joints.  B, Quantitation of the imagines. DR5 Tg
+
 LysM.Cre and control LysM.Cre mice were induced 

to develop CIA. At 8 week after induction, baseline levels of the caspase activity were measured using the caspase-targeted 
activity based probe AB50-Cy5 (left panel). Mice were then treated with TRA-8 (0.2 mg, day 0 and 3) and apoptosis imaging using 
AB50-Cy5 was performed on the same mice on day 6 after initiating TRA-8 treatment (right panel). C, Immediately after the 
second AB50-Cy5 imaging, the joints were removed, fixed and processed for H.&E. (left), Mac-3 staining (middle, counterstained 
with methyl green), and TUNEL (right, counterstained with hematoxyline). D, Quantitative analysis of the TUNEL

+
 cells of the 

indicated cell types in synovium. The values on the Y-axis represent the percentages of TUNEL-positive cells of the indicated cell 
types. Five randomly chosen fields of synovium were evaluated for each section. E, erosion; H, hyperplasia; M, macrophages, and 
TU, TUNEL. Scale bar, 100 µm. Data represent mean ± s.e.m. (n ≥ 3). ** P < 0.01 between the indicated comparisons.  
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Figure 6. TRA-8 treatment ameliorates the severity of CIA in hu/mo-chimeric DR5 Tg
+
 LysM.Cre mice. A, CIA was induced in hu/mo DR5 

Tg
+
 LysM.Cre (upper panel) and control DR5 Tg

–
 LysM.Cre mice (lower panel). Arrows indicate the intradermal injection of chicken type II 

collagen on day 0 and 30. TRA-8 treatment was initiated on day 28 (arrow heads). Clinical scores (n = 6 per group) were assessed until the 
mice were sacrificed on day 60. Data are presented as the mean clinical score ± s.e.m. * P < 0.05 and ** P < 0.01 versus TRA-8 treated 
group at the indicated time point.  B, Cathepsin activity in joints was measured by in vivo imaging using the NIRF-probe ProSense 750. C, 
Quantitative analysis of ProSense 750 intensity.  Data are presented as the mean ± s.e.m. * P < 0.05 between the indicated comparisons.  

D, Histological assessment of representative knee joints from TRA-8-treated DR5 Tg
+ 

LysM.Cre DR5 (left panels) and DR5 Tg− 
LysM.Cre 

mice (right panels), which included H&E , Mac-3, and TRAP staining as indicated (scale bar: 100 µm). Both groups were treated with TRA-8 
weekly for one month. E, erosion; H, hyperplasia; M, macrophages, and TR, TRAP.  
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Figure 7.  TRA-8 treatment decreases the expression of proinflammatory cytokines and exhibits immunomodulatory effects in hu/mo 
DR5 Tg+ LysM.Cre mice. CIA was induced in hu/mo DR5 Tg+ LysM.Cre and control DR5 Tg– LysM.Cre mice as described in the 

methods section. TRA-8 treatment was initiated on day 28 until analysis at day 60 post primary cCII injection. A, Sera levels of IL-6 

and IL-17A of indicated mice with TRA-8 treatment were analyzed by ELISA. B, Absolute copy numbers of Tnfa, Il6, Il17, 
Il23(p19), Irf5 and Foxp3 of synovium of the indicated mice were determined by qRT-PCR and represented as copy number 

x105/Gapdh. C, Percentage of IL-23+ CD11b+ macrophages from the draining LN of the indicated mice treated with TRA-8 on day 60 

(CD11b+ gated) was determined by flow cytometry. D, Percentage of Th17 (IL-17+) and Th1 (IFN-γ+) cells (CD4+ gated) and Tregs 
(CD4+, Foxp3+) from the draining LN of the indicated mice treated with TRA-8 on day 60 were analyzed by flow cytometry. Data are 

presented as the mean ± s.e.m. * P < 0.05 and ** P < 0.01 between the indicated comparisons. 
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