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Abstract

Activity-based protein profiling (ABPP) is a commonly utilized technique to globally
characterize the endogenous activity of multiple enzymes within a related family.
While it has been used extensively to identify enzymes that are differentially active
across various mammalian tissues, recent efforts have expanded this technique to
studying bacteria. As ABPP is applied to diverse sets of bacterial strains found in micro-
bial communities, there is also an increasing need for robust tools for assessing the
conservation of enzymes across closely related bacterial species and strains. In this chap-
ter, we detail the integration of gel-based ABPP with basic bioinformatic tools to enable
the analysis of enzyme activity, distribution, and homology. We use as an example the
family of serine hydrolases identified in the skin commensal bacterium Staphylococcus
epidermidis.
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1. Introduction

The rise of resistant and multi-resistant bacterial pathogens poses a
serious threat to human health. To overcome the antibiotic resistance crises,
discovery of new classes of antibacterial targets is urgently needed. One of
the many challenges in this endeavor is that large fractions of many bacterial
genomes remain functionally uncharacterized, thus requiring unbiased
screening methods to select promising new drug targets that can be chem-
ically modulated. Activity-based protein profiling (ABPP) is a powerful
technique that enables rapid and direct identification and quantification
of enzyme activities in complex biological samples. An activity-based
probe, which is composed of an electrophilic warhead, a linker to confer
specificity, and a reporter tag, covalently modifies an enzyme active site
in an activity-dependent manner. The combination of the warhead and
linker dictates the family of enzymes targeted by the probe. Once target
enzymes are labeled, a fluorescent tag allows for visualization of active
enzymes via in-gel fluorescence or microscopy, while an affinity tag (e.g.
biotin) facilitates enrichment and subsequent mass spectrometry-based iden-
tification of the enzymes (Keller, Babin, Lakemeyer, & Bogyo, 2020). Thus,
ABPP enables monitoring of the activity of multiple enzymes in parallel in
the context of their native cellular environments (Fig. 1A). Specific activity-
based probes containing diverse electrophiles such as fluorophosphonates,
acyloxymethyl ketones, vinyl sulfones, and others have been developed
to target enzyme families ranging from proteases to glucosidases. For over-
views of recent advances in activity-based probes, we refer the reader to
comprehensive reviews (Benns, Wincott, Tate, & Child, 2021; Fang
et al., 2021; Galmozzi, Dominguez, Cravatt, & Saez, 2014; Keller, Babin,
et al., 2020).

One of the most successtul classes of ABPs are fluorophosphonates (FP,
Fig. 1B), which were designed to target the large and diverse family of mam-
malian serine hydrolases (Fig. 1C) that includes proteases and lipases, among
others (Jessani et al., 2005; Kidd, Liu, & Cravatt, 2001). More recently, FP
probes have been applied to characterize serine hydrolases in bacterial path-
ogens such as Vibrio cholerae or Mycobacterium tuberculosis (Hatzios et al., 2016;
Ortega et al., 2016). In addition to determining which relevant enzyme
activities to prioritize for future drug development, ABPP inherently selects
for “druggable” enzymes that can be covalently modified. Moreover, it
enables characterization of the potency and selectivity of an inhibitor within
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Fig. 1 Workflow for activity-based protein profiling (ABPP). (A) A sample of interest is
treated with an activity-based probe, consisting of an electrophilic warhead, a linker
than confers specificity, and a reporter tag. The probe labels enzymes in an activity-
dependent manner, which can then be enriched with a biotin tag for identification
by mass spectrometry (mass spectrometry-based ABPP) or visualized with a fluorescent
tag via SDS-PAGE and in-gel fluorescence (gel-based ABPP). (B) Structure of
fluorophosphonate (FP) probe with tetramethylrhodamine (TMR) and biotin tags,
respectively. (C) Schematic for the covalent modification of serine hydrolases by FP pro-
bes. (D) Structure of SaFphB-targeted chloroisocoumarin JCP251 (Lentz et al., 2018).

a class of closely-related enzymes, as has been demonstrated in M. tuberculosis
with compounds JCP276, EZ120, and AA692 (Babin et al., 2021; Lehmann
et al., 2018; Li et al., 2021).

The human body harbors numerous defined communities of “beneficial”
bacteria that comprise, for example, the gut, skin, or vaginal microbiota. The
natural flora in these communities aids in immune development, contributes
to xenobiotic metabolism, and competes with pathogens for ecological niches.
Broad-spectrum antibiotics, which act on pathogen and commensal bacteria
alike, can decrease microbial diversity, shift the gut metabolome, and even
lead to recurring enteropathogen infections, for example by Clostridioides dif-
ficile (Avis, Wilson, Khan, Mason, & Powell, 2021; Ramirez et al., 2020).
Thus, in the development of antibacterials, there has been a focus on targeting
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pathogen-specific pathways. However, this approach is complicated in the
case of pathobionts, which are normal residents of the healthy microbiome
but have high pathogenic potential (Chow & Mazmanian, 2010;
Jochum & Stecher, 2020; Mazmanian, Round, & Kasper, 2008). These
pathobionts are particularly important therapeutic targets, as they are the lead-
ing causes of nosocomial infections and often acquire multi-drug resistance,
yet they are difficult to selectively target because they have closely related
species that are key members of the healthy microbiome (Kamada, Chen,
Inohara, & Nifiez, 2013; Otto, 2009; Wallace, Fishbein, & Dantas, 2020).

One such pathobiont is Staphylococcus aureus (S. aureus), which resides sym-
biotically in the nasal microbiome of 30% of adults but at the same time is a
leading cause of bacteremia and infective endocarditis (Tong, Davis,
Eichenberger, Holland, & Fowler, 2015). S. aureus is closely related to the
commensal bacterium Staphylococcus epidermidis (S. epidermidis), which is fre-
quently isolated from the skin of healthy humans and plays important roles
in modulating the immune response during wound healing (Lai et al.,
2009; Naik et al., 2012). Using activity-based protein profiling, we identified
a serine hydrolase, FphB, in S. aureus that functions as a virulence factor and is
important for colonization of the heart in a systemic infection mouse model.
We identified a chloroisocoumarin-based compound, JCP251 (Fig. 1D), asa
potent inhibitor of S. aureus FphB (SaFphB) by ABPP. To determine how
selective the compound is for S. aureus, we performed gel-based ABPP against
various other bacterial pathogens and the closely related S. epidermidis using a
fluorescent derivative of JCP251. This analysis confirmed that while the other
pathogen strains did not contain homologs of FphB that could be labeled by
the JCP251 probe, we identified a probe-labeled protein in S. epidermidis
(Lentz et al., 2018). Using a combination of mass spectrometry (MS)- and
gel-based ABPP with a broad-spectrum FP probe, protein-protein BLAST,
and cluster analysis, we were able to identify the set of serine hydrolases that
are conserved between S. aureus and S. epidermidis as well as amongst clinical
isolates of S. epidermidis. This allowed us to confirm the identity of the
S. epidermidis FphB homolog (SeFphB) and its labeling by the SaFphB inhib-
itor JCP251. Despite the homology between SeFphB and SaFphB, JCP251
did not affect the skin colonization of S. epidermidis suggesting a possible alter-
nate function for SeFphB that is not related to colonization (Keller et al.,
2020). In this chapter, we will use our efforts in S. epidermidis to explain
and outline basic bioinformatic tools and how to integrate them with gel-
based ABPP to determine enzyme conservation and homology between
strains and within closely related species of bacteria.
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2. Integration of bioinformatics with ABPP

