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Small Molecule Affinity Fingerprinting:
a Tool for Enzyme Family Subclassification,
Target Identification, and Inhibitor Design

families. In many cases, these families will serve as a
starting point in the process of target selection for the
development of preclinical drug candidates. However,
many protein families are populated with dozens of
closely related members. For example, the protease
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gets such as these must be viewed not as single entitiesUniversity of California, San Francisco
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Therapeutic design must focus not only on issues ofSan Francisco, California 94143
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dressed using medicinal chemistry to generate com-
pounds that have been optimized for a single protein
target. Correlation of structural elements of small mole-Summary
cule leads with their inhibition potencies is used to gen-
erate structure activity relationships (SARs). These dataClassifying proteins into functionally distinct families
can be used to rank individual compounds and ulti-based only on primary sequence information remains
mately to sort out the best candidates for further devel-a difficult task. We describe here a method to generate
opment. To aid in this process, several groups havea large data set of small molecule affinity fingerprints
developed complementary in silico methods to definefor a group of closely related enzymes, the papain
molecular similarity among a class of protein targetsfamily of cysteine proteases. Binding data was gener-
[2, 3]. Additionally, computational methods have beenated for a library of inhibitors based on the ability of
developed that allow small molecule binding to be ad-each compound to block active-site labeling of the
dressed by virtual docking to a protein active site [4–6].target proteases by a covalent activity based probe
From these computational SAR studies, a set of physico-(ABP). Clustering algorithms were used to automati-
chemical descriptors can be generated that define thecally classify a reference group of proteases into sub-
binding properties of many related small molecule inhib-families based on their small molecule affinity finger-
itors. Ultimately, such computational approaches allowprints. This approach was also used to identify
a large number of theoretical compounds to be virtuallycysteine protease targets modified by the ABP in com-
assayed prior to embarking on costly and time consum-plex proteomes by direct comparison of target affinity
ing medicinal chemistry efforts.fingerprints with those of the reference library of pro-

In addition to providing a starting point for lead optimi-teases. Finally, experimental data were used to guide
zation, SAR data also provide information that can bethe development of a computational method that pre-
used to generally define the topology of the small mole-dicts small molecule inhibitors based on reported
cule binding pocket of a target protein. Furthermore,crystal structures. This method could ultimately be
compilation of SAR data obtained from chemical libraryused with large enzyme families to aid in the design
screening against a set of proteins provides affinity fin-of selective inhibitors of targets based on limited
gerprints for each target. As an increasing number ofstructural/function information.
diverse compounds are assayed against these targets,
the fingerprints that are generated become more re-

Introduction fined. If these fingerprints become sufficiently unique,
they can be used to establish subtle differences among

The recent genomics revolution has provided us with members of a large protein family with a high degree of
the first low-resolution roadmap of the human genome. sequence homology.
However, the true challenge lies in using this raw se- Several methods for protein classification based on
quence information to create a better understanding of affinity fingerprints have been proposed. One such
the role of specific gene products in both normal and method relies upon a training set of inhibitors that is
disease processes. Functional genomics efforts have screened against a panel of disparate proteins to predict
begun to address this challenge using sequence-align- affinity fingerprints for other nonrelated proteins. Ulti-
ment algorithms and transcriptional profiling as a way mately, this method could be used to allow chemists
to link biological functions to specific genes and gene to quickly predict pharmacophores within a chemical
products [1]. Indeed, this process has lead to the anno- library that will serve as lead compounds for further
tation of a substantial number of enzyme and protein development [7, 8]. Yet another classification method

has introduced structure activity relationship homolo-
gies (SARAH) as a means to cluster proteins within a4 Correspondence: mbogyo@biochem.ucsf.edu
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Figure 1. Comparison of Binding Mode of
Peptidyl Epoxide Inhibitors and Peptide Sub-
strates

Peptidyl epoxides bind to cysteine protease
active sites in a manner analogous to a pep-
tide substrate. The three amino acid side
chains adjacent to the epoxide, termed the
P2, P3, and P4 residues, align in the active
site such that they occupy the S2, S3, and
S4 binding pockets. Note that no side chain
fills the S1 pocket due to the structure of the
epoxide building block.

family. The kinase family of enzymes was used to high- expected to occupy the S2–S4 binding pockets of the
protease targets (termed the P2, P3, and P4 amino acids;light the utility of inhibitor fingerprinting as a rapid classi-

fication method for members of this large family of highly Figure 1). The S2 pocket has been shown to be the
primary site of substrate discrimination for this familyrelated proteins [9]. Once a functional classification is

established based on SARAH, it becomes possible to of proteases [13].
Initially, three sets of PSLs were synthesized by fixinggroup newly sequenced kinases into chemical sub-

groups to optimize the drug-screening process. Further- each of the P2, P3, and P4 positions with each of the
20 possible natural amino acids (minus cysteine andmore, this method of classification provides critical in-

formation concerning the “nearest neighbors” in the methionine, plus norleucine as a mimetic of methionine).
A mixture of the same natural amino acids was used infamily that are likely to be of concern when trying to

design a selective small molecule drug. the remaining two amino acid positions, resulting in 19
P2, P3, and P4 sublibraries, with each made up of aHere, we outline a combined chemical- and computa-

tional-based approach to generate and analyze affinity mixture of 361 compounds.
fingerprints for the papain family of cysteine proteases.
An affinity labeling methodology has been employed to Inhibitor Screