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Abstract: The significance of cysteine cathepsins for the liberation of thyroid hormones from the
precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most
important for thyroglobulin processing in mice. The present study aims at specifying the possible
contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence
analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma
membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V
and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking
pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V
tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid
epithelial cell line. Colocalization studies with compartment-specific markers and analyses of
post-translational modifications revealed that the chimeric protein was sorted into the lumen of
the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being
N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it
became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced
secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its
transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform
of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it
possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default
pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.
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1. Introduction

Cathepsin V is a member of the human cysteine cathepsins comprising cathepsins B, C, F, H, K,
L, O, S, L2/V, W and X/Z [1,2]. Cathepsin V is also referred to as cathepsin L2 due to its extensive
primary sequence identity of 80% with ubiquitously expressed cathepsin L [1]. Human cathepsin L
and V encoding genes are located on chromosome 9 at locus q21-q22, indicating that both enzymes
arose by gene duplication from an ancestral cathepsin L-like precursor [1]. Cathepsin V was identified
as the Stratum corneum thiol protease (SCTP) that is secreted from terminally differentiated corneocytes
and able to degrade desmocollin extracellularly at desmosomes, indicating its role in desquamation [3].
Cathepsin V was also found to be expressed in corneal epithelium and in the testis as well as in the
thymus, where it is believed to be involved in endosomal invariant chain processing during antigen
presentation [4–6].

Pathologically, cathepsin V overexpression correlates with hyperproliferation in various human
cancers including breast, colorectal, hepatocellular, ovarian and renal cell carcinomas [5,7]. The function
of cathepsin V in triggering hyperproliferation is possibly explained by specific forms reaching the
nucleus of carcinoma cells [8]. More specifically, we found that an N-terminally truncated specific
form of cathepsin V was often sorted to the nuclei of cells in cold nodules and it was present in the
nuclei of follicular and papillary thyroid carcinoma cells, while only occasionally being detected within
nuclei of thyrocytes in non-cancerous tissue, namely, hot nodules and goiter [8]. Thus, N-terminally
truncated cathepsin V is sorted to the nuclear compartment of thyroid carcinoma cells in particular,
and it promotes cell proliferation [8]. In clear contrast, full-length cathepsin V was not sorted to the
nucleus but was detected in the compartments of the secretory pathway of thyroid epithelial and
carcinoma cells consistent with the existence of an N-terminal signal peptide [8]. However, the role of
full-length cathepsin V in thyroid physiology has not been studied in sufficient detail, and its trafficking
pathways upon TSH stimulation of thyrocytes remained elusive as of yet.

It is well known that the full-length forms of cysteine cathepsins B, K, L and S are important to
maintain proper thyroid function, because they are involved in proteolytic processing and degradation
of thyroglobulin (Tg) for thyroid hormone (TH) liberation [9–13]. Tg is stored within the thyroid follicle
lumen in covalently cross-linked form as so-called Tg-globules reaching diameters of up to 120 µm,
which considerably surpass the dimensions of single thyrocytes [14]. Therefore, luminal Tg cannot
be internalized as an entity by thyrocytes, implying the need for extracellular solubilization prior to
endocytosis and complete degradation of Tg within endo-lysosomes [13]. In the human thyroid, extra-
and intracellular proteolytic cleavage of Tg is likely facilitated by the cysteine cathepsins B, K, L, and S
acting even in the neutral and oxidizing conditions of the follicle lumen [10]. It is not known as of yet
whether cathepsin V contributes to Tg processing and how it is localized in thyroid tissue. Therefore,
this study seeks to understand the significance of cathepsin V in human thyroid physiology using
studies on thyroid epithelial cells in situ and in vitro. The distribution of cathepsin V in thyroid tissue
was investigated by immunofluorescence microscopy, revealing its noticeable extra- and pericellular
localization in situ. These findings suggested functions of cathepsin V in Tg-processing by extracellular
means, and highlighted the importance of studying its trafficking pathways in more detail. Thus, using
thyrocytes that express enhanced green fluorescent protein (eGFP)-tagged cathepsin V (hCV-eGFP),
intracellular transport routes and post-translational modifications of the hCV-eGFP chimeric protein as
well as its secretion into the extracellular space were investigated in stably transduced Nthy-ori 3-1 cells
(Nthyori-CV), which we established recently [8]. In addition, the effect of TSH on the expression and
secretion of hCV-eGFP was investigated in vitro using this unique cell model. Nthy-ori 3-1 cells serve
as an appropriate representative of thyrocytes, because this cell line has been derived from normal
thyroid tissue and it responds to TSH by iodine accumulation, which is a unique feature of thyroid
epithelial cells and verifies the presence of a functional TSH receptor as well as proper G protein
signaling [15–17]. Indeed, procathepsin V becomes secreted upon TSH stimulation of Nthyori-CV cells
by following the secretory pathway to the plasma membrane. This trafficking of hCV-eGFP upon
TSH stimulation is in stark contrast to cysteine cathepsin trafficking observed in rodent thyrocytes,
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where TSH acts upon endo-lysosomes. The TSH-stimulated procathepsin V secretion from human
thyrocytes is therefore novel and has not been described before, highlighting the complexity of the
cellular and molecular pathways enabling Tg processing for TH liberation in the thyroid gland.

2. Results

2.1. Localization of Cathepsin V in Human Thyroid Tissue

To study the distribution of cathepsin V in human thyroid follicles, tissue sections were
immunostained with different cathepsin V-specific antibodies. Namely, the staining pattern of
anti-human procathepsin V CV55-1C5, that exclusively recognizes the proform, was compared with
that of anti-human cathepsin V MAB1080, which immunoreacts with both the pro- and mature
forms. The thyroid tissue exhibited normal histomorphology with intact follicle structure, i.e., follicles
are composed of a monolayer of polarized thyrocytes surrounding a lumen in which Tg is stored
(Figure 1 asterisks), thus representing normal thyroid tissue in physiological state. Immunostaining
with anti-procathepsin V CV55-1C5 antibodies revealed reticular cytoplasmic staining (Figure 1A,B
arrowhead) in addition to staining at the apical plasma membrane (Figure 1A,B arrows) and moderate
immunoreactions over the follicle lumen (Figure 1A,B asterisks). Intense immunofluorescence signals
at the apical plasma membrane (Figure 1C,D arrows), intra-luminal staining (Figure 1C,D asterisks),
and punctuate cytoplasmic staining was observed in sections immunolabeled with anti-cathepsin V
MAB1080 antibodies (Figure 1C,D). The presence of cathepsin V within the thyroid follicle lumen is in
accordance with our previous findings that reported the secretion of cysteine cathepsins into the lumen
of human thyroid follicles [10]. Vesicular staining resembling endo-lysosomes was detected in thyroid
tissue sections upon labeling with both cathepsin V antibodies, but it was not as prominent as might be
expected for an endo-lysosomal enzyme (Figure 1). As expected for normal thyroid tissue, there were
almost no nuclei stained with either antibody. The results provoked the questions (i) whether cathepsin
V is sorted to endo-lysosomal compartments of thyroid epithelial cells at all, and (ii) which form of
cathepsin V is secreted and present in the thyroid follicle lumen.

2.2. Cathepsin V Is Associated with the Plasma Membrane of Thyroid Epithelial Cells

To inspect more closely how cathepsin V is transported within thyrocytes, human Nthy-ori 3-1
thyroid epithelial cells were immunolabeled with anti-procathepsin V CV55-1C5 and anti-cathepsin V
MAB1080 antibodies. Immunostaining with both antibodies revealed a reticular staining pattern of
cathepsin V within the cytoplasm (Figure 2A,B) in addition to staining of the cell surface (Figure 2A,B
arrowheads). However, no obvious cathepsin V-immunopositive signals were observed within vesicles,
indicating scarcity of this cysteine cathepsin in endo-lysosomal compartments of Nthy-ori 3-1 cells.
In addition, cathepsin V MAB1080 antibodies stained an N-terminally truncated specific form of
cathepsin V in the nuclei of Nthy-ori 3-1 cells (Figure 2B) as expected and described by us previously [8].