ABPP is a powerful tool to identify enzymes that are active in a
disease-relevant state while also enabling screening for potent and selective
inhibitors. ABPP has been successtully applied to pathogenic bacteria such as
Vibrio cholerae and Mycobacterium tuberculosis (Babin et al., 2021; Hatzios et al.,
2016; Lehmann etal., 2018; Li et al., 2021). Finding antibacterial targets that
are selective for pathogens over beneficial commensal bacteria is relatively
easy because close species relatives are not commonly found in the healthy
flora of the human microbiota. On the other hand, pathobiont bacteria such
as the Gram-positive species Staphylococcus aureus, Clostridioides difficile, and
Enterococcus faecalis exist in the human body in complex communities with
closely related beneficial bacteria (Kamada et al., 2013; Wallace et al.,
2020). Combining bioinformatic approaches with ABPP can be an effective
approach to identify promising drug targets in pathobiont species that are not
conserved in closely related commensal bacterial species.

Genomic approaches, such as marker gene or whole genome sequenc-
ing, are state-of-the art approaches for the classification of clinical isolates of
a single bacterial species (Conlan et al., 2012; Méric et al., 2018; Miragaia,
Thomas, Couto, Enright, & de Lencastre, 2007). The combination of gel-
based ABPP and quantitative image analysis represents a straight-forward
and fast alternative to genomic-only techniques. Moreover, focusing on
the dynamic regulation of the catalytic activity of an enzyme family, such
as serine hydrolases, enables the generation of functional clusters that might
better reflect biological conservation across bacterial strains compared to
simple sequence homology.

2.1 Useful bioinformatic tools to integrate with ABPP

The most common method of identifying a protein homolog is assessing
sequence similarity with the protein-protein Basic Local Alignment
Search Tool (BLASTp), which rapidly compares a query protein sequence
to a search set of sequences by measuring local similarity (Altschul, Gish,
Miller, Myers, & Lipman, 1990). The set of sequences to search against
can be composed of a single sequence, a set of sequences, the proteome
of a single species, or even entire databases such as all non-redundant
GenBank sequences. The BLASTp search returns the protein sequences
most similar to the query sequence, their pair-wise alignments with the
query sequence, and several metrics for each alignment. These include
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the percent identity, which is the fraction of the aligned sequences that have
the same amino acid in the same position, and the e-value, which is a statistical
measure of the likelihood that another protein sequence in the search set
would have a better similarity score by random chance. There is no standard
threshold for what percent identity and e-value constitutes a homolog, but
combining these metrics with searching the alignment for conservation of res-
idues that are known to be important for protein function, such as active-site
residues, can increase confidence in identifying a homolog. Additionally, if the
two proteins are reciprocal best hits, meaning that each protein is the top result
in a BLASTp search of the opposite proteome, this further confirms that two
proteins are likely homologs (Ward & Moreno-Hagelsieb, 2014). All of these
approaches can be applied to compare protein identifications in MS-based
ABPP experiments across closely related bacterial species and are the starting
point for more complex bioinformatic-based analyses.

On the other hand, gel-based ABPP (i.e. labeling samples of interest with
fluorescent probes, separating the proteins on an SDS-PAGE gel, and mea-
suring in-gel fluorescence) is an application of ABPP that does not as natu-
rally lend itself to bioinformatic supplementation. However, with image
quantification software such as Image], the fluorescence intensity of individ-
ual protein bands on a gel can be measured and compared across conditions,
allowing relative quantification of the activity of each labeled species. This
method is commonly used in competitive gel-based ABPP, where a library
of inhibitors is screened by pretreating the sample of interest (i.e. intact bac-
terial cells) with a compound followed by labelling with a fluorescent probe.
The ability of the inhibitor to compete away the probe labeling of a given
enzyme can be then quantified, allowing determination of ICs, values
(Chen, Keller, Cordasco, Bogyo, & Lentz, 2019). Alternatively, the fluores-
cent intensities can be measured along an entire lane, thus generating a pro-
file of enzymatic activity. This enables comparison of global enzyme
activities for a given family across difterent conditions or within related
strains. It also provides information on how each enzyme may be differen-
tially regulated. These activity profiles can be visualized as a heatmap and
clustered hierarchically with existing packages in R or Python. This allows
any experimental sample (i.e. clinical isolates) to be rapidly stratified and
compared to other strains in a functional manner.

2.2 Application of bioinformatic tools and ABPP techniques
for profiling Staphylococcus epidermidis serine hydrolases

Using a fluorophosphonate activity-based probe, we have previously iden-
tified a serine hydrolase in the pathobiont Staphylococcus aureus, SaFphB, that
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is important in a systemic infection mouse model. The protein is selectively
targeted in S. aureus by the covalent inhibitor JCP251. However, this study
also demonstrated that JCP251 labels an enzyme of similar molecular weight
in the closely related skin commensal S. epidermidis (Lentz et al., 2018). We
thus aimed to determine whether this enzyme was a homolog of SaFphB
and how conserved the 11 additional fluorophosphonate-binding hydrolases
(Fphs) identified in S. aureus are among different species of the Staphylococcus
genus (Keller, Lentz, et al., 2020). By performing BLASTp searches on cus-
tom search sets of the reference proteome for each major staphylococcal
strain, we were able to determine that most of the 12 S. aureus Fph enzymes
were conserved in at least 60% of the almost 50 staphylococcal species
tested (Fig. 2A). In particular, homologs of SaFphB were predicted in
approximately two-thirds of the species (Fig. 2B). Interestingly, all but
two of the Fphs from S. aureus have at least one putative homolog in
S. epidermidis, and three have two homologs, suggesting that there may have
been either multiple gene duplication or horizontal gene transfer events.

