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Abstract

Activity-based protein profiling (ABPP) is a commonly utilized technique to globally
characterize the endogenous activity of multiple enzymes within a related family.
While it has been used extensively to identify enzymes that are differentially active
across various mammalian tissues, recent efforts have expanded this technique to
studying bacteria. As ABPP is applied to diverse sets of bacterial strains found in micro-
bial communities, there is also an increasing need for robust tools for assessing the
conservation of enzymes across closely related bacterial species and strains. In this chap-
ter, we detail the integration of gel-based ABPP with basic bioinformatic tools to enable
the analysis of enzyme activity, distribution, and homology. We use as an example the
family of serine hydrolases identified in the skin commensal bacterium Staphylococcus
epidermidis.
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1. Introduction

The rise of resistant and multi-resistant bacterial pathogens poses a

serious threat to human health. To overcome the antibiotic resistance crises,

discovery of new classes of antibacterial targets is urgently needed. One of

the many challenges in this endeavor is that large fractions of many bacterial

genomes remain functionally uncharacterized, thus requiring unbiased

screening methods to select promising new drug targets that can be chem-

ically modulated. Activity-based protein profiling (ABPP) is a powerful

technique that enables rapid and direct identification and quantification

of enzyme activities in complex biological samples. An activity-based

probe, which is composed of an electrophilic warhead, a linker to confer

specificity, and a reporter tag, covalently modifies an enzyme active site

in an activity-dependent manner. The combination of the warhead and

linker dictates the family of enzymes targeted by the probe. Once target

enzymes are labeled, a fluorescent tag allows for visualization of active

enzymes via in-gel fluorescence or microscopy, while an affinity tag (e.g.

biotin) facilitates enrichment and subsequent mass spectrometry-based iden-

tification of the enzymes (Keller, Babin, Lakemeyer, & Bogyo, 2020). Thus,

ABPP enables monitoring of the activity of multiple enzymes in parallel in

the context of their native cellular environments (Fig. 1A). Specific activity-

based probes containing diverse electrophiles such as fluorophosphonates,

acyloxymethyl ketones, vinyl sulfones, and others have been developed

to target enzyme families ranging from proteases to glucosidases. For over-

views of recent advances in activity-based probes, we refer the reader to

comprehensive reviews (Benns, Wincott, Tate, & Child, 2021; Fang

et al., 2021; Galmozzi, Dominguez, Cravatt, & Saez, 2014; Keller, Babin,

et al., 2020).

One of the most successful classes of ABPs are fluorophosphonates (FP,

Fig. 1B), which were designed to target the large and diverse family of mam-

malian serine hydrolases (Fig. 1C) that includes proteases and lipases, among

others ( Jessani et al., 2005; Kidd, Liu, & Cravatt, 2001). More recently, FP

probes have been applied to characterize serine hydrolases in bacterial path-

ogens such asVibrio cholerae orMycobacterium tuberculosis (Hatzios et al., 2016;

Ortega et al., 2016). In addition to determining which relevant enzyme

activities to prioritize for future drug development, ABPP inherently selects

for “druggable” enzymes that can be covalently modified. Moreover, it

enables characterization of the potency and selectivity of an inhibitor within
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a class of closely-related enzymes, as has been demonstrated inM. tuberculosis

with compounds JCP276, EZ120, and AA692 (Babin et al., 2021; Lehmann

et al., 2018; Li et al., 2021).

The human body harbors numerous defined communities of “beneficial”

bacteria that comprise, for example, the gut, skin, or vaginal microbiota. The

natural flora in these communities aids in immune development, contributes

to xenobioticmetabolism, and competeswith pathogens for ecological niches.

Broad-spectrum antibiotics, which act on pathogen and commensal bacteria

alike, can decrease microbial diversity, shift the gut metabolome, and even

lead to recurring enteropathogen infections, for example by Clostridioides dif-

ficile (Avis, Wilson, Khan, Mason, & Powell, 2021; Ramirez et al., 2020).