Int. J. Mol. Sci. 2020, 21, 9140 4 of 22

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 23 

 

endo-lysosomes. The TSH-stimulated procathepsin V secretion from human thyrocytes is therefore 
novel and has not been described before, highlighting the complexity of the cellular and molecular 
pathways enabling Tg processing for TH liberation in the thyroid gland. 

2. Results 

2.1. Localization of Cathepsin V in Human Thyroid Tissue 

To study the distribution of cathepsin V in human thyroid follicles, tissue sections were 
immunostained with different cathepsin V-specific antibodies. Namely, the staining pattern of 
anti-human procathepsin V CV55-1C5, that exclusively recognizes the proform, was compared with 
that of anti-human cathepsin V MAB1080, which immunoreacts with both the pro- and mature forms. 
The thyroid tissue exhibited normal histomorphology with intact follicle structure, i.e., follicles are 
composed of a monolayer of polarized thyrocytes surrounding a lumen in which Tg is stored (Figure 
1 asterisks), thus representing normal thyroid tissue in physiological state. Immunostaining with 
anti-procathepsin V CV55-1C5 antibodies revealed reticular cytoplasmic staining (Figure 1A,B 
arrowhead) in addition to staining at the apical plasma membrane (Figure 1A,B arrows) and 
moderate immunoreactions over the follicle lumen (Figure 1A,B asterisks). Intense 
immunofluorescence signals at the apical plasma membrane (Figure 1C,D arrows), intra-luminal 
staining (Figure 1C,D asterisks), and punctuate cytoplasmic staining was observed in sections 
immunolabeled with anti-cathepsin V MAB1080 antibodies (Figure 1C,D). The presence of cathepsin 
V within the thyroid follicle lumen is in accordance with our previous findings that reported the 
secretion of cysteine cathepsins into the lumen of human thyroid follicles [10]. Vesicular staining 
resembling endo-lysosomes was detected in thyroid tissue sections upon labeling with both cathepsin 
V antibodies, but it was not as prominent as might be expected for an endo-lysosomal enzyme (Figure 
1). As expected for normal thyroid tissue, there were almost no nuclei stained with either antibody. 
The results provoked the questions (i) whether cathepsin V is sorted to endo-lysosomal 
compartments of thyroid epithelial cells at all, and (ii) which form of cathepsin V is secreted and 
present in the thyroid follicle lumen. 
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Figure 1. Immunohistochemistry of cysteine cathepsin V in human thyroid tissue. Human thyroid tissue
sections were immunolabeled with different cathepsin V-specific antibodies (green signals), namely,
anti-human cathepsin V CV55 1C5 (A,B) that exclusively immunoreacts with the proform of cathepsin
V, and anti-human cathepsin V MAB1080 (C,D) recognizing both the pro- and mature cathepsin V
forms. Nuclei were counter-stained with Draq5™ (blue signals). Single-channel fluorescence and
corresponding phase contrast micrographs are depicted as indicated. Cathepsin V-immunopositive
signals were detected within the cytoplasm (arrowheads), at the apical plasma membrane (arrows),
and dispersed within the follicle lumen (asterisks). Rectangular boxes in A and C denote regions
magnified in B and D, respectively. Scale bars represent 50 µm.
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Figure 2. Subcellular localization of endogenous cathepsin V and eGFP-tagged full-length cathepsin
V chimeric protein in thyroid epithelial cells. Non-transduced Nthy-ori 3-1 (A,B) and transduced
Nthyori-CV cells (C–E) were immunostained with different cathepsin V antibodies (red signals), i.e.,
anti-human cathepsin V CV55-1C5 that exclusively immunodetects the proform of cathepsin V (A,D)
and anti-human cathepsin V MAB1080 recognizing both, the pro- and mature cathepsin V forms
(B,E). Green channels (C–E) represent fluorescence signals of hCV-eGFP. Yellow signals are indicative
of colocalizing signals from cathepsin V antibodies and hCV-eGFP. The sketch (upper left panel)
outlines this approach schematically. Nuclei were counter-stained with Draq5™ (blue signals). Pink
signals are indicative of colocalizing signals from cathepsin V antibodies and nuclear Draq5™ staining.
Single-channel fluorescence and corresponding phase contrast micrographs are depicted as indicated.
Arrowheads denote immunoreactive and hCV-eGFP-derived signals at the cell surface, while arrows
point to vesicular hCV-eGFP signals in Nthyori-CV cells. Scale bars represent 50 µm.
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In the current study, we further focused on the non-nuclear form of cathepsin V, that is,
full-length cathepsin V, which would most possibly follow the canonical trafficking pathway of
endo-lysosomal enzymes from the rough endoplasmic reticulum (rER) lumen through the Golgi
apparatus to endo-lysosomes due to its targeting and sorting sequences. Analysis of the transport
routes of full-length cathepsin V in Nthy-ori 3-1 cells by using antibodies has limitations however,
because MAB1080 antibodies cannot discriminate between the non-nuclear and nuclear forms of
endogenous cathepsin V, i.e., it recognizes both the full-length and N-terminally truncated forms,
while CV55-1C5 antibodies do not immuno-react with the mature cathepsin V forms [8]. Therefore,
we sought to generate a cell line expressing full-length cathepsin V, which is C-terminally tagged with
GFP, and otherwise bears all targeting and sorting sequences of the wild type full-length cathepsin V.
Therefore, Nthy-ori 3-1 cells were transduced to stably express human full-length cathepsin V fused
with eGFP (hCV-eGFP) as previously described [8], henceforth referred to as Nthyori-CV cells.

The chimeric protein hCV-eGFP revealed the same localization as the endogenous, non-nuclear
cathepsin V when Nthyori-CV cells were inspected by fluorescence microscopy before and after staining
with CV55-1C5 and MAB1080 antibodies (Figure 2C cf. Figure 2D,E respectively). Thus, hCV-eGFP
became predominantly detectable in reticular structures, and it was found to a lesser extent in vesicles
distributed throughout the cytoplasm of Nthyori-CV cells (Figure 2C). Importantly, Nthyori-CV cells
exhibited cell surface localization of eGFP-tagged full-length cathepsin V (Figure 2C arrowheads).
Immunolabeling of Nthyori-CV cells with CV55-1C5 antibodies revealed that the fluorescence signals
of the chimeric protein hCV-eGFP and the anti-procathepsin V derived immunofluorescence signals
were colocalized in structures of the perinuclear region (Figure 2D yellow signals). However,
few eGFP-positive vesicles, which were scattered throughout the cytoplasm, were not immunostained
with CV55-1C5 antibodies (Figure 2D arrows), suggesting that these vesicles possibly contained a
GFP-tagged mature form of cathepsin V that could not be recognized by anti-procathepsin V antibodies.
In contrast, in the reticular structures in the cytoplasm of Nthyori-CV cells, maximum co-localization
was observed between anti-cathepsin V MAB1080 antibody-stained structures and those containing
hCV-eGFP chimeric protein (Figure 2E yellow signals). The results underlined that Nthyori-CV cells
are a suitable in vitro model to study the sorting and trafficking of full-length cathepsin V in thyroid
epithelial cells.