Fphs are a subset of the serine hydrolase enzyme superfamily, which use a
catalytic serine residue to hydrolyze amide, ester, and thioester bonds in
metabolites that are important for cell-cell signaling and metabolism
(Simon & Cravatt, 2010). Because serine hydrolases are defined by their cat-
alytic mechanism, ABPP techniques with a probe containing a broad
serine-reactive warhead such as the fluorophosphonate is an effective
method to identify novel serine hydrolases. Importantly, identification of
probe-labeled enzymes helps to confirm bioinformatically-predicted anno-
tations. Thus, we also followed up our BLASTp-based Fph homolog pre-
dictions with MS-based ABPP of 17 strains of S. epidermidis, including
reference strains and clinical isolates. In total, we identified 18 serine hydro-
lases, most of which were the BLASTp-predicted S. aureus Fph homologs.
Interestingly, four serine hydrolases had not been identified in the profiling
of S. aureus and one did not have a clear homologin S. aureus, demonstrating
how combining bioinformatics and ABPP across multiple related species can
enhance the identification of novel enzymes and uncover their conservation
within related families of bacteria. In particular, the homolog of SaFphB in
S. epidermidis, SeFphB, was predicted with BLASTp, was measured by
MS-based ABPP, and its similar catalytic function was confirmed by active
site conservation and substrate specificity.

To compare the relative activities of the Fphs across the various
S. epidermidis strains, we performed gel-based ABPP with a fluorescent
fluorophosphonate probe (Fig. 3A). We identified substantial variabilities in
the activity levels of multiple Fphs in these 17 S. epidermidis strains, which
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threshold e-value of 1x10™. Staphylococcus aureus and its Fph enzymes, which were the query sequences for each BLASTp search, are highlighted in maroon.
(B) Percentage of the 47 staphylococcal species that contain a homolog of the indicated S. aureus hydrolase by BLASTp search. Part B: Adapted from Keller, L. J.,
Lentz, C. S., Chen, Y. E., Metivier, R. J., Weerapana, E., & Fischbach, M. A. (2020). Characterization of serine hydrolases across clinical isolates of commensal skin bacteria
Staphylococcus epidermidis using activity-based protein profiling. ACS Infectious Diseases, 6(5), 930—938. doi: 10.1021/acsinfecdis.0c00095.
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Fig. 3 Method of clustering bacterial strains by their activity profiles. (A) Clinical
isolates of Staphylococcus epidermidis were labeled with 1pM fluorophosphonate-
tetramethylrhodamine before being lysed and separated by SDS-PAGE. The strains
are clustered by a phylogenetic analysis of their genomic content (Chen et al,, 2019;
Gardner, Slezak, & Hall, 2015). The genomes of isolates NCTC 9685 and KPL1815 have
not been sequenced and assembled and thus are not clustered. (B) The Fph activity
profile of each clinical isolate was quantified, visualized in the heatmap, and used for
hierarchical clustering. Clinical isolates are colored by their clonal lineages (group A,
dark blue; group B, green; group C, light blue; unknown, black (Méric et al., 2018))
and strains isolated from infected patients are denoted with an asterisk. Part B:
Adapted from Keller, L. J, Lentz, C. S, Chen, Y. E, Metivier, R. J,, Weerapana, E., &
Fischbach, M. A. (2020). Characterization of serine hydrolases across clinical isolates of com-
mensal skin bacteria Staphylococcus epidermidis using activity-based protein profiling. ACS
Infectious Diseases, 6(5), 930—938. doi: 10.1021/acsinfecdis.0c00095.

may be due to the fact that these strains are isolated from different microen-
vironments in the human body (i.e. the nares of a healthy volunteer versus the
bloodstream of an infected patient). There have been efforts to categorize
S. epidermidis clinical isolates into clonal lineages via marker gene and
genomic-based techniques, as well as attempts to correlate this clustering with
functional assays (Conlan et al., 2012; Espadinha et al., 2019; Méric et al.,
2018; Miragaia et al., 2007). Previous work from the Bertozzi group utilized
an in-gel assay with a sulfatase-activatable fluorophore to distinguish different
mycobacterial species based on their activity “fingerprint” (Beatty et al.,
2013). We thus wanted to determine if the Fph activity “fingerprint” or
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profile could be used to stratify these 17 S. epidermidis strains. Clustering the
strains based on their Fph activity profile maintained the close relationship
between several pairs of strains, such as SK135 and BCM-HMPO0060, but
did not preserve the global genomic-based dendrogram nor distinguish the
clonal lineages (Fig. 3B). These results were not surprising considering almost
all the strains have the same Fph enzymes encoded in their genomes; however,
they do suggest that there are interesting strain-specific regulatory pathways of
these enzymes that should be further explored.

3. Protocols

There are many useful protocols for the design of activity-based probes
and their implementation in various ABPP techniques (Galmozzi et al., 2014;
Prothiwa & Bottcher, 2020; Sharifzadeh et al., 2020; Steiger, Fansler,
Whidbey, Miller, & Wright, 2020). This section will detail general ABPP
sample preparation, gel-based analysis to visualize differences in enzyme activ-
ity, and basic bioinformatic tools that can be integrated with ABPP.

3.1 Intact bacteria labeling with an activity-based probe

3.1.1 Materials

* Bacterial cultures

* Phosphate-buftered saline (PBS)

*  Fluorophosphonate-tetramethylrhodamine (FP-TMR) activity-based
probe at a concentration of 100 pM in DMSO

e 10% sodium-dodecyl sulfate (SDS) in water

* Non-sterile 1.5mL Eppendorf tubes or equivalent

*  0.5mL screw cap microcentrifuge tubes with O-ring (Thermo Fisher
#02-707-350) or equivalent

* 0.1mm glass beads (BioSpec #11079101) or equivalent

e Spectrophotometer

e Bench top incubator

* Bench top microcentrifuge

e Mini-beadbeater-96 (BioSpec) or equivalent

*  Aluminum vial rack (BioSpec #702ALU) or equivalent

3.1.2 Procedure
1. Prechill aluminum vial rack by storing at -20°C.
2. Measure the optical density of the bacterial cultures at 600 nm (ODygq)
using the spectrophotometer.



Combining informatics with ABPP to identify serine hydrolases 11

3. Centrifuge the bacterial cultures on the bench top microcentrifuge at
3,000xg for 5 min, remove the culture medium, and resuspend the cell
pellets in a volume of PBS such that the final ODgg 1s 16.

4. Add2pL FP-TMR probe (100 pM stock) to each 200 pL bacterial cul-
ture (1 pM final concentration) and incubate at 37 °C for 30 min.

5. Centrifuge the bacterial cultures on the bench top microcentrifuge at
3,000xg for 5 min, remove the supernatant, and resuspend the labeled
cell pellets in the same volume of PBS.

6. Add 10% SDS at a 1:100 dilution (0.1% final concentration).

7. Transfer the samples to 0.5mL O-ringed tubes filled halfway with
0.1 mm glass beads.

8. Putsamples in prechilled aluminum vial rack and lyse by bead-beating,
three times for 45s with 2min breaks on ice in between each burst.