Thus, in the development of antibacterials, there has been a focus on targeting

Fig. 1 Workflow for activity-based protein profiling (ABPP). (A) A sample of interest is
treated with an activity-based probe, consisting of an electrophilic warhead, a linker
than confers specificity, and a reporter tag. The probe labels enzymes in an activity-
dependent manner, which can then be enriched with a biotin tag for identification
by mass spectrometry (mass spectrometry-based ABPP) or visualized with a fluorescent
tag via SDS-PAGE and in-gel fluorescence (gel-based ABPP). (B) Structure of
fluorophosphonate (FP) probe with tetramethylrhodamine (TMR) and biotin tags,
respectively. (C) Schematic for the covalent modification of serine hydrolases by FP pro-
bes. (D) Structure of SaFphB-targeted chloroisocoumarin JCP251 (Lentz et al., 2018).
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pathogen-specific pathways. However, this approach is complicated in the

case of pathobionts, which are normal residents of the healthy microbiome

but have high pathogenic potential (Chow & Mazmanian, 2010;

Jochum & Stecher, 2020; Mazmanian, Round, & Kasper, 2008). These

pathobionts are particularly important therapeutic targets, as they are the lead-

ing causes of nosocomial infections and often acquire multi-drug resistance,

yet they are difficult to selectively target because they have closely related

species that are key members of the healthy microbiome (Kamada, Chen,

Inohara, & Núñez, 2013; Otto, 2009; Wallace, Fishbein, & Dantas, 2020).

One such pathobiont is Staphylococcus aureus (S. aureus), which resides sym-

biotically in the nasal microbiome of 30% of adults but at the same time is a

leading cause of bacteremia and infective endocarditis (Tong, Davis,

Eichenberger, Holland, & Fowler, 2015). S. aureus is closely related to the

commensal bacterium Staphylococcus epidermidis (S. epidermidis), which is fre-

quently isolated from the skin of healthy humans and plays important roles

in modulating the immune response during wound healing (Lai et al.,

2009; Naik et al., 2012). Using activity-based protein profiling, we identified

a serine hydrolase, FphB, in S. aureus that functions as a virulence factor and is

important for colonization of the heart in a systemic infection mouse model.

We identified a chloroisocoumarin-based compound, JCP251 (Fig. 1D), as a

potent inhibitor of S. aureus FphB (SaFphB) by ABPP. To determine how

selective the compound is for S. aureus, we performed gel-based ABPP against

various other bacterial pathogens and the closely related S. epidermidis using a

fluorescent derivative of JCP251. This analysis confirmed that while the other

pathogen strains did not contain homologs of FphB that could be labeled by

the JCP251 probe, we identified a probe-labeled protein in S. epidermidis

(Lentz et al., 2018). Using a combination of mass spectrometry (MS)- and

gel-based ABPP with a broad-spectrum FP probe, protein-protein BLAST,

and cluster analysis, we were able to identify the set of serine hydrolases that

are conserved between S. aureus and S. epidermidis as well as amongst clinical

isolates of S. epidermidis. This allowed us to confirm the identity of the

S. epidermidis FphB homolog (SeFphB) and its labeling by the SaFphB inhib-

itor JCP251. Despite the homology between SeFphB and SaFphB, JCP251

did not affect the skin colonization of S. epidermidis suggesting a possible alter-

nate function for SeFphB that is not related to colonization (Keller et al.,

2020). In this chapter, we will use our efforts in S. epidermidis to explain

and outline basic bioinformatic tools and how to integrate them with gel-

based ABPP to determine enzyme conservation and homology between

strains and within closely related species of bacteria.
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2. Integration of bioinformatics with ABPP

ABPP is a powerful tool to identify enzymes that are active in a

disease-relevant state while also enabling screening for potent and selective

inhibitors. ABPP has been successfully applied to pathogenic bacteria such as

Vibrio cholerae andMycobacterium tuberculosis (Babin et al., 2021; Hatzios et al.,

2016; Lehmann et al., 2018; Li et al., 2021). Finding antibacterial targets that

are selective for pathogens over beneficial commensal bacteria is relatively

easy because close species relatives are not commonly found in the healthy

flora of the human microbiota. On the other hand, pathobiont bacteria such

as the Gram-positive species Staphylococcus aureus, Clostridioides difficile, and

Enterococcus faecalis exist in the human body in complex communities with

closely related beneficial bacteria (Kamada et al., 2013; Wallace et al.,

2020). Combining bioinformatic approaches with ABPP can be an effective

approach to identify promising drug targets in pathobiont species that are not

conserved in closely related commensal bacterial species.

Genomic approaches, such as marker gene or whole genome sequenc-

ing, are state-of-the art approaches for the classification of clinical isolates of

a single bacterial species (Conlan et al., 2012; M�eric et al., 2018; Miragaia,

Thomas, Couto, Enright, & de Lencastre, 2007). The combination of gel-

based ABPP and quantitative image analysis represents a straight-forward

and fast alternative to genomic-only techniques. Moreover, focusing on

the dynamic regulation of the catalytic activity of an enzyme family, such

as serine hydrolases, enables the generation of functional clusters that might

better reflect biological conservation across bacterial strains compared to

simple sequence homology.