2.3. The Chimeric Protein hCV-eGFP Undergoes N-Linked Glycosylation in Thyroid Epithelial Cells

According to its amino acid sequence, the cysteine cathepsin V harbors two putative
N-glycosylation sites at residues Asn-221 and Asn-292, respectively (Figure 3A underlined). Because
N-glycosylation is important for protein stability and trafficking, we explored whether the eGFP-tagged
full-length cathepsin V chimeric protein might become N-glycosylated in the transduced thyroid
epithelial cells. Therefore, lysates of Nthyori-CV cells were incubated with glycosidases, namely,
PNGase F or EndoF1, before immunoblotting. Staining with GFP-specific antibodies revealed that the
bands at approx. 64 kDa, representing the proform of the hCV-eGFP chimeric protein (Figure 3B, lanes 2
and 4, respectively), migrated faster after treatment with both EndoF1 and PNGase F (Figure 3B, lanes 3
and 5, respectively). The results indicated that hCV-eGFP chimeric protein undergoes N-glycosylation
in the transduced Nthyori-CV cells. It is worth noting that both glycosidases were productive in
de-glycosylation of hCV-eGFP, which led us to conclude that the chimeric protein remained in an
EndoF-sensitive form in the Nthyori-CV cells. Since EndoF1 recognizes asparagine-linked or free
high mannose and hybrid carbohydrate modifications, but not complex oligosaccharides, the data
suggested that hCV-eGFP chimeric protein contains oligo mannosyl- or hybrid-type glycans. We further
reasoned that EndoF sensitivity of hCV-eGFP was either due to its trapping in the ER and failure to
reach the Golgi apparatus, or alternatively, due to the failure of N-glycan maturation in Nthyori-CV
cells despite regular trafficking along the secretory pathway. Therefore, we next investigated the
intracellular trafficking route of hCV-eGFP in more detail by performing co-localization experiments
with compartment-specific markers.
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Figure 3. N-glycosylation state of hCV-eGFP chimeric protein in thyroid epithelial cell lines.
(A) The amino acid sequence of human cathepsin V (UniProt accession number O60911) contains
two potential N-glycosylation sites of the motif “N-X-S/T-NOT P” at positions Asn-221 and Asn-292
(underlined). The active site residues Cys-138, His-277 and Asn-301 indicative of cysteine peptidases
are highlighted in red. The propeptide is indicated in gray font. (B) Immunoblots of lysates prepared
from Nthy-ori 3-1 control (lane 1) or Nthyori-CV cells, treated without (lanes 2 and 4) or with (lanes
3 and 5) EndoF1 or PNGase F, were probed with anti-GFP antibodies. Molecular mass markers are
indicated in the left margin. Faster migration due to glycosidase-mediated reduction in the molecular
mass of the proform of hCV-eGFP chimeras was indicative of the removal of N-linked glycans.

2.4. The Transport Route of the Chimeric Protein hCV-eGFP in Thyroid Epithelial Cells

To analyze trafficking and sorting of eGFP-tagged full-length cathepsin V in more detail,
Nthyori-CV cells were immunostained with compartment-specific markers, namely, by using antibodies
against the ER-resident protein disulfide isomerase (PDI), the cis-Golgi matrix protein GM130, and the
lysosome-associated membrane protein 1 (Lamp1). The results revealed co-localization of hCV-eGFP
chimeric protein with PDI in ER-like reticular distribution patterns (Figure 4A, yellow signals).
In addition, eGFP-tagged full-length cathepsin V was observed in PDI-negative cisterna-like structures
in the peri-nuclear region (Figure 4A, asterisk, green signals) which were identified as belonging to the
Golgi apparatus by the pronounced co-localization with GM130 (Figure 4B, yellow signals). The chimeric
hCV-eGFP protein was also found to co-localize with Lamp1-positive vesicles in Nthyori-CV cells
but only in some endo-lysosomes (Figure 4C, yellow signals). The results demonstrated that the
hCV-eGFP chimeric protein is synthesized at the ER and targeted for entry into its lumen before
being transported to the Golgi apparatus and delivery to its final destination, the endo-lysosomal
compartments. Co-localization of hCV-eGFP with markers of early secretory pathway compartments
was notably more extensive than with endo-lysosomal markers.
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Figure 4. Trafficking of eGFP-tagged full-length cathepsin V in thyroid epithelial cells. Confocal laser
scanning micrographs of Nthyori-CV cells expressing hCV-eGFP chimeras ((A–C), green signals) after
immunolabeling with antibodies against PDI (A), GM130 (B) and Lamp1 (C) proteins residing in the
ER, at the cytosolic face of Golgi cisternae and vesicles, and in endo-lysosomes, respectively (red
signals). Yellow signals are indicative of co-localization. Nuclei were counter-stained with Draq5™
(blue signals). Single-channel fluorescence micrographs are depicted in the bottom panels as indicated.
Scale bars represent 50 µm.

Since the immunofluorescence studies revealed only partial co-localization of hCV-eGFP chimeras
with Lamp1, we sought to verify biochemically whether it reaches endo-lysosomes. Hence,
Nthyori-CV cells were homogenized and endo-lysosome-enriched fractions were isolated by differential
centrifugation. Lysates of whole cells and endo-lysosomal fractions prepared from Nthyori-CV cells
were blotted with GFP-specific antibodies, resulting in immunorecognized bands of approximately
64 kDa, corresponding to the predicted molecular mass of the proform of hCV-eGFP (Figure 5A,
lanes 1 and 2). However, additional bands at approximately 51 kDa and 30 kDa, corresponding
to the expected molecular masses of the mature form of hCV-eGFP and its degradation fragment,
respectively, were detected in the endo-lysosomal fractions of Nthyori-CV cells (Figure 5A, lane 2).
Immunoblotting for lysosomal cathepsin D and proliferating cell nuclear antigen (PCNA) confirmed
the purity of the endo-lysosomal fractions (Figure 5B,C). A band representing procathepsin D was
detected in the whole cell lysate (Figure 5B, lane 1), while different molecular forms of cathepsin
D, i.e., proform, intermediate, and heavy chain of two-chain cathepsin D, were abundant in the
endo-lysosomal fractions of Nthyori-CV cells (Figure 5B, lane 2). PCNA protein was present in the
whole cell lysate but absent from endo-lysosomal fractions of Nthyori-CV cells (Figure 5C, lane 1) as
expected. The results demonstrated the presence and enrichment of hCV-eGFP chimeras as pro- and
mature forms in endo-lysosomal fractions of Nthyori-CV cells, indicating the transport of hCV-eGFP
to the predicted final destination for maturation in endo-lysosomal compartments.
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of lysates prepared from whole cells (WHC, lanes 1, respectively) or endo-lysosome enriched fractions
(Lyso, lanes 2, respectively) of Nthyori-CV cells were probed with anti-GFP (A), anti-cathepsin D (B),
and anti-PCNA antibodies (C), respectively. Molecular mass markers are indicated in the left margins
(A–C). Only the proforms (pro) of hCV-eGFP and cathepsin D were detected in the whole cell lysates
of Nthyori-CV cells ((A,B), lanes 1, respectively). In addition to the proform, the endo-lysosomal
fractions of Nthyori-CV cells contained the processed mature form of hCV-eGFP and its degradation
fragment ((A), lane 2). The molecular forms of cathepsin D, i.e., proform (Pro), intermediate, and heavy
chain of two-chain cathepsin D (HC), were detected in the endo-lysosomal fractions ((B), lane 2).
Immunoblotting with anti-PCNA antibodies confirmed the purity of the endo-lysosomal fractions (C).

2.5. The Chimeric Protein hCV-eGFP Is Secreted from Thyroid Epithelial Cells

In order to address the question as to whether cathepsin V is secreted into the extracellular space of
the transduced thyrocytes in steady state, TCA-precipitated proteins of conditioned media of confluent
Nthyori-CV or non-transduced Nthy-ori 3-1 control cells (Figure 6) were analyzed by immunoblotting.
A single band at 64 kDa, representing the proform of hCV-eGFP, was prominent in the cell lysates of
Nthyori-CV cells but not observed in lysates of non-transduced cells (Figure 6E), whereas this band
was also present in low amounts in the conditioned media of Nthyori-CV cells (Figure 6A, lane 2).
Anti-GFP positive bands with apparent molecular masses of 51 and 37 kDa, corresponding to the
mature form and to an hCV-eGFP-derived fragment, respectively, were additionally detected in the
conditioned media of Nthyori-CV cells with higher intensity (Figure 6A, lane 2).

Recently, we showed that Fisher rat thyroid epithelial cells secrete procathepsin L to much
higher extents than procathepsin B [18], which was confirmed for Nthy-ori 3-1 cells in this study
(Figure 6B,C,F,G, lanes 1, respectively), indicating that cysteine cathepsin trafficking is similar in human
and rat thyroid epithelial cells. Transduced Nthyori-CV cells exhibited a similar pattern of cathepsin B
and L secretion as non-transduced Nthy-ori 3-1 control cells (Figure 6B,C,F,G, lanes 2, respectively),
while the proform of hCV-eGFP chimeras was also recognized by anti-cathepsin L antibodies in the
lysates of transduced cells (Figure 6G, lane 2), indicating the similarity of cathepsins L and V.

We concluded that thyroid epithelial cells can secrete the proform of eGFP-tagged cathepsin V,
in principle. However, the predominant occurrence of mature hCV-eGFP in the conditioned media
of Nthyori-CV cells could be explained either by extracellular processing of secreted procathepsin
V-eGFP to the mature form, or alternatively, by the secretion of mature chimeric protein recruited out
of endo-lysosomes.
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Figure 6. Secretion of hCV-eGFP chimeric protein from thyroid epithelial cells. TCA precipitated
proteins of 24 h conditioned media (A–D) collected from confluent Nthy-ori 3-1 (lanes 1) or Nthyori-CV
cell cultures (lanes 2) and the corresponding cell lysates (E–H) were immunoblotted with anti-GFP (A,E),
anti-cathepsin B (B,F), anti-cathepsin L (C,G), and anti-β-tubulin (D,H) antibodies. The conditioned
media of Nthyori-CV cells contained mainly the processed mature form of hCV-eGFP in addition to its
proform and a degradation fragment of approximately 37 kDa ((A), lane 2). Cathepsin L was found
extracellularly only as proform ((C), lanes 1 and 2). hCV-eGFP was present predominantly in its proform
in the lysate of Nthyori-CV cells ((E), lane 2). However, the expected molecular forms of cathepsins B
and L, namely the proform (pro), single-chain (SC), and the heavy chain (HC) of the two-chain forms
were detected in the lysates of both Nthy-ori 3-1 and Nthyori-CV cells ((F,G), respectively). Molecular
mass markers are indicated in the left margins. No anti-GFP bands were observed in conditioned media
or lysates of non-transduced Nthy-ori 3-1 cells ((A,E), lane 1), confirming specificity of the GFP-specific
antibodies. Immunoblots with anti-β-tubulin antibodies (D,H) confirmed that conditioned media were
not contaminated by cell debris, and that the TCA precipitates represented only the proteins secreted
from the investigated cells.

2.6. Secretion of the Proform of hCV-eGFP Is Triggered by TSH Stimulation

It is well known that proteolytic Tg processing for TH liberation by extra- and intracellular means
is regulated by TSH [13]. In addition, we have previously reported that TSH stimulates the retrieval
of mature cathepsin B out of endo-lysosomes for subsequent secretion from the FRTL-5 rat thyroid
epithelial cell line [19,20]. Hence, we were interested in investigating whether TSH alters the rates
of hCV-eGFP chimeric protein secretion from Nthyori-CV cells. Therefore, confluent Nthyori-CV
cells were stimulated with 100 µU/mL TSH for up to 24 h, and conditioned media were analyzed by
immunoblotting, in comparison with those of non-stimulated Nthyori-CV cells, to have a measure of
steady state 24-h-secretion extents.

Immunoblotting with anti-GFP antibodies revealed the presence of a distinct band at approximately
64 kDa representing the proform of hCV-eGFP in the conditioned media of TSH-stimulated cell cultures
at all time intervals (Figure 7A, lanes 2–6), while only a faint band at 64 kDa was observed in the
conditioned medium of non-stimulated Nthyori-CV cells (Figure 7A, lane 1; cf. Figure 6). However,
the processed form of eGFP-tagged full-length cathepsin V protein, represented by the band at 51 kDa,
corresponding to the mature form, and an hCV-eGFP-derived fragment of 37 kDa were indeed detected
in the 24 h conditioned media of TSH-stimulated as in non-stimulated cells (Figure 7A, lanes 1 and 6).



Int. J. Mol. Sci. 2020, 21, 9140 10 of 22

Densitometric analysis of the anti-GFP positive bands showed that the amounts of TCA-precipitable
chimeric protein increased in the conditioned media of TSH-stimulated cells over the time course of
24 h, and reached higher levels than in non-stimulated cell cultures (Figure 7C). Moreover, secretion
of the proform of hCV-eGFP was triggered already within 0.5 h of TSH stimulation and gradually
increased over time, peaking at 8 h (Figure 7D), while processed forms of the chimeric protein were
observed from 4 h of TSH-stimulation (Figure 7D). These results imply that Nthyori-CV cells secrete
the proform of the hCV-eGFP chimeric protein in a TSH-regulated fashion into the extracellular space,
where it is processed to its mature form, while also a 37-kDa-fragment is generated.
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cells stimulated with 100 µU/mL TSH for different time intervals, as indicated ((A,B), lanes 2–6),
and corresponding cell lysates ((E,F), lanes 2–6) were separated by SDS-PAGE. The 24 h conditioned
media collected from confluent Nthyori-CV cells and its respective cell lysate represented the
non-stimulated control (lanes 1). After blotting, proteins were immunolabeled with anti-GFP (A,E).
To verify that TCA-precipitated proteins were not contaminated with cellular debris, the same membrane
was stripped and reblotted with anti-β-tubulin antibodies (B,F). No bands corresponding to β-tubulin
were seen in any of the conditioned media precipitates, verifying that the secreted proteins of Nthyori
CV cells exclusively were analyzed. Molecular mass markers are indicated in the left margins. The total
amounts (C) and the amounts of proform and processed forms, i.e., the mature form and the derived
fragment (D), of secreted hCV-eGFP chimeric protein were quantified by densitometry. The amounts
of intracellular hCV-eGFP chimeric protein were also quantified and normalized to β-tubulin (G)
and remained unchanged upon TSH treatment indicating unaffected de novo-biosynthesis rates.
The intracellular amounts of hCV-eGFP in non-stimulated (red) and 24 h TSH stimulated (blue)
Nthyori-CV cells were determined using flow cytometry (H), also revealing comparable expression
in non- and TSH-stimulated cells. Fold changes were calculated in comparison with non-stimulated
controls (C,D,G). Data are depicted as means + SD in (C,G), and as means ± SD for the processed forms
in (D). Levels of significance were determined by one-way ANOVA, followed by Tukey post hoc tests,
and are indicated as * for p < 0.05, ** for p < 0.01, and *** for p < 0.001, respectively. The experiments
were repeated twice.

To investigate whether TSH-stimulation affects intracellular protein concentrations and/or affected
the maturation of eGFP-tagged cathepsin V-chimeras, the respective lysates of TSH-stimulated and
non-stimulated Nthyori-CV cells were analyzed (Figure 7E), demonstrating that only the band
corresponding to the proform of hCV-eGFP was present intracellularly. The amounts of intracellular
hCV-eGFP were quantified by densitometry and normalized to β-tubulin, revealing that the protein
amounts of intracellular proforms of hCV-eGFP remained unaltered upon TSH stimulation for up to
24 h (Figure 7G), indicating that TSH did not largely affect the de novo biosynthesis rates of hCV-eGFP.
To further confirm that long-term TSH-stimulation did not result in up-regulation of intracellular levels
of hCV-eGFP, its expression in Nthyori-CV cells stimulated with TSH for 24 h was assessed using flow
cytometry and compared to non-stimulated controls, revealing comparable intracellular amounts of
eGFP-tagged cathepsin V protein (Figure 7H).