9. Centrifuge the bacterial lysate at 8,000 x g for 10 min to pellet insoluble
cell debris and beads. Transfer the lysate to a new 1.5mL tube.

10. Quantify protein concentration using the Pierce BCA Protein Assay
Kit (Thermo Fisher), following manufacturer’s protocol.

3.1.3 Notes

This protocol is written specifically for labeling with a fluorescent FP probe
to label serine hydrolases, but the concentrations and incubation times
should be optimized for each probe. This can be achieved by first labeling
with a range of probe concentrations for a set time and then selecting optimal
probe concentrations and performing labeling for varying time periods.
Furthermore, for each bacterial species, we recommend optimizing with
several different lysis conditions prior to undergoing any full-scale experi-
ment. In our experience, lysis by probe sonication (i.e. three 20-s bursts with
the Sonic Dismembrator Model 100 (Fisher Scientific)) is preferred with
smaller volume samples; however, lysis by bead-beating is often necessary
with Gram-positive bacterial species. Furthermore, various detergent addi-
tives and concentrations should be screened to optimize solubilization of
membrane-associated proteins.

To identify enzymes that are more likely to be accessible to small
molecule inhibitors and thus potential drug targets, we label intact bacterial
samples, which, depending on the cell permeability of the activity-based
probe used, may bias the labeling toward enzymes that are membrane-
associated or found on the external surface of the bacteria cells. Bacterial cells
can also be lysed prior to labeling if intracellular targets are of interest—in
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this case, normalize the protein amount by BCA quantification prior to
labeling with the activity-based probe.

If the activity-based probe contains an alkyne handle instead of the fluo-
rescent tag, after sample labeling, it can be derivatized with copper-catalyzed
azide alkyne cycloaddition (CuAAC) to append a fluorophore (Rostovtsev,
Green, Fokin, & Sharpless, 2002; Steiger et al., 2020).

Similar labeling methods can be performed with biotinylated probes to
perform mass spectrometry-based identification of the active enzymes.
Because methods vary based on instrumentation, a detailed protocol is
not provided in this chapter. The general workflow involves (1) labeling
the bacteria with a biotinylated activity-based probe, (2) lysing the bacteria,
(3) removing excess probe, (4) enriching for labeled enzymes on streptavidin
resin, (5) on-bead reducing, alkylating, and digesting the enriched proteins,
(6) eluting from the resin, (7) desalting, and (8) MS-measurement. For more
detailed descriptions, we refer the reader to previous methods sections from
the following papers (Chen et al., 2017; Galmozzi et al., 2014; Kuljanin
et al., 2021).

3.2 Gel-based ABPP

3.2.1 Materials

* Fluorescent probe-labeled bacterial samples (from Section 3.1)

* PBS

e 4x Laemmli Sample Buffer (1mL 1.0M Tris pH 6.8, 400 mg sodium
dodecyl-sulfate, 2mL glycerol, 1 mL B-mercaptoethanol, 10 mg brom-
ophenol blue, dH,O to a final volume of 5mL)

e Precision Plus Protein All Blue Prestained Protein Standards (Bio Rad
#1610373) or equivalent

e Isopropanol

e 12% acrylamide Resolving Gel (2.4mL ProtoGel (30% (w/v) acrylam-
ide/bisacrylamide solution (National Diagnostics #EC-890)), 2mL
dH,O, 1.5mL 1.5M Tris pH 8.8, 60pL 10% SDS in dH,O, 60puL
10% ammonium persulfate (APS) in dH,O, 6 uL TEMED)

* Stacking Gel (750 pL ProtoGel, 2.25mL dH,0, 1.75mL 1M Tris pH
6.8, 50pL 10% SDS in dH,O, 50pL 10% ammonium persulfate (APS)
in dH,O, 5pL TEMED)

e 10x Tris-glycine Running Buffer (30g Tris base, 144 g glycine, 10g
SDS, dH,0 to a final volume of 1 L)

* Standard Dry Block Heater (VWR) or equivalent

*  Mini PROTEAN Tetra Cell system (Bio Rad #1658003) or equivalent
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Mini Cell Buffer Dam (Bio Rad #1653130) or equivalent
Power supply (Thermo Fisher #EC105) or equivalent
Typhoon FLA 9500 gel scanner (GE) or equivalent

3.2.2 Procedure

1.

11.

12.

Dilute each fluorescent probe-labeled sample to 25 pg total protein in
15 pL using PBS.

. Add 5pL 4x Laemmli Sample Buffer to each sample, pipet to mix, and

boil in a preheated Block Heater for 10min at 95 °C.

. Assemble the short and 1.0 mm spacer plate in the casting frame, ensur-

ing the short plate is facing out and that the bottoms of the plates are
flush with the bench, and transfer the assembly to the casting stand.

. Combine the reagents for the 12% acrylamide Resolving Gel and pipet

between the glass plates to roughly 75% of the height of the short plate,
checking for leaks.

. Add a thin layer of isopropanol on top of the Resolving Gel layer to

ensure there are no bubbles and the top of the gel is even, and allow
to polymerize for at least 15 min.

. Pour oft isopropanol into a receptacle for organic waste and rinse with

dH,O before proceeding.

. Combine the reagents for the Stacking Gel and pipet between the glass

plates to the top. Carefully place the 15-well comb in between the
glass plates without introducing bubbles and allow the Stacking Gel
to polymerize for at least 15 min.

. Dilute 100 mL 10x Tris-glycine Running Bufter in 900 mL dH,O and

add 400 mL of 1x Running Bufter to the Mini-PROTEAN Tetra Cell
Buffer Tank.

. Remove the comb from the acrylamide gel.
10.

Sandwich the acrylamide gel with the spacer plate facing out and the
Mini Cell Buffer Dam in the Mini-PROTEAN Tetra Electrode
Assembly, ensuring the seal with the rubber gasket. If running two
gels simultaneously, the Buffer Dam can be swapped for a second
acrylamide gel.

Fill the sandwiched assembly with 1x Running Buffer, rinse the wells
with 1x Running Buffer, and place in the Buffer Tank.

Load 20 pL of labeled sample into each well in the desired order. Add
3 pL of Precision Plus Protein All Blue Prestained Protein Standards to
either the first or last lane. When loading each well, pipet slowly and
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smoothly, ensuring the sample collects at the bottom of the well and
there are no bubbles to disrupt the sample.

13. Put the Lid on the Bufter Tank, attach the leads to the Power Supply,
and set the voltage at approximately 85V. Once the sample has passed
through the Stacking Gel and entered the Resolving Gel (as monitored
by the blue “front” of the samples), the voltage can be increased up to
120V if desired.

14. Once the blue “front” has run off the bottom of the gel, remove the gel
from the sandwiched assembly, rinse with water, and gently dry off.