2.1 Useful bioinformatic tools to integrate with ABPP
The most common method of identifying a protein homolog is assessing

sequence similarity with the protein-protein Basic Local Alignment

Search Tool (BLASTp), which rapidly compares a query protein sequence

to a search set of sequences by measuring local similarity (Altschul, Gish,

Miller, Myers, & Lipman, 1990). The set of sequences to search against

can be composed of a single sequence, a set of sequences, the proteome

of a single species, or even entire databases such as all non-redundant

GenBank sequences. The BLASTp search returns the protein sequences

most similar to the query sequence, their pair-wise alignments with the

query sequence, and several metrics for each alignment. These include
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the percent identity, which is the fraction of the aligned sequences that have

the same amino acid in the same position, and the e-value, which is a statistical

measure of the likelihood that another protein sequence in the search set

would have a better similarity score by random chance. There is no standard

threshold for what percent identity and e-value constitutes a homolog, but

combining these metrics with searching the alignment for conservation of res-

idues that are known to be important for protein function, such as active-site

residues, can increase confidence in identifying a homolog. Additionally, if the

two proteins are reciprocal best hits, meaning that each protein is the top result

in a BLASTp search of the opposite proteome, this further confirms that two

proteins are likely homologs (Ward &Moreno-Hagelsieb, 2014). All of these

approaches can be applied to compare protein identifications in MS-based

ABPP experiments across closely related bacterial species and are the starting

point for more complex bioinformatic-based analyses.

On the other hand, gel-based ABPP (i.e. labeling samples of interest with

fluorescent probes, separating the proteins on an SDS-PAGE gel, and mea-

suring in-gel fluorescence) is an application of ABPP that does not as natu-

rally lend itself to bioinformatic supplementation. However, with image

quantification software such as ImageJ, the fluorescence intensity of individ-

ual protein bands on a gel can be measured and compared across conditions,

allowing relative quantification of the activity of each labeled species. This

method is commonly used in competitive gel-based ABPP, where a library

of inhibitors is screened by pretreating the sample of interest (i.e. intact bac-

terial cells) with a compound followed by labelling with a fluorescent probe.

The ability of the inhibitor to compete away the probe labeling of a given

enzyme can be then quantified, allowing determination of IC50 values

(Chen, Keller, Cordasco, Bogyo, & Lentz, 2019). Alternatively, the fluores-

cent intensities can be measured along an entire lane, thus generating a pro-

file of enzymatic activity. This enables comparison of global enzyme

activities for a given family across different conditions or within related

strains. It also provides information on how each enzyme may be differen-

tially regulated. These activity profiles can be visualized as a heatmap and

clustered hierarchically with existing packages in R or Python. This allows

any experimental sample (i.e. clinical isolates) to be rapidly stratified and

compared to other strains in a functional manner.

2.2 Application of bioinformatic tools and ABPP techniques
for profiling Staphylococcus epidermidis serine hydrolases

Using a fluorophosphonate activity-based probe, we have previously iden-

tified a serine hydrolase in the pathobiont Staphylococcus aureus, SaFphB, that
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is important in a systemic infection mouse model. The protein is selectively

targeted in S. aureus by the covalent inhibitor JCP251. However, this study

also demonstrated that JCP251 labels an enzyme of similar molecular weight

in the closely related skin commensal S. epidermidis (Lentz et al., 2018). We

thus aimed to determine whether this enzyme was a homolog of SaFphB

and how conserved the 11 additional fluorophosphonate-binding hydrolases

(Fphs) identified in S. aureus are among different species of the Staphylococcus

genus (Keller, Lentz, et al., 2020). By performing BLASTp searches on cus-

tom search sets of the reference proteome for each major staphylococcal

strain, we were able to determine that most of the 12 S. aureus Fph enzymes

were conserved in at least 60% of the almost 50 staphylococcal species

tested (Fig. 2A). In particular, homologs of SaFphB were predicted in

approximately two-thirds of the species (Fig. 2B). Interestingly, all but

two of the Fphs from S. aureus have at least one putative homolog in

S. epidermidis, and three have two homologs, suggesting that there may have

been either multiple gene duplication or horizontal gene transfer events.

Fphs are a subset of the serine hydrolase enzyme superfamily, which use a

catalytic serine residue to hydrolyze amide, ester, and thioester bonds in

metabolites that are important for cell-cell signaling and metabolism

(Simon & Cravatt, 2010). Because serine hydrolases are defined by their cat-

alytic mechanism, ABPP techniques with a probe containing a broad

serine-reactive warhead such as the fluorophosphonate is an effective

method to identify novel serine hydrolases. Importantly, identification of

probe-labeled enzymes helps to confirm bioinformatically-predicted anno-

tations. Thus, we also followed up our BLASTp-based Fph homolog pre-

dictions with MS-based ABPP of 17 strains of S. epidermidis, including

reference strains and clinical isolates. In total, we identified 18 serine hydro-

lases, most of which were the BLASTp-predicted S. aureus Fph homologs.