2.7. The Activity-Based Probe DCG-04 Recognizes the Proform of eGFP-Tagged Cathepsin V Chimeric Protein

Cysteine cathepsins are synthesized as zymogens and are processed to their mature forms by the
removal of their pro-peptides, which play a critical role in regulating the proteolytic activities, e.g.,
by blocking access to the active site [21–24]. Thus, proteolytic procathepsin maturation is typically
considered essential for the enzymes to acquire full proteolytic activity. To gain insight into the activity
of the different molecular forms of the hCV-eGFP chimera, accessibility to its active site was probed by
using the activity-based probe DCG-04 that covalently binds to active cysteine peptidases in a 1:1 ratio,
only, when the active site is accessible. Therefore, lysates of Nthyori-CV cells were prepared in the
presence of biotinylated DCG-04. Taking advantage of the biotin tag present on DCG-04, proteins that
became covalently bound to the DCG-04 were then pulled-down using streptavidin-coated beads and
immunoblotted with anti-GFP antibodies. Whole cell lysates, not incubated with streptavidin-coated
beads, were analyzed as controls. As observed before (see Figure 6E), a single band representing
the proform of the hCV-eGFP chimeric protein was observed in the whole cell lysates of Nthyori-CV
cells (Figure 8A, lane 1). Interestingly, the same 64-kDa band was detected in the DCG-04 pull-down
(Figure 8A, lane 7), implying that it was the proform of hCV-eGFP chimeras that was accessible for the
DCG-04 probe. To confirm the efficiency and specificity of the DCG-04 pull-down, i.e., solely revealing
active cysteine proteases, the anti-GFP immunoblot was subsequently stripped and re-incubated with
anti-cathepsin B and anti-cathepsin D antibodies. The three expected molecular forms of cysteine
cathepsin B were identified in the cell lysates, namely proform (pro), single-chain (SC) and the heavy
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chain (HC) of the two-chain form (Figure 8B, lane 1). On the other hand, only two bands representing
single- and heavy-chain forms of cathepsin B were detected in the DCG-04 pull down, indicating the
accessibility of DCG-04 to the mature forms of cathepsin B, only (Figure 8B, lane 7), and thus verifying
the probe’s specificity in this experimental set-up. Immunoblotting with cathepsin D antibodies
showed one band at 52 kDa, corresponding to the proform of cathepsin D, exclusively in the cell
lysates (Figure 8C, lane 1). Because cathepsin D is an aspartic protease, it was not detectable in the
DCG-04 pull-down (Figure 8C, lane 7), confirming that the activity-based probe DCG-04 selectively
binds to active cysteine peptidases only, and does not exhibit cross-class reactivity. These results
showed that despite the presence of the propeptide, hCV-eGFP was labeled by the activity-based probe
DCG-04, indicating the accessibility of its active site, thereby suggesting that this chimeric protein is
proteolytically active in its proform.
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Figure 8. Detecting the proform of hCV-eGFP chimeric protein with the activity-based probe DCG-04.
Lysates (WHC, lanes 1, respectively) were prepared from Nthyori-CV cells in the presence of biotinylated
DCG-04, which requires an accessible active site in order to bind covalently to proteolytically active
cysteine peptidase forms in a 1:1 ratio. The whole cell lysate was then incubated with streptavidin
beads to pull down DCG-04-labeled proteins (DCG-04 pull down, lanes 7, respectively), representing
active cysteine peptidase forms. Immunoblots were probed with anti-GFP (A), anti-cathepsin B (B),
and anti-cathepsin D (C) antibodies. Molecular mass markers are indicated in the left margins. It was
found that the active site of the proform of the hCV-eGFP chimeric protein was fully accessible for
binding to DCG-04, indicating its proteolytic activity ((A), lane 7). The whole cell lysate contained the
expected molecular forms of cathepsin B, i.e., proform (pro), single chain (SC), and the heavy chain
(HC) of the two-chain form ((B), lane 1), while only the mature forms of cathepsin B were detected
in the DCG-04 pull down ((B), lane 7), verifying its exclusive binding to the active site. Procathepsin
D was detected in the whole cell lysate ((C), lane 1), but not in the DCG-04 pull down ((C), lane 7),
verifying the specificity of the activity-based probe DCG-04 for cysteine peptidases.
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3. Discussion

3.1. Trafficking of Cathepsins to Endo-Lysosomes

Cathepsins are proteolytic enzymes that cleave a wide range of substrates. The general scheme of
cathepsin trafficking and maturation has however been challenged, because specific forms may acquire
a proteolytically active conformation in unexpected locations such as the cytosol, mitochondria, and the
nucleus [8,25–29]. Moreover, cathepsins are secreted from various cell types in both physiological and
pathological conditions [10,19,20,24,30]. Hence, cathepsin sorting and targeting depends upon the
specific cell type looked at, the (patho)physiological state of a given tissue, and, at the cellular level,
trafficking is directed by transcriptional and post-transcriptional regulation [23].

Overall, it is well established that cathepsins, like other endo-lysosomal enzymes, require an
N-terminal signal peptide (prepeptide) to start their journey along the secretory pathway [22]. Thus,
cathepsins are synthesized as pre-pro-proteins, whereby it is accepted that the prepeptide guides
the nascent chains into the lumen of the rER, while the propeptides keep them in the zymogen state
until the final destination, endo-lysosomes, is reached [23,24,31]. In this study, we expressed the
chimeric protein hCV-eGFP containing a canonical 17-amino-acid signal peptide, which enables its
entry into the rER as shown by colocalization with the ER-resident PDI. The expressed eGFP-tagged
cathepsin V then became sorted to the Golgi apparatus and it reached endo-lysosomes as shown herein
by immunofluorescence co-localization studies and by immunoblotting of endo-lysosomal fractions.
Hence, hCV-eGFP follows the expected trafficking pathway, in principle.

Canonically, post-translational modifications like N-glycosylation and mannose-6 phosphorylation
are critical determinants of endo-lysosomal protein trafficking [21–23,31–34]. Cathepsin V, in particular,
contains two N-glycosylation consensus motives (Asn-X-Ser/Thr-NOT Pro) located at Asn-221 and
Asn-292 [4,5]. The significance of N-glycosylation for the transport of cathepsin V was studied
in human fibrosarcoma cells, where mutational elimination of one or two N-glycosylation sites
led to decreased secretion rates, while also affecting the sorting of the mutant cathepsin V forms
to endo-lysosomes [35]. Here, we demonstrated that cathepsin V is N-glycosylated and remains
EndoF-sensitive in human thyroid epithelial cells. Typically, glycoproteins acquire EndoF-resistance in
the medial Golgi, when N-glycans are processed to complex-type structures [36,37]. However, and in
contrast to this general scheme, endo-lysosomal glycoproteins are also known to pass through the
medial and trans Golgi, while remaining susceptible to endoglycosidases, because they are often tagged
with mannose-6 phosphate (M6P) residues blocking carbohydrate processing to hybrid and complex
glycans [34,38–41]. Therefore, we propose that the chimeric protein hCV-eGFP carries oligo-mannose
glycans that remain EndoF-sensitive due to its mannose-6 phosphorylation. Despite bearing the M6P
recognition marker, procathepsins can still skip sorting to endo-lysosomes and follow alternative
transport routes. Such alternative M6P-independent transport pathways are believed to be realized
either because of the reduced availability of saturated or down-regulated cation-dependent M6P
receptors (CD-MPRs) in the trans-Golgi network (TGN), or because of non-canonical glycosylation.
Consequently, precursor forms of such endo-lysosomal glycoproteins would become secreted to
the extracellular space as zymogens by following the default secretory pathway to the plasma
membrane [21,38,39,42,43].

3.2. Transport Routes of Cathepsins to the Extracellular Space

Sorting of cathepsins to extracellular localizations is often associated with their overexpression,
which typically coincides with pathological conditions like cancer or inflammatory diseases [44,45].
However, cathepsins are also secreted from different cell types such as, e.g., keratinocytes [46],
osteoclasts [47], and thyrocytes [18–20], thereby participating in physiological processes like cell
migration for wound healing, bone remodeling, and prohormone processing [23,48,49]. Cathepsin
secretion can be induced by diverse signaling pathways. For instance, TSH signaling regulates
the secretion of proteases from thyrocytes at the apical pole into the extracellular follicle lumen in
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order to maintain thyroid function [13,14,50]. TSH is secreted from the pituitary gland upon TH
demand and it is delivered with the blood to reach TSH receptors (TSHR) at the basolateral pole of
thyroid epithelial cells [51,52]. The binding of TSH to its G protein-coupled receptor activates the
Gαq-phospholipase Cβ (PLCβ) signaling cascade, which, in turn, causes a rise in free calcium (Ca2+)
concentrations [53,54]. The elevation of cytosolic Ca2+ triggers the fusion of endo-lysosome-derived
transport vesicles with the apical plasma membrane and subsequent release of their contents into the
extracellular space [19,20]. Therefore, the short-term effects of TSH result in the secretion of proteases
in order to initiate the solubilization of Tg within the follicle lumen, followed by its internalization for
exhaustive Tg degradation and TH liberation in endo-lysosomal compartments [8]. This concept was
first proposed in previous studies by us, and it demonstrated that the secretion of mature cathepsin B
from porcine or FRTL-5 rat thyrocytes followed that pathway, which was upregulated within a few
hours of TSH stimulation [19,20,50]. In this study, however, we have shown that the extracellular
presence of the hCV-eGFP chimeric protein was detectable already within the first 30 min of TSH
stimulation and its secretion increased over time. These results led us to conclude that the secretion
of cysteine cathepsins from thyrocytes is regulated by TSH, however, different transport pathways
can be followed upon TSH-stimulation. While cathepsin B is recruited out of endo-lysosomes and
hence follows retrograde trafficking [19,20], procathepsin V-eGFP follows the secretory pathway in
anterograde fashion, that is, from the ER to the Golgi onwards to the cell surface (this study).

Upon secretion, cathepsins can associate with their substrates in the plasma membrane-near
pericellular region, a scenario that explains their stabilization by protection from the
non-favorable conditions of the extracellular milieu and the maintenance of proteolytic activity,
respectively [30,49,55,56]. In the current study, the localization of cathepsin V in the follicle lumen
and at the plasma membrane was shown in situ and in vitro, thereby making the above scenarios
plausible in thyroid epithelial cells too. Since cathepsin V provides positively charged patches on its
molecular surface [25], we suggest that these may facilitate the interaction of cathepsin V to negatively
charged, sialylated plasma membrane constituents via electrostatic interactions. Future studies will be
important to investigate the molecular nature of procathepsin V binding sites at cell surfaces, including
those of thyrocytes.

3.3. Mechanisms of Procathepsins Activation

Cathepsin V has been reported to be optimally active at pH 5.7 toward peptide substrates like
Z-Phe-Arg-MCA containing a cleavage motif used by several cysteine cathepsins including cathepsin
L with a more acidic pH optimum [1,57]. Nevertheless, cysteine cathepsins are known to retain some
activity at neutral pH as well, particularly when stabilized by high substrate concentrations [10,58,59].
Among the cysteine cathepsins, it was so far found that cathepsin S in particular has high stability
at neutral pH [30,48,60]. In addition, cathepsin V is also stable at neutral pH, unlike its closest
homologous cathepsin L [1]. In the thyroid, the situation is such that cysteine cathepsins B, K, L, and S
are proteolytically active on their natural substrate Tg even under the neutral and oxidizing conditions
of the follicle lumen [10]. Using an in vitro assay mimicking the in situ conditions, we showed
that cathepsin S is indeed the most efficient in Tg-processing for TH liberation under such highly
non-favourable conditions [10]. That study had further shown that also the other cysteine cathepsins
B, K, and L cleaved their substrate at neutral pH and in an oxidizing milieu [10]. We conclude
that the thyroid follicle lumen is special in that it contains a very high concentration of protease
substrate, namely, covalently cross-linked Tg-globules, that stabilize cysteine cathepsins reaching this
extracellular space as proforms by anterograde (this study) or as mature forms by retrograde trafficking
pathways [13,19,20].

In this context it is important to remember that the removal of the pro-peptides is a crucial step in
generating fully active mature cathepsins. The pro-peptide chain folds onto the surface of the zymogens
in an extended conformation and runs through the active site in opposite direction to the substrate,
thus blocking the access of any substrate to the active site. The interactions between the pro-peptides
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and the remaining portions of the pro-proteins are brought about by salt bridges, hydrogen bonding,
and hydrophobic interactions, thereby maintaining the folding integrity of the pro-peptides and
mediating their inhibitory effect on the zymogens [61–63]. Such pro-peptide interactions are weakened
at low pH, leading to a conformational change in the cathepsin zymogen forms, whereby their
proteolytic processing for maturation is facilitated [64–66]. However, disturbances of the interactions
between pro-peptides and the remaining portions of the pro-cathepsins can also occur at neutral
pH, especially in an extracellular milieu rich in glycosaminoglycans and other negatively charged
molecules [59,67]. Once the pro-peptides are dissociated from the active-site cleft, the zymogen forms
become more susceptible to proteolytic cleavage, resulting in pro-cathepsin conversion to the mature
forms. Glycosaminoglycans are typical constituents of the basolateral extracellular matrix of epithelial
cells, thus unlikely to be found excessively in the thyroid follicle lumen which is apposed to the
apical pole of thyroid epithelial cells. In the extracellular follicle lumen, however, highly glycosylated
Tg is found and its carbohydrate-rich post-translational modifications might perform a function
similar to that of glycosaminoglycans of the extracellular matrix. In particular, human Tg contains
chondroitin sulfate [14,68–70], which could perform the function of disturbing pro-peptide interactions
in the zymogen forms. In addition, chondroitin sulfate modifications render Tg negatively charged,
which would explain why positively charged molecules like procathepsin V interact preferentially
with it in the follicle lumen of the thyroid gland.

Otherwise, pro-peptides are enzymatically removed by means of legumain-mediated processing or
autocatalytically in the case of endopeptidases such as the cathepsins B, H, K, L, and S [23,65,66,71–73].
Regarding the activation of procathepsin V, it was reported that recombinant procathepsin V can be
autocatalytically activated at acidic pH in a process that is inhibited by various cysteine protease
inhibitors [1], already hinting to the possibility of enzymatic activity of this cysteine cathepsin in the
zymogen form. In the current study, procathepsin V was shown to be accessible to the activity-based
probe DCG-04, which strongly implies that the zymogen form of cathepsin V is proteolytically active.
Interestingly, procathepsin B is also accessible to DCG-04 and can act auto-catalytically on itself [72,73].
In the thyroid gland, however, procathepsin B is sorted to endo-lysosomes and it is plausible that
canonical activation predominates [19,20]. In contrast, we propose for cathepsin V that it is secreted
from thyrocytes in the proform, thereby reaching the extracellular follicle lumen, where it is stabilized
by the high concentration of its substrate Tg. Subsequently, procathepsin V becomes matured most
likely via autocatalytic cleavage, promoted by the glycosylation modifications on Tg, and, upon TSH
stimulation, via activation by other cysteine cathepsins which are then delivered to the follicle lumen
in proteolytically active forms like the cathepsins B, K, or S.

3.4. Perspectives

Taken together, the herein described localization of procathepsin V in the thyroid follicle lumen
and its secretion from thyrocytes in a TSH-stimulated fashion support the notion that cathepsin V is
another cysteine cathepsin being involved in thyroglobulin processing in addition to cathepsins B, K,
L, and S. Future studies are underway to determine whether thyroglobulin is a natural substrate of
procathepsin V, and where precisely it is cleaved, and whether this cleavage is productively contributing
to extracellular TH liberation in the thyroid follicle lumen in order to further specify the putative
contribution of procathepsin V in maintaining thyroid homeostasis. Cathepsin V is, however, special
among the thyroidal cysteine cathepsins in that it follows an anterograde secretory route which is
triggered by short-term TSH stimulation of thyroid epithelial cells.

4. Materials and Methods

4.1. Cell Culture

Human thyroid epithelial cells (Nthy-ori 3-1) [16] were cultured in Roswell Park Memorial Institute
medium (RPMI 1640, #12-702F, Lonza, Verviers, Belgium) supplemented with 10% fetal calf serum
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(#10270106, origin Brazil, Thermo Fisher Scientific, Darmstadt, Germany). Nthy-ori 3-1 cells were
transduced to stably express eGFP-tagged full-length cathepsin V as described before [8], hereafter
referred to as ‘Nthyori-CV’. Cell cultures were maintained at 37 ◦C in a humidified atmosphere at 5%
CO2. It is important to note that metabolic activity, proliferation rates and morphological changes were
not observed in Nthyori-CV when compared with Nthy-ori 3-1 cells (see Figure 2) and [8].

For stimulation, confluently grown Nthyori-CV cells were incubated in serum-free RPMI 1640
containing 100 µU/mL TSH (#869006, Merck, Darmstadt, Germany) for the indicated time intervals of
up to 24 h.

4.2. Flow Cytometry Analysis

In order to quantify the cellular hCV-eGFP amounts upon TSH stimulation, cells were trypsinized
and collected by centrifugation at 200× g for 5 min. After washing twice with phosphate-buffered
saline (PBS) and resuspending the cells in one ml PBS, the green fluorescence intensity was quantified
using a CyFlow Space flow cytometer (Sysmex, Dresden, Germany). Data was analyzed using FlowJo
software (Tree Star, Ashland, OR, USA).

4.3. Indirect Immunofluorescence and Image Acquisition

Cells were paraformaldehyde-fixed, Triton X-100 permeabilized and immunolabeled as described
before [8]. Immunohistochemistry was performed on paraffin-embedded human thyroid tissue
sections obtained from patients undergoing thyroid surgery and used in compliance with the Helsinki
Declaration [74]. The sections were deparaffinized and rehydrated by dipping them in xylol 4 times
for 5 min each, followed by rinsing with decreasing concentrations of ethanol (100%, 95%, 70%,
and 30%) for 5 min each. Slides were then incubated in freshly prepared sodium borohydride (1%
in distilled water; Carl Roth GmbH, Karlsruhe, Germany) for 5 min at room temperature to reduce
auto-fluorescence. After washing with calcium- and magnesium-free PBS (CMF-PBS), slides were
blocked and immunolabeled as described before [8].

The following primary antibodies were used in this study: monoclonal mouse anti human
cathepsin V (1:50; #MAB1080, R&D Systems, Minneapolis, MN, USA), monoclonal mouse anti
human procathepsin V clone CV55-1C5 (1:100; produced by E.W.), polyclonal rabbit anti PDI (1:100;
#ADI-SPA-890, Enzo Life Sciences, Lörrach, Germany), monoclonal mouse anti GM130 (1:100; #610822,
BD Biosciences Laboratories, Allschwil, Switzerland), and polyclonal rabbit anti Lamp1 (1:100; #L1418,
Merck, Darmstadt, Germany). As secondary antibodies, Alexa 546-conjugated goat anti mouse and
goat anti rabbit IgG were used (1:200; #A11018, #A11071, respectively, Molecular Probes, Karlsruhe,
Germany). Draq5™ (Bio-status Limited, Shepshed Leicestershire, UK) was used at a final concentration
of 5 µM to counter-stain nuclear DNA.

Immunolabeled tissue sections and cells were mounted on microscope slides and imaged with a
confocal laser scanning microscope equipped with Argon and Helium–Neon lasers (LSM 510 Meta;
Carl Zeiss Jena GmbH, Jena, Germany). Micrographs were obtained at a pinhole setting of one Airy
unit at resolutions of 1024 × 1024 pixels. Images were analyzed with the LSM 510 software, release 3.2
(Carl Zeiss Jena GmbH, Jena, Germany) and stored in TIFF format.

4.4. Subcellular Fractionation

All steps were performed on ice and centrifugations were done at 4 ◦C. Whole cell lysates
were prepared by resuspending cells in lysis buffer consisting of 0.2% Triton X 100 in PBS, pH 7.4,
supplemented with protease inhibitors, i.e., 10 µM E64, 1 µM Pepstatin A, 2 ng/mL Aprotinin, 0.02 M
EDTA, as described before [8]. For the isolation of lysosome-enriched fractions, cells were washed three
times with ice cold PBS, harvested with a cell scraper, and then collected by centrifugation at 200× g
for 5 min. The pellets were resuspended in homogenization buffer containing 100 mM Soerensen
phosphate buffer (KH2PO4 and Na2HPO4, pH 7.2), supplemented with 0.25 M sucrose and 5 mM
EDTA. The cell suspensions were homogenized using a hand-held homogenizer for 3 min on ice.
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The homogenates were centrifuged at 900× g for 5 min to collect nuclei. The post-nuclear supernatants
were then subjected to centrifugation at 10,000× g for 20 min to prepare lysosomes. The resulting
pellets were washed twice with ice-cold PBS, resuspended in lysis buffer (see above), and incubated for
30 min at 4 ◦C on an end-over-end rotator. The lysates were cleared by centrifugation at 16,000× g for
10 min and supernatants were used as lysosome-enriched fractions. Protein concentrations in whole
cell lysates and lysosomal fractions were determined by the Neuhoff assay [75].

4.5. TCA Protein Precipitation from Conditioned Media

Cells were grown in complete culture medium until confluence, then incubated in serum-free
medium with or without TSH for 24 h. Conditioned media were collected and centrifuged at 900× g
for 10 min at 4 ◦C to remove cell debris. In order to precipitate proteins, ice-cold trichloroacetic
acid (TCA, Carl Roth GmbH, Karlsruhe, Germany) was added to the conditioned media at a final
concentration of 10% (v/v). After incubation on ice for 1 h, samples were centrifuged at 13,000× g for
10 min at 4 ◦C. The supernatants were discarded, and pellets were dried by inverting the tubes on
tissue paper for approximately 30 min at room temperature. The protein pellets were resuspended in
SDS-PAGE sample buffer (10 mM Tris-HCl, pH 7.6, 0.5% SDS, 25 mM DTT, 10% glycerol and 25 µg/mL
bromophenol blue). In order to adjust to neutral pH, 1.5 M Tris buffer (pH 8.8) was added dropwise,
until the color of the samples changed from yellow to purple. Samples were normalized to equal
protein concentrations based on the determined protein concentrations of the corresponding cell lysates
as described previously [18]. The TCA-precipitated proteins were separated on SDS-PAGE gels as
described below.

4.6. Detection of DCG-04-Labeled Cysteine Peptidases

The whole cell lysates were prepared by resuspending and incubating the cells in lysis buffer,
i.e., 0.2% Triton X-100 in PBS, supplemented with 5 µM biotinylated DCG-04 [76] for 1 h at 4 ◦C on
an end-over-end rotator. The supernatants were cleared by centrifugation at 16,000× g for 10 min
at 4 ◦C. The Neuhoff assay [75] was used to determine protein concentrations. To isolate proteases
covalently labeled with DCG-04, 250 µg of total protein per sample was incubated with 25 µL of
Avidin-conjugated agarose beads for 1 h at 4 ◦C on an end-over-end rotator. The beads were collected
by centrifugation at 200× g for 1 min at 4 ◦C and washed three times with ice-cold PBS. Afterwards,
the beads were resuspended in 40 µL of SDS-PAGE sample buffer each, and heated at 95 ◦C for 5 min.
The proteins covalently labeled by DCG-04 were separated on SDS-PAGE gels as described below.

4.7. Enzymatic de-Glycosylation of N-Linked Glycoproteins

Whole cell lysates of Nthyori-CV cells were prepared as described above. To cleave N-linked
glycans, 100 µg of protein in a total volume of 27 µL each was treated with Endoglycosidase F1 or
Peptide-N-Glycosidase F as described before [77]. Briefly, samples were incubated with denaturing
buffer (final concentration 0.5% SDS and 40 mM DTT) at 95 ◦C for 10 min in order to linearize the
proteins and increase their accessibility to the enzymes. Afterwards, EndoF1 or PNGase F digestion
was performed in a reaction mixture containing 2% Triton X-100 in 50 mM sodium citrate, pH 5.5,
or 50 mM sodium phosphate, pH 7.5, respectively. Enzymes were added to reach a final ratio of
substrate:enzyme of 50:1 overnight at 37 ◦C. Samples were prepared for loading on SDS-PAGE gels by
adding sample buffer and heating at 95 ◦C for 5 min.

4.8. SDS-PAGE and Immunoblotting

Protein samples were loaded onto 12.5% SDS-PAGE gels along with a Page Ruler Pre-stained
Protein ladder (#26616, Thermo Scientific, Schwerte, Germany). Separated proteins were transferred
onto nitrocellulose membranes using semi-dry Western blotting. Unspecific binding sites were
blocked by incubating the membranes in 5% milk powder in PBS, supplemented with 0.3% Tween
(PBS-T) overnight at 4 ◦C. Membranes were then incubated overnight at 4 ◦C with primary antibodies
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diluted in PBS-T, namely, mouse anti GFP (1:1500; #1814460, Roche, Mannheim, Germany), goat anti
cathepsin B (1:1000; #GT15047, Neuromics, Hiddenhausen, Germany), goat anti cathepsin L (1:1000;
#GT15049, Neuromics, Hiddenhausen, Germany), rabbit anti cathepsin D (1:80; #IM-16, Calbiochem
through Merck, Darmstadt, Germany), mouse anti PCNA (1:1000; ab29, Abcam, Cambridge, UK),
and rabbit anti β-tubulin (1:1000; #ab6046, Abcam, Cambridge, UK). The respective HRP-conjugated
secondary antibodies (1:5000, Southern Biotech, Birmingham, AL, USA) were applied for 1 h at room
temperature. After incubation with ECL horseradish peroxidase substrate (#34580, Thermo Fisher
Scientific, Schwerte, Germany) for 3 min at room temperature, the blots were visualized through
enhanced chemiluminescence onto XPosure™ films (Pierce via Thermo Fisher Scientific, Schwerte,
Germany). Band densitometry analysis was performed using Image Studio Lite version 5.2 (LI-COR
Biosciences GmbH, Bad Homburg, Germany).

4.9. Statistical Analysis

Data was analyzed by the use of GraphPad Prism 5.01 software (GraphPad, San Diego, CA, USA).
Levels of statistical significance were determined by one-way ANOVA, followed by Tukey post hoc
tests. Values of p < 0.05 were considered statistically significant.
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Abbreviations

Ca2+ free calcium
CD-MPR cation-dependent mannose-6-phosphate receptor
CMF-PBS calcium- and magnesium-free PBS
eGFP enhanced green fluorescent protein
hCV-eGFP human full-length cathepsin V tagged with eGFP
M6P mannose-6 phosphate
Nthyori-CV Nthy-ori 3-1 transduced with hCV-eGFP
Lamp1 lysosome-associated membrane protein 1
PBS phosphate-buffered saline
PCNA proliferating cell nuclear antigen
PDI ER-resident protein disulfide isomerase
PLCβ Gαq-phospholipase Cβ

rER rough endoplasmic reticulum
RPMI Roswell Park Memorial Institute medium
SCTP Stratum corneum thiol protease
TH thyroid hormone
Tg thyroglobulin
TGN trans-Golgi network
TSH thyroid stimulating hormone
TSHR TSH receptors
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72. Pungerčar, J.R.; Caglič, D.; Sajid, M.; Dolinar, M.; Vasiljeva, O.; Požgan, U.; Turk, D.; Bogyo, M.; Turk, V.;
Turk, B. Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J. 2009, 276,
660–668. [CrossRef]

73. Rozman, J.; Stojan, J.; Kuhelj, R.; Turk, V.; Turk, B. Autocatalytic processing of recombinant human
procathepsin B is a bimolecular process. FEBS Lett. 1999, 459, 358–362. [CrossRef]

74. Krause, K.; Karger, S.; Sheu, S.Y.; Aigner, T.; Kursawe, R.; Gimm, O.; Schmid, K.W.; Dralle, H.; Fuhrer, D.
Evidence for a role of the amyloid precursor protein in thyroid carcinogenesis. J. Endocrinol. 2008, 198,
291–299. [CrossRef]

75. Neuhoff, V.; Philipp, K.; Zimmer, H.G.; Mesecke, S. A simple, versatile, sensitive and volume-independent
method for quantitative protein determination which is independent of other external influences. Hoppe Seylers
Z. Physiol. Chem. 1979, 360, 1657–1670. [CrossRef] [PubMed]

76. Greenbaum, D.; Medzihradszky, K.F.; Burlingame, A.; Bogyo, M. Epoxide electrophiles as activity-dependent
cysteine protease profiling and discovery tools. Chem. Biol. 2000, 7, 569–581. [CrossRef]

77. Fritzsche, S.; Springer, S. Pulse-chase analysis for studying protein synthesis and maturation. Curr. Protoc.
Protein Sci. 2014. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/cells9071679
http://dx.doi.org/10.1074/jbc.M003820200
http://dx.doi.org/10.1089/thy.1992.2.329
http://dx.doi.org/10.1111/j.1349-7006.2007.00574.x
http://dx.doi.org/10.1590/2359-3997000000103
http://dx.doi.org/10.1016/j.biochi.2015.09.022
http://dx.doi.org/10.1111/j.1742-4658.2008.06815.x
http://dx.doi.org/10.1016/S0014-5793(99)01302-2
http://dx.doi.org/10.1677/JOE-08-0005
http://dx.doi.org/10.1515/bchm2.1979.360.2.1657
http://www.ncbi.nlm.nih.gov/pubmed/92445
http://dx.doi.org/10.1016/S1074-5521(00)00014-4
http://dx.doi.org/10.1002/0471140864.ps3003s78
http://www.ncbi.nlm.nih.gov/pubmed/25367008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Localization of Cathepsin V in Human Thyroid Tissue 
	Cathepsin V Is Associated with the Plasma Membrane of Thyroid Epithelial Cells 
	The Chimeric Protein hCV-eGFP Undergoes N-Linked Glycosylation in Thyroid Epithelial Cells 
	The Transport Route of the Chimeric Protein hCV-eGFP in Thyroid Epithelial Cells 
	The Chimeric Protein hCV-eGFP Is Secreted from Thyroid Epithelial Cells 
	Secretion of the Proform of hCV-eGFP Is Triggered by TSH Stimulation 
	The Activity-Based Probe DCG-04 Recognizes the Proform of eGFP-Tagged Cathepsin V Chimeric Protein 

	Discussion 
	Trafficking of Cathepsins to Endo-Lysosomes 
	Transport Routes of Cathepsins to the Extracellular Space 
	Mechanisms of Procathepsins Activation 
	Perspectives 

	Materials and Methods 
	Cell Culture 
	Flow Cytometry Analysis 
	Indirect Immunofluorescence and Image Acquisition 
	Subcellular Fractionation 
	TCA Protein Precipitation from Conditioned Media 
	Detection of DCG-04-Labeled Cysteine Peptidases 
	Enzymatic de-Glycosylation of N-Linked Glycoproteins 
	SDS-PAGE and Immunoblotting 
	Statistical Analysis 

	References