15. Image the gel using the Typhoon gel scanner at the appropriate wave-
length (for the TMR fluorophore, excitation/emission 544 nm/570 nm)
for the fluorescent dye in the activity-based probe to generate an in-gel
fluorescence image. The photomultipler tube (PMT) voltage and reso-
lution can be adjusted to increase image quality.

3.2.3 Notes

When casting the acrylamide gel, add the acrylamide just prior to casting the
gel as polymerization will begin right away. Avoid any spills as acrylamide in
solution is toxic. The percent acrylamide in the resolving gel can be tuned
depending on the molecular weight of the protein of interest, with lower
percentages such as 10% being better for resolving higher molecular weight
proteins and higher percentages such as 15% being better for resolving lower
molecular weight proteins (the volume of water is thus increased or
decreased accordingly to maintain the same final volume). Additionally,
proteins that are difficult to resolve can be better separated by running
the gel at lower voltages, i.e. 65V. The recipes above make one gel but
can be scaled up to cast multiple gels. Acrylamide gels can be stored inside
the glass plates for up to a week at 4 °C, wrapped in a damp paper towel and
cling wrap, prior to use.

3.3 Protein-protein BLAST analysis

3.3.1 Workflow

1. Visit the web-based BLAST tool at https://blast.ncbi.nlm.nih.gov/Blast.
cgl and navigate to the Protein BLAST functionality (BLASTp).

2. Enter query sequence(s) of interest. The sequences can be formatted as a
list of GenBank accession numbers or as FASTA sequences, or an entire .
FASTA file can be uploaded. If entering multiple queries, each accession
number or sequence must be on a new line. The single letter amino acid
code must be used for BLASTp.


https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi

Combining informatics with ABPP to identify serine hydrolases 15

3. Choose a search space. The default is the non-redundant protein
sequence (nr) database, which contains all GenBank protein translations.
This space can be narrowed at various taxonomic levels to all proteins
associated with a single phylum, genus, species, or strain (Firmicutes,
Staphylococcus, — Staphylococcus — epidermidis, — Staphylococcus — epidermidis
ATCC 14990, respectively, for example).

4. Select the blastp algorithm and press BLAST.

5. The results include a list of sequences with significant alignments with a
hyperlink to its entry in GenBank, metrics like e-value and percent iden-
tity, and a visualization of the alignment, including which residues are
conserved.

3.3.2 Notes

While the standard algorithm parameters on the web-based BLASTp tool
are often sufficient, they can be fine-tuned if needed, i.e. the e-value thresh-
old or the matrix used to calculate the score for a given alignment. The
web-based tool can be utilized for many BLASTp searches, but BLAST +
applications can also be downloaded locally onto a server and searches
can be performed using command-line tools. Local BLAST + searches are
especially useful for high-volume searches or developing custom target sea-
rch sets to search against, such as proteomes from the Human Microbiome
Project (Consortium et al., 2012). For more detailed instructions, visit the
BLAST Command Line Applications User Manual (https://www.ncbi.nlm.
nih.gov/books/NBK279690/).

In brief, proteins of interest to be searched against (e.g., an entire prote-
ome) can be downloaded into a .FASTA file from NCBI or other similar
databases to create a search set. After installing the standalone BLAST + pro-
grams, the makeblastdb function converts the search set .FASTA file into a
BLAST database with the Unix command “makeblastdb -in searchDB.fasta
-out blastDB -dbtype prot -parse_seqids.” Then, the query sequence(s), also
saved in a .FASTA file, can be used in a BLASTp search and the results saved
to an output file with the Unix command “blastp -query query.fasta -db
blastDB -outfmt 6 > output.txt.” The output file will be saved in a tabular
form containing the query sequence ID, the search sequence ID, percent
identity, alignment length, number of mismatches, number of gap openings,
residue number for the start of the alignment in the query sequence, residue
number for the end of the alignment in the query sequence, residue number
for the start of the alignment in the search sequence, residue number for the
end of the alignment in the search sequence, e-value, and bitscore, which is
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another measurement of the confidence of the alignment but independent of
the size of the search set. Additional modifications of the BLASTp search can
include setting a maximum number of resulting sequences for each query

sequence (for one sequence per query, “-max_target_seqs 17°) or a threshold

of the minimal e-value (for an e-value threshold of 1e-40, “-evalue 1e-40”).

3.4 Activity profile clustering
3.4.1 Workflow

1.

Download an Image] image processing package from https://image;.
net/software/ and install (Schneider, Rasband, & Eliceiri, 2012).
There are many iterations of the original software, Image], most of
which are sufficient for standard image analyses. For the purposes of this
chapter, exact details will be based on the Fiji package (Schindelin
et al., 2012).

. Open the in-gel fluorescence image (e.g. in the .tift or .gel format) from

gel-based ABPP in Fiji. Ensure that the gel is perfectly horizontally
aligned for the cleanest analysis. The image can be rotated using the
Image > Transform > Rotate function.

. If'the image has dark bands on a light background, invert using the Edit

> Invert function (Fig. 4, Step 1).

Using the Straight Line tool, draw a vertical line through a lane (Fig. 4,
Step ii).

Using the Analyze > Plot Profile function, calculate the fluorescent
intensity along the vertical line (Fig. 4, Step iii) and save the data with
the Data > Copy All Data tunction (Fig. 4, Step iv). The copied data can
be pasted into an Excel file or similar.

Move the vertical line to another lane by using the arrow keys, preserv-
ing the y-value of the top point of the line and the length of the line,
and measure the fluorescent profile along that line. Continue for every
lane of interest. Additionally, measure the fluorescent profile along a
region outside of the lanes to serve as a background profile. The
resulting Excel file should contain the “Gray Value,” or intensity, at
each pixel for every lane, including the background, and be saved as
a .CSV file.

To smooth the eftects of any blemish in the image, the fluorescence
profile can be divided into roughly 100 bins by summing across the
fluorescent intensities in each bin. As highlighted in the sample code
(see Fig. 5, ##BIN), every 15 intensity values of the activity profile


https://imagej.net/software/
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Fig. 5 Sample R code for processing and visualization of in-gel fluorescence imaging as
a clustered heatmap.

10.

were summed for each lane in the gel; however, the exact number and
size of each bin should be tailored for each gel.

Subtract the binned background fluorescent profile from every
other profile (see Fig. 5, #SUBTRACT BACKGROUND AND
THRESHOLD).

As minor changes in the gel background do not provide valuable infor-
mation for the purposes of clustering, any values below a background
threshold are reassigned a value of 0 (see Fig. 5, ##SUBTRACT
BACKGROUND AND THRESHOLD). The appropriate back-
ground threshold to use will vary from gel to gel, but should correspond
to the background subtracted binned value from a portion of the gel
that has no visual bands.