Interestingly, four serine hydrolases had not been identified in the profiling

of S. aureus and one did not have a clear homolog in S. aureus, demonstrating

how combining bioinformatics and ABPP across multiple related species can

enhance the identification of novel enzymes and uncover their conservation

within related families of bacteria. In particular, the homolog of SaFphB in

S. epidermidis, SeFphB, was predicted with BLASTp, was measured by

MS-based ABPP, and its similar catalytic function was confirmed by active

site conservation and substrate specificity.

To compare the relative activities of the Fphs across the various

S. epidermidis strains, we performed gel-based ABPP with a fluorescent

fluorophosphonate probe (Fig. 3A). We identified substantial variabilities in

the activity levels of multiple Fphs in these 17 S. epidermidis strains, which
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Fig. 2 Conservation of Fph enzymes throughout the genus Staphylococcus. (A) Phylogenetic tree of 47 staphylococcal species, with the skin bacterium Cutibacterium
acnes as the outgroup, by 16S rRNA sequences. Each filled grey cell in the heatmap indicates that species has a homolog of the S. aureus Fph, as determined by a
threshold e-value of 1x10-40. Staphylococcus aureus and its Fph enzymes, which were the query sequences for each BLASTp search, are highlighted in maroon.
(B) Percentage of the 47 staphylococcal species that contain a homolog of the indicated S. aureus hydrolase by BLASTp search. Part B: Adapted from Keller, L. J.,
Lentz, C. S., Chen, Y. E., Metivier, R. J., Weerapana, E., & Fischbach, M. A. (2020). Characterization of serine hydrolases across clinical isolates of commensal skin bacteria
Staphylococcus epidermidis using activity-based protein profiling. ACS Infectious Diseases, 6(5), 930–938. doi: 10.1021/acsinfecdis.0c00095.



may be due to the fact that these strains are isolated from different microen-

vironments in the human body (i.e. the nares of a healthy volunteer versus the

bloodstream of an infected patient). There have been efforts to categorize

S. epidermidis clinical isolates into clonal lineages via marker gene and

genomic-based techniques, as well as attempts to correlate this clustering with

functional assays (Conlan et al., 2012; Espadinha et al., 2019; M�eric et al.,

2018; Miragaia et al., 2007). Previous work from the Bertozzi group utilized

an in-gel assay with a sulfatase-activatable fluorophore to distinguish different

mycobacterial species based on their activity “fingerprint” (Beatty et al.,

2013). We thus wanted to determine if the Fph activity “fingerprint” or

Fig. 3 Method of clustering bacterial strains by their activity profiles. (A) Clinical
isolates of Staphylococcus epidermidis were labeled with 1μM fluorophosphonate-
tetramethylrhodamine before being lysed and separated by SDS-PAGE. The strains
are clustered by a phylogenetic analysis of their genomic content (Chen et al., 2019;
Gardner, Slezak, & Hall, 2015). The genomes of isolates NCTC 9685 and KPL1815 have
not been sequenced and assembled and thus are not clustered. (B) The Fph activity
profile of each clinical isolate was quantified, visualized in the heatmap, and used for
hierarchical clustering. Clinical isolates are colored by their clonal lineages (group A,
dark blue; group B, green; group C, light blue; unknown, black (M�eric et al., 2018))
and strains isolated from infected patients are denoted with an asterisk. Part B:
Adapted from Keller, L. J., Lentz, C. S., Chen, Y. E., Metivier, R. J., Weerapana, E., &
Fischbach, M. A. (2020). Characterization of serine hydrolases across clinical isolates of com-
mensal skin bacteria Staphylococcus epidermidis using activity-based protein profiling. ACS
Infectious Diseases, 6(5), 930–938. doi: 10.1021/acsinfecdis.0c00095.
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profile could be used to stratify these 17 S. epidermidis strains. Clustering the

strains based on their Fph activity profile maintained the close relationship

between several pairs of strains, such as SK135 and BCM-HMP0060, but

did not preserve the global genomic-based dendrogram nor distinguish the

clonal lineages (Fig. 3B). These results were not surprising considering almost

all the strains have the same Fph enzymes encoded in their genomes; however,

they do suggest that there are interesting strain-specific regulatory pathways of

these enzymes that should be further explored.

3. Protocols

There are many useful protocols for the design of activity-based probes

and their implementation in various ABPP techniques (Galmozzi et al., 2014;

Prothiwa & B€ottcher, 2020; Sharifzadeh et al., 2020; Steiger, Fansler,

Whidbey, Miller, & Wright, 2020). This section will detail general ABPP

sample preparation, gel-based analysis to visualize differences in enzyme activ-

ity, and basic bioinformatic tools that can be integrated with ABPP.

3.1 Intact bacteria labeling with an activity-based probe
3.1.1 Materials
• Bacterial cultures

• Phosphate-buffered saline (PBS)

• Fluorophosphonate-tetramethylrhodamine (FP-TMR) activity-based

probe at a concentration of 100μM in DMSO

• 10% sodium-dodecyl sulfate (SDS) in water

• Non-sterile 1.5mL Eppendorf tubes or equivalent

• 0.5mL screw cap microcentrifuge tubes with O-ring (Thermo Fisher

#02-707-350) or equivalent

• 0.1mm glass beads (BioSpec #11079101) or equivalent

• Spectrophotometer

• Bench top incubator

• Bench top microcentrifuge

• Mini-beadbeater-96 (BioSpec) or equivalent

• Aluminum vial rack (BioSpec #702ALU) or equivalent

3.1.2 Procedure
1. Prechill aluminum vial rack by storing at -20 °C.
2. Measure the optical density of the bacterial cultures at 600 nm (OD600)

using the spectrophotometer.
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3. Centrifuge the bacterial cultures on the bench top microcentrifuge at

3,000x g for 5 min, remove the culture medium, and resuspend the cell

pellets in a volume of PBS such that the final OD600 is 16.

4. Add 2μL FP-TMR probe (100μM stock) to each 200μL bacterial cul-

ture (1μM final concentration) and incubate at 37°C for 30min.

5. Centrifuge the bacterial cultures on the bench top microcentrifuge at

3,000x g for 5min, remove the supernatant, and resuspend the labeled

cell pellets in the same volume of PBS.

6. Add 10% SDS at a 1:100 dilution (0.1% final concentration).

7. Transfer the samples to 0.5mL O-ringed tubes filled halfway with

0.1mm glass beads.

8. Put samples in prechilled aluminum vial rack and lyse by bead-beating,

three times for 45 s with 2min breaks on ice in between each burst.

9. Centrifuge the bacterial lysate at 8,000xg for 10min to pellet insoluble

cell debris and beads. Transfer the lysate to a new 1.5mL tube.

10. Quantify protein concentration using the Pierce BCA Protein Assay

Kit (Thermo Fisher), following manufacturer’s protocol.

3.1.3 Notes
This protocol is written specifically for labeling with a fluorescent FP probe

to label serine hydrolases, but the concentrations and incubation times

should be optimized for each probe. This can be achieved by first labeling

with a range of probe concentrations for a set time and then selecting optimal

probe concentrations and performing labeling for varying time periods.

Furthermore, for each bacterial species, we recommend optimizing with

several different lysis conditions prior to undergoing any full-scale experi-

ment. In our experience, lysis by probe sonication (i.e. three 20-s bursts with

the Sonic Dismembrator Model 100 (Fisher Scientific)) is preferred with

smaller volume samples; however, lysis by bead-beating is often necessary

with Gram-positive bacterial species. Furthermore, various detergent addi-

tives and concentrations should be screened to optimize solubilization of

membrane-associated proteins.

To identify enzymes that are more likely to be accessible to small

molecule inhibitors and thus potential drug targets, we label intact bacterial

samples, which, depending on the cell permeability of the activity-based

probe used, may bias the labeling toward enzymes that are membrane-

associated or found on the external surface of the bacteria cells. Bacterial cells

can also be lysed prior to labeling if intracellular targets are of interest—in
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this case, normalize the protein amount by BCA quantification prior to

labeling with the activity-based probe.

If the activity-based probe contains an alkyne handle instead of the fluo-

rescent tag, after sample labeling, it can be derivatized with copper-catalyzed

azide alkyne cycloaddition (CuAAC) to append a fluorophore (Rostovtsev,

Green, Fokin, & Sharpless, 2002; Steiger et al., 2020).

Similar labeling methods can be performed with biotinylated probes to

perform mass spectrometry-based identification of the active enzymes.

Because methods vary based on instrumentation, a detailed protocol is

not provided in this chapter. The general workflow involves (1) labeling

the bacteria with a biotinylated activity-based probe, (2) lysing the bacteria,

(3) removing excess probe, (4) enriching for labeled enzymes on streptavidin

resin, (5) on-bead reducing, alkylating, and digesting the enriched proteins,

(6) eluting from the resin, (7) desalting, and (8) MS-measurement. For more

detailed descriptions, we refer the reader to previous methods sections from

the following papers (Chen et al., 2017; Galmozzi et al., 2014; Kuljanin

et al., 2021).

3.2 Gel-based ABPP
3.2.1 Materials
• Fluorescent probe-labeled bacterial samples (from Section 3.1)

• PBS

• 4x Laemmli Sample Buffer (1mL 1.0M Tris pH 6.8, 400mg sodium

dodecyl-sulfate, 2mL glycerol, 1mL β-mercaptoethanol, 10mg brom-

ophenol blue, dH2O to a final volume of 5mL)

• Precision Plus Protein All Blue Prestained Protein Standards (Bio Rad

#1610373) or equivalent

• Isopropanol

• 12% acrylamide Resolving Gel (2.4mL ProtoGel (30% (w/v) acrylam-

ide/bisacrylamide solution (National Diagnostics #EC-890)), 2mL

dH2O, 1.5mL 1.5M Tris pH 8.8, 60μL 10% SDS in dH2O, 60μL
10% ammonium persulfate (APS) in dH2O, 6μL TEMED)

• Stacking Gel (750μL ProtoGel, 2.25mL dH2O, 1.75mL 1M Tris pH

6.8, 50μL 10% SDS in dH2O, 50μL 10% ammonium persulfate (APS)

in dH2O, 5μL TEMED)

• 10x Tris-glycine Running Buffer (30g Tris base, 144g glycine, 10g

SDS, dH2O to a final volume of 1 L)

• Standard Dry Block Heater (VWR) or equivalent

• Mini PROTEAN Tetra Cell system (Bio Rad #1658003) or equivalent
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• Mini Cell Buffer Dam (Bio Rad #1653130) or equivalent

• Power supply (Thermo Fisher #EC105) or equivalent

• Typhoon FLA 9500 gel scanner (GE) or equivalent

3.2.2 Procedure
1. Dilute each fluorescent probe-labeled sample to 25μg total protein in

15μL using PBS.

2. Add 5μL 4x Laemmli Sample Buffer to each sample, pipet to mix, and

boil in a preheated Block Heater for 10min at 95 °C.
3. Assemble the short and 1.0mm spacer plate in the casting frame, ensur-

ing the short plate is facing out and that the bottoms of the plates are

flush with the bench, and transfer the assembly to the casting stand.

4. Combine the reagents for the 12% acrylamide Resolving Gel and pipet

between the glass plates to roughly 75% of the height of the short plate,

checking for leaks.

5. Add a thin layer of isopropanol on top of the Resolving Gel layer to

ensure there are no bubbles and the top of the gel is even, and allow

to polymerize for at least 15min.

6. Pour off isopropanol into a receptacle for organic waste and rinse with

dH2O before proceeding.

7. Combine the reagents for the Stacking Gel and pipet between the glass

plates to the top. Carefully place the 15-well comb in between the

glass plates without introducing bubbles and allow the Stacking Gel

to polymerize for at least 15min.

8. Dilute 100mL 10x Tris-glycine Running Buffer in 900mL dH2O and

add 400mL of 1x Running Buffer to the Mini-PROTEAN Tetra Cell

Buffer Tank.

9. Remove the comb from the acrylamide gel.

10. Sandwich the acrylamide gel with the spacer plate facing out and the

Mini Cell Buffer Dam in the Mini-PROTEAN Tetra Electrode

Assembly, ensuring the seal with the rubber gasket. If running two

gels simultaneously, the Buffer Dam can be swapped for a second

acrylamide gel.

11. Fill the sandwiched assembly with 1x Running Buffer, rinse the wells

with 1x Running Buffer, and place in the Buffer Tank.

12. Load 20μL of labeled sample into each well in the desired order. Add

3μL of Precision Plus Protein All Blue Prestained Protein Standards to

either the first or last lane. When loading each well, pipet slowly and

13Combining informatics with ABPP to identify serine hydrolases



smoothly, ensuring the sample collects at the bottom of the well and

there are no bubbles to disrupt the sample.

13. Put the Lid on the Buffer Tank, attach the leads to the Power Supply,

and set the voltage at approximately 85V. Once the sample has passed

through the Stacking Gel and entered the Resolving Gel (as monitored

by the blue “front” of the samples), the voltage can be increased up to

120V if desired.

14. Once the blue “front” has run off the bottom of the gel, remove the gel

from the sandwiched assembly, rinse with water, and gently dry off.

15. Image the gel using the Typhoon gel scanner at the appropriate wave-

length (for the TMR fluorophore, excitation/emission 544nm/570nm)

for the fluorescent dye in the activity-based probe to generate an in-gel

fluorescence image. The photomultipler tube (PMT) voltage and reso-

lution can be adjusted to increase image quality.

3.2.3 Notes
When casting the acrylamide gel, add the acrylamide just prior to casting the

gel as polymerization will begin right away. Avoid any spills as acrylamide in

solution is toxic. The percent acrylamide in the resolving gel can be tuned

depending on the molecular weight of the protein of interest, with lower

percentages such as 10% being better for resolving higher molecular weight

proteins and higher percentages such as 15% being better for resolving lower

molecular weight proteins (the volume of water is thus increased or

decreased accordingly to maintain the same final volume). Additionally,

proteins that are difficult to resolve can be better separated by running

the gel at lower voltages, i.e. 65V. The recipes above make one gel but

can be scaled up to cast multiple gels. Acrylamide gels can be stored inside

the glass plates for up to a week at 4°C, wrapped in a damp paper towel and

cling wrap, prior to use.

3.3 Protein-protein BLAST analysis
3.3.1 Workflow
1. Visit the web-based BLAST tool at https://blast.ncbi.nlm.nih.gov/Blast.

cgi and navigate to the Protein BLAST functionality (BLASTp).

2. Enter query sequence(s) of interest. The sequences can be formatted as a

list of GenBank accession numbers or as FASTA sequences, or an entire .

FASTA file can be uploaded. If entering multiple queries, each accession

number or sequence must be on a new line. The single letter amino acid

code must be used for BLASTp.
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3. Choose a search space. The default is the non-redundant protein

sequence (nr) database, which contains all GenBank protein translations.

This space can be narrowed at various taxonomic levels to all proteins

associated with a single phylum, genus, species, or strain (Firmicutes,

Staphylococcus, Staphylococcus epidermidis, Staphylococcus epidermidis

ATCC 14990, respectively, for example).

4. Select the blastp algorithm and press BLAST.

5. The results include a list of sequences with significant alignments with a

hyperlink to its entry in GenBank, metrics like e-value and percent iden-

tity, and a visualization of the alignment, including which residues are

conserved.

3.3.2 Notes
While the standard algorithm parameters on the web-based BLASTp tool

are often sufficient, they can be fine-tuned if needed, i.e. the e-value thresh-

old or the matrix used to calculate the score for a given alignment. The

web-based tool can be utilized for many BLASTp searches, but BLAST+

applications can also be downloaded locally onto a server and searches

can be performed using command-line tools. Local BLAST+ searches are

especially useful for high-volume searches or developing custom target sea-

rch sets to search against, such as proteomes from the Human Microbiome

Project (Consortium et al., 2012). For more detailed instructions, visit the

BLAST Command Line Applications User Manual (https://www.ncbi.nlm.

nih.gov/books/NBK279690/).

In brief, proteins of interest to be searched against (e.g., an entire prote-

ome) can be downloaded into a .FASTA file from NCBI or other similar

databases to create a search set. After installing the standalone BLAST+ pro-

grams, the makeblastdb function converts the search set .FASTA file into a

BLAST database with the Unix command “makeblastdb -in searchDB.fasta

-out blastDB -dbtype prot -parse_seqids.” Then, the query sequence(s), also

saved in a .FASTA file, can be used in a BLASTp search and the results saved

to an output file with the Unix command “blastp -query query.fasta -db

blastDB -outfmt 6 > output.txt.” The output file will be saved in a tabular

form containing the query sequence ID, the search sequence ID, percent

identity, alignment length, number of mismatches, number of gap openings,

residue number for the start of the alignment in the query sequence, residue

number for the end of the alignment in the query sequence, residue number

for the start of the alignment in the search sequence, residue number for the

end of the alignment in the search sequence, e-value, and bitscore, which is
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another measurement of the confidence of the alignment but independent of

the size of the search set. Additional modifications of the BLASTp search can

include setting a maximum number of resulting sequences for each query

sequence (for one sequence per query, “-max_target_seqs 1”) or a threshold

of the minimal e-value (for an e-value threshold of 1e-40, “-evalue 1e-40”).

3.4 Activity profile clustering
3.4.1 Workflow
1. Download an ImageJ image processing package from https://imagej.

net/software/ and install (Schneider, Rasband, & Eliceiri, 2012).

There are many iterations of the original software, ImageJ, most of

which are sufficient for standard image analyses. For the purposes of this

chapter, exact details will be based on the Fiji package (Schindelin

et al., 2012).

2. Open the in-gel fluorescence image (e.g. in the .tiff or .gel format) from

gel-based ABPP in Fiji. Ensure that the gel is perfectly horizontally

aligned for the cleanest analysis. The image can be rotated using the

Image > Transform > Rotate function.

3. If the image has dark bands on a light background, invert using the Edit

> Invert function (Fig. 4, Step i).

4. Using the Straight Line tool, draw a vertical line through a lane (Fig. 4,

Step ii).

5. Using the Analyze > Plot Profile function, calculate the fluorescent

intensity along the vertical line (Fig. 4, Step iii) and save the data with

theData>Copy All Data function (Fig. 4, Step iv). The copied data can

be pasted into an Excel file or similar.

6. Move the vertical line to another lane by using the arrow keys, preserv-

ing the y-value of the top point of the line and the length of the line,

and measure the fluorescent profile along that line. Continue for every

lane of interest. Additionally, measure the fluorescent profile along a

region outside of the lanes to serve as a background profile. The

resulting Excel file should contain the “Gray Value,” or intensity, at

each pixel for every lane, including the background, and be saved as

a .CSV file.

7. To smooth the effects of any blemish in the image, the fluorescence

profile can be divided into roughly 100 bins by summing across the

fluorescent intensities in each bin. As highlighted in the sample code

(see Fig. 5, ##BIN), every 15 intensity values of the activity profile
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Fig. 4 Quantification of activity profiles from gel-based ABPP using the ImageJ software, Fiji. Step i, Invert, if the image has dark bands on a
light background; Step ii, draw a Straight Line vertically through a lane; Step iii, Plot Profile along the vertical line; Step iv, Copy All Data to paste
in Excel and save the intensity values for the profile.



were summed for each lane in the gel; however, the exact number and

size of each bin should be tailored for each gel.

8. Subtract the binned background fluorescent profile from every

other profile (see Fig. 5, ##SUBTRACT BACKGROUND AND

THRESHOLD).

9. As minor changes in the gel background do not provide valuable infor-

mation for the purposes of clustering, any values below a background

threshold are reassigned a value of 0 (see Fig. 5, ##SUBTRACT

BACKGROUND AND THRESHOLD). The appropriate back-

ground threshold to use will vary from gel to gel, but should correspond

to the background subtracted binned value from a portion of the gel

that has no visual bands.

10. Visualize the binned and thresholded quantification of the image uti-

lizing the pheatmap package in R, with the rows being each bin along

the gel and the columns being each condition in the gel. Use hierarchi-

cal clustering within the pheatmap package on the columns and show

the corresponding dendrogram (see Fig. 5, ## PLOT).

3.4.2 Notes
The data processing can be performed manually in Excel, but use of com-

putational platforms such as RStudio (https://www.rstudio.com/products/

rstudio/download/) allow more easy manipulation and modification of

parameters including bin size and background threshold. In either case,

the heatmap and dendrogram generation should be performed with R,

Python, or a similar bioinformatically-inclined coding language. If the data

Fig. 5 Sample R code for processing and visualization of in-gel fluorescence imaging as
a clustered heatmap.
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processing is performed computationally, the conversion of the in-gel fluo-

rescence image to a heatmap can be optimized for each gel by altering the

size/number of bins and the background threshold by monitoring the

changes in the outputted heatmap, ensuring that each distinct band visual-

ized in the gel is represented in the heatmap. Included is some sample code

in R for the data processing and visualizing that should be edited and embel-

lished as needed (Fig. 5).

4. Summary

Activity-based protein profiling is a powerful approach for identifying

relevant and druggable bacterial targets. In the context of studying pat-

hobiont bacteria that exist with closely related species in the healthy micro-

biome, this technique can be supplemented with bioinformatic tools such as

BLASTp, which can assess enzyme conservation across species, to under-

stand which commensal bacteria might be impacted by targeting a given

enzyme. Furthermore, quantification of activity profiles generated with

gel-based ABPP and image analysis software enables comparison and strat-

ification of strains of a single bacterial species, thus enabling rapid and func-

tional clustering of clinical isolates. In this chapter, we have detailed the

protocols necessary to perform BLASTp searching, gel-based ABPP, image

analysis, and clustering to identify related enzymes and functional conserva-

tion across related bacterial species. As our reference example, we have used

our data generated by the characterization of serine hydrolase conservation

in the skin commensal bacterium Staphylococcus epidermidis. We are confident

that this integration of approaches has great potential to be applied to study

additional classes of enzymes and their activity profiles in a wide variety of

clinically relevant bacteria.
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