Visualize the binned and thresholded quantification of the image uti-
lizing the pheatmap package in R, with the rows being each bin along
the gel and the columns being each condition in the gel. Use hierarchi-
cal clustering within the pheatmap package on the columns and show
the corresponding dendrogram (see Fig. 5, ## PLOT).

3.4.2 Notes

The data processing can be performed manually in Excel, but use of com-

putational platforms such as RStudio (https://www.rstudio.com/products/

rstudio/download/) allow more easy manipulation and modification of

parameters including bin size and background threshold. In either case,

the heatmap and dendrogram generation should be performed with R,

Python, or a similar bioinformatically-inclined coding language. If the data
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processing is performed computationally, the conversion of the in-gel fluo-
rescence image to a heatmap can be optimized for each gel by altering the
size/number of bins and the background threshold by monitoring the
changes in the outputted heatmap, ensuring that each distinct band visual-
ized in the gel is represented in the heatmap. Included is some sample code
in R for the data processing and visualizing that should be edited and embel-
lished as needed (Fig. 5).

4, Summary

Activity-based protein profiling is a powerful approach for identifying
relevant and druggable bacterial targets. In the context of studying pat-
hobiont bacteria that exist with closely related species in the healthy micro-
biome, this technique can be supplemented with bioinformatic tools such as
BLASTp, which can assess enzyme conservation across species, to under-
stand which commensal bacteria might be impacted by targeting a given
enzyme. Furthermore, quantification of activity profiles generated with
gel-based ABPP and image analysis software enables comparison and strat-
ification of strains of a single bacterial species, thus enabling rapid and func-
tional clustering of clinical isolates. In this chapter, we have detailed the
protocols necessary to perform BLASTp searching, gel-based ABPP, image
analysis, and clustering to identify related enzymes and functional conserva-
tion across related bacterial species. As our reference example, we have used
our data generated by the characterization of serine hydrolase conservation
in the skin commensal bacterium Staphylococcus epidermidis. We are confident
that this integration of approaches has great potential to be applied to study
additional classes of enzymes and their activity profiles in a wide variety of
clinically relevant bacteria.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local align-
ment search tool. Journal of Molecular Biology, 215(3), 403—410. https:/doi.org/10.1016/
S0022-2836(05)80360-2.

Avis, T., Wilson, F. X., Khan, N., Mason, C. S., & Powell, D. J. (2021). Targeted
microbiome-sparing antibiotics. Drug Discovery Today. https:/doi.org/10.1016/].
drudis.2021.07.016.

Babin, B. M., Keller, L. J., Pinto, Y., Li, V. L., Eneim, A. S., Vance, S. E,, et al. (2021).
Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting
multiple serine hydrolases involved in lipid metabolism. Cell Chemical Biology. https://
doi.org/10.1016/j.chembiol.2021.08.013.

Beatty, K. E., Williams, M., Carlson, B. L., Swarts, B. M., Warren, R. M., Van
Helden, P. D., et al. (2013). Sulfatase-activated fluorophores for rapid discrimination


https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/j.drudis.2021.07.016
https://doi.org/10.1016/j.drudis.2021.07.016
https://doi.org/10.1016/j.drudis.2021.07.016
https://doi.org/10.1016/j.chembiol.2021.08.013
https://doi.org/10.1016/j.chembiol.2021.08.013
https://doi.org/10.1016/j.chembiol.2021.08.013

20 Laura J. Keller et al.

of mycobacterial species and strains. Proceedings of the National Academy of Sciences of the
United States of America, 110(32), 12911-12916. https:/doi.org/10.1073/pnas.1222041110.

Benns, H. J., Wincott, C. J., Tate, E. W., & Child, M. A. (2021). Activity-and reactivity-based
proteomics: Recent technological advances and applications in drug discovery. Current
Opinion in Chemical Biology. https://doi.org/10.1016/j.cbpa.2020.06.011.

Chen, L., Keller, L. J., Cordasco, E., Bogyo, M., & Lentz, C. S. (2019). Fluorescent triazole
urea activity-based probes for the single-cell phenotypic characterization of Staphylococcus
aureus. Angewandte Chemie International Edition, 58(17), 5643-5647. https://doi.org/
10.1002/anie.201900511.

Chen, X., Wong, Y. K., Wang, J., Zhang, J., Lee, Y.-M., Shen, H.-M., et al. (2017). Target
identification with quantitative activity based protein profiling (ABPP). Proteomics,
17(3—4), 1600212. https://doi.org/10.1002/pmic.201600212.

Chen, Y. E., Bouladoux, N., Hurabielle, C., Mattke, A. M., Belkaid, Y., & Fischbach, M. A.
(2019). Decoding commensal-host communication through genetic engineering of
Staphylococcus epidermidis. BioRxiv, 664656. https:/doi.org/10.1101/664656.

Chow, J., & Mazmanian, S. K. (2010). A pathobiont of the microbiota balances host colo-
nization and intestinal inflammation. Cell Host & Microbe, 7(4), 265—276. https://doi.org/
10.1016/j.chom.2010.03.004.

Conlan, S., Mijares, L. A., NISC Comparative Sequencing Program, Becker, J.,
Blakesley, R. W., Bouffard, G. G., et al. (2012). Staphylococcus epidermidis
pan-genome sequence analysis reveals diversity of skin commensal and hospital
infection-associated isolates. Genome Biology, 13(7), R64. https://doi.org/10.1186/gb-
2012-13-7-r64.

Consortium, T. H. M. P, Huttenhower, C., Gevers, D., Knight, R., Abubucker, S.,
Badger, J. H., etal. (2012). Structure, function and diversity of the healthy human micro-
biome. Nature, 486(7402), 207-214. https://doi.org/10.1038/nature11234.

Espadinha, D., Sobral, R. G., Mendes, C. 1., Méric, G., Sheppard, S. K., Carrigo, J. A., et al.
(2019). Distinct phenotypic and genomic signatures undetlie contrasting pathogenic
potential of staphylococcus epidermidis clonal lineages. Frontiers in  Microbiology,
10(1971). https://doi.org/10.3389/fmicb.2019.01971.

Fang, H., Peng, B., Ong, S. Y., Wu, Q., Li, L., & Yao, S. Q. (2021). Recent advances in
activity-based probes (ABPs) and affinity-based probes (AfBPs) for profiling of enzymes.
Chemical Science. https://doi.org/10.1039/d1sc0135%a.

Galmozzi, A., Dominguez, E., Cravatt, B. F., & Saez, E. (2014). Application of activity-based
protein profiling to study enzyme function in adipocytes. Methods in Enzymology. Vol. 538
(Ist ed.). Elsevier Inc. https:/doi.org/10.1016/B978-0-12-800280-3.00009-8.

Gardner, S. N., Slezak, T., & Hall, B. G. (2015). kSNP3.0: SNP detection and phylogenetic
analysis of genomes without genome alignment or reference genome. Bioinformatics,
31(17), 2877-2878.

Hatzios, S. K., Abel, S., Martell, J., Hubbard, T., Sasabe, J., Munera, D., et al. (2016).
Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nature
Chemical Biology, 12(4), 268—274. https://doi.org/10.1038/nchembio.2025.

Jessani, N., Niessen, S., Wei, B. Q., Nicolau, M., Humphrey, M., Ji, Y., et al. (2005). A
streamlined platform for high-content functional proteomics of primary human speci-
mens. Nature Methods, 2(9), 691-697. https:/doi.org/10.1038/nmeth778.

Jochum, L., & Stecher, B. (2020). Label or concept—What is a pathobiont? Trends in
Microbiology, 28(10), 789-792. https://doi.org/10.1016/j.tim.2020.04.011.

Kamada, N., Chen, G. Y., Inohara, N., & Nuiiez, G. (2013). Control of pathogens and
pathobionts by the gut microbiota. Nature Immunology. https://doi.org/10.1038/n1.2608.

Keller, L. J., Babin, B. M., Lakemeyer, M., & Bogyo, M. (2020). Activity-based protein pro-
filing in bacteria: Applications for identification of therapeutic targets and characteriza-
tion of microbial communities. Current Opinion in Chemical Biology. https://doi.org/
10.1016/j.cbpa.2019.10.007.


https://doi.org/10.1073/pnas.1222041110
https://doi.org/10.1073/pnas.1222041110
https://doi.org/10.1016/j.cbpa.2020.06.011
https://doi.org/10.1016/j.cbpa.2020.06.011
https://doi.org/10.1002/anie.201900511
https://doi.org/10.1002/anie.201900511
https://doi.org/10.1002/anie.201900511
https://doi.org/10.1002/pmic.201600212
https://doi.org/10.1002/pmic.201600212
https://doi.org/10.1101/664656
https://doi.org/10.1101/664656
https://doi.org/10.1016/j.chom.2010.03.004
https://doi.org/10.1016/j.chom.2010.03.004
https://doi.org/10.1016/j.chom.2010.03.004
https://doi.org/10.1186/gb-2012-13-7-r64
https://doi.org/10.1186/gb-2012-13-7-r64
https://doi.org/10.1186/gb-2012-13-7-r64
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.3389/fmicb.2019.01971
https://doi.org/10.3389/fmicb.2019.01971
https://doi.org/10.1039/d1sc01359a
https://doi.org/10.1039/d1sc01359a
https://doi.org/10.1016/B978-0-12-800280-3.00009-8
https://doi.org/10.1016/B978-0-12-800280-3.00009-8
http://refhub.elsevier.com/S0076-6879(21)00495-X/rf0080
http://refhub.elsevier.com/S0076-6879(21)00495-X/rf0080
http://refhub.elsevier.com/S0076-6879(21)00495-X/rf0080
https://doi.org/10.1038/nchembio.2025
https://doi.org/10.1038/nchembio.2025
https://doi.org/10.1038/nmeth778
https://doi.org/10.1038/nmeth778
https://doi.org/10.1016/j.tim.2020.04.011
https://doi.org/10.1016/j.tim.2020.04.011
https://doi.org/10.1038/ni.2608
https://doi.org/10.1038/ni.2608
https://doi.org/10.1016/j.cbpa.2019.10.007
https://doi.org/10.1016/j.cbpa.2019.10.007
https://doi.org/10.1016/j.cbpa.2019.10.007

Combining informatics with ABPP to identify serine hydrolases 21

Keller, L. J., Lentz, C. S., Chen, Y. E., Metivier, R. J., Weerapana, E., Fischbach, M. A.,
et al. (2020). Characterization of serine hydrolases across clinical isolates of commensal
skin bacteria Staphylococcus epidermidis using activity-based protein profiling. ACS
Infectious Diseases, 6(5), 930-938. https://doi.org/10.1021/acsinfecdis.0c00095.

Kidd, D., Liu, Y., & Cravatt, B. F. (2001). Profiling serine hydrolase activities in complex
proteomes. Biochemistry, 40(13), 4005—4015. https:/doi.org/10.1021/BI1002579].

Kuljanin, M., Mitchell, D. C., Schweppe, D. K., Gikandi, A. S., Nusinow, D. P,
Bulloch, N.J., etal. (2021). R eimagining high-throughput profiling of reactive cysteines
for cell-based screening of large electrophile libraries. Nature Biotechnology, 39(5),
630-641. https:/doi.org/10.1038/541587-020-00778-3.

Lai, Y., Di Nardo, A., Nakatsuji, T., Leichtle, A., Yang, Y., Cogen, A. L., et al. (2009).
Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin
injury. Nature Medicine, 15(12), 1377—-1382. https://doi.org/10.1038/nm.2062.

Lehmann, J., Cheng, T.-Y., Aggarwal, A., Park, A. S., Zeiler, E., Raju, R. M, et al. (2018).
An antibacterial f-lactone kills Mycobacterium tuberculosis by disrupting mycolic acid
biosynthesis. Angewandte Chemie International Edition, 57(1), 348=353. https:/doi.org/
10.1002/anie.201709365.

Lentz, C.S., Sheldon, J. R., Crawtford, L. A., Cooper, R, Garland, M., Amieva, M. R, etal.
(2018). Identification of a S. aureus virulence factor by activity-based protein profiling
(ABPP). Nature Chemical Biology, 14(6), 609—617. https:/doi.org/10.1038/541589-018-
0060-1.

Li, M, Patel, H. V., Cognetta, A. B., Smith, T. C., Mallick, L., Cavalier, J.-F., et al. (2021).
Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis
by competitive activity-based protein profiling. Cell Chemical Biology. https://doi.org/
10.1016/j.chembiol.2021.09.002.

Mazmanian, S. K., Round, J. L., & Kasper, D. L. (2008). A microbial symbiosis factor
prevents intestinal inflammatory disease. Nature, 453(7195), 620—-625. https:/doi.org/
10.1038/nature07008.

Meéric, G., Mageiros, L., Pensar, J., Laabei, M., Yahara, K., Pascoe, B., et al. (2018).
Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis.
Nature Communications, 9(1), 5034. https:/doi.org/10.1038/s41467-018-07368-7.

Miragaia, M., Thomas, J. C., Couto, 1., Enright, M. C., & de Lencastre, H. (2007). Inferring
a population structure for Staphylococcus epidermidis from multilocus sequence typing
data. Journal of Bacteriology, 189(6), 2540—2552. https://doi.org/10.1128/JB.01484-06.

Naik, S., Bouladoux, N., Wilhelm, C., Molloy, M. J., Salcedo, R, Kastenmuller, W, et al.
(2012). Compartmentalized control of skin immunity by resident commensals. Science,
337(6098), 1115-1119. https:/doi.org/10.1126/science.1225152.

Ortega, C., Anderson, L. N., Frando, A., Sadler, N. C., Brown, R. W., Smith, R. D, etal.
(2016). Systematic survey of serine hydrolase activity in Mycobacterium tuberculosis
defines changes associated with persistence. Cell Chemical Biology, 23(2), 290-298.
https:/doi.org/10.1016/].CHEMBIOL.2016.01.003.

Otto, M. (2009). Staphylococcus epidermidis—The “accidental” pathogen. Nature Reviews.
Microbiology, 7(8), 555-567. https:/doi.org/10.1038/nrmicro2182.

Prothiwa, M., & Bottcher, T. (2020). Competitive profiling for enzyme inhibitors using
chemical probes. Methods in Enzymology, 633, 49—69. https://doi.org/10.1016/bs.mie.
2019.10.031.

Ramirez, J., Guarner, F., Bustos Fernandez, L., Maruy, A., Sdepanian, V. L., &
Cohen, H. (2020). Antibiotics as major disruptors of gut microbiota. Frontiers in
Cellular and Infection Microbiology. https://doi.org/10.3389/tcimb.2020.572912.

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen
cycloaddition process: Copper(l)-catalyzed regioselective “ligation” of azides and termi-
nal alkynes. Angewandte Chemie International Edition, 41(14), 2596—2599. https://doi.org/
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.


https://doi.org/10.1021/acsinfecdis.0c00095
https://doi.org/10.1021/acsinfecdis.0c00095
https://doi.org/10.1021/BI002579J
https://doi.org/10.1021/BI002579J
https://doi.org/10.1038/s41587-020-00778-3
https://doi.org/10.1038/s41587-020-00778-3
https://doi.org/10.1038/nm.2062
https://doi.org/10.1038/nm.2062
https://doi.org/10.1002/anie.201709365
https://doi.org/10.1002/anie.201709365
https://doi.org/10.1002/anie.201709365
https://doi.org/10.1038/s41589-018-0060-1
https://doi.org/10.1038/s41589-018-0060-1
https://doi.org/10.1038/s41589-018-0060-1
https://doi.org/10.1016/j.chembiol.2021.09.002
https://doi.org/10.1016/j.chembiol.2021.09.002
https://doi.org/10.1016/j.chembiol.2021.09.002
https://doi.org/10.1038/nature07008
https://doi.org/10.1038/nature07008
https://doi.org/10.1038/nature07008
https://doi.org/10.1038/s41467-018-07368-7
https://doi.org/10.1038/s41467-018-07368-7
https://doi.org/10.1128/JB.01484-06
https://doi.org/10.1128/JB.01484-06
https://doi.org/10.1126/science.1225152
https://doi.org/10.1126/science.1225152
https://doi.org/10.1016/J.CHEMBIOL.2016.01.003
https://doi.org/10.1016/J.CHEMBIOL.2016.01.003
https://doi.org/10.1038/nrmicro2182
https://doi.org/10.1038/nrmicro2182
https://doi.org/10.1016/bs.mie.2019.10.031
https://doi.org/10.1016/bs.mie.2019.10.031
https://doi.org/10.1016/bs.mie.2019.10.031
https://doi.org/10.3389/fcimb.2020.572912
https://doi.org/10.3389/fcimb.2020.572912
https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

22 Laura J. Keller et al.

Schindelin, J., Arganda-Carreras, L., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al.
(2012). Fiji: An open-source platform for biological-image analysis. Nature Methods.
https://doi.org/10.1038/nmeth.2019.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to Image]J: 25 years
of image analysis. Nature Methods. https://doi.org/10.1038/nmeth.2089.

Sharifzadeh, S., Brown, N. W., Shitley, J. D., Bruce, K. E., Winkler, M. E., & Carlson, E. E.
(2020). Chemical tools for selective activity profiling of bacterial penicillin-binding pro-
teins. Methods in Enzymology, 638, 27-55. Academic Press Inc. https:/doi.org/10.1016/
bs.mie.2020.02.015.

Simon, G. M., & Cravatt, B. F. (2010). Activity-based proteomics of enzyme superfamilies:
Serine hydrolases as a case study. The Journal of Biological Chemistry, 285(15),
11051-11055. https:/doi.org/10.1074/jbc.R109.097600.

Steiger, A. K., Fansler, S. J., Whidbey, C., Miller, C. J., & Wright, A. T. (2020).
Probe-enabled approaches for function-dependent cell sorting and characterization of
microbiome subpopulations. Methods in Enzymology, 638, 89—107. Academic Press
Inc. https:/doi.org/10.1016/bs.mie.2020.03.014.

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015).
Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifesta-
tions, and management. Clinical Microbiology Reviews, 28(3), 603—661. https:/doi.org/
10.1128/CMR.00134-14.

Wallace, M. J., Fishbein, S. R. S., & Dantas, G. (2020). Antimicrobial resistance in enteric
bacteria: Current state and next-generation solutions. Gut Microbes. https://doi.org/
10.1080/19490976.2020.1799654.

Ward, N., & Moreno-Hagelsieb, G. (2014). Quickly finding orthologs as reciprocal best hits
with BLAT, LAST, and UBLAST: How much do we miss? PLoS One, 9(7). https:/doi.
org/10.1371/journal.pone.0101850.


https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1016/bs.mie.2020.02.015
https://doi.org/10.1016/bs.mie.2020.02.015
https://doi.org/10.1016/bs.mie.2020.02.015
https://doi.org/10.1074/jbc.R109.097600
https://doi.org/10.1074/jbc.R109.097600
https://doi.org/10.1016/bs.mie.2020.03.014
https://doi.org/10.1016/bs.mie.2020.03.014
https://doi.org/10.1128/CMR.00134-14
https://doi.org/10.1128/CMR.00134-14
https://doi.org/10.1128/CMR.00134-14
https://doi.org/10.1080/19490976.2020.1799654
https://doi.org/10.1080/19490976.2020.1799654
https://doi.org/10.1080/19490976.2020.1799654
https://doi.org/10.1371/journal.pone.0101850
https://doi.org/10.1371/journal.pone.0101850
https://doi.org/10.1371/journal.pone.0101850

	Integration of bioinformatic and chemoproteomic tools for the study of enzyme conservation in closely relate ...
	Introduction
	Integration of bioinformatics with ABPP
	Useful bioinformatic tools to integrate with ABPP
	Application of bioinformatic tools and ABPP techniques for profiling Staphylococcus epidermidis serine hydrolases

	Protocols
	Intact bacteria labeling with an activity-based probe
	Materials
	Procedure
	Notes

	Gel-based ABPP
	Materials
	Procedure
	Notes

	Protein-protein BLAST analysis
	Workflow
	Notes

	Activity profile clustering
	Workflow
	Notes


	Summary
	References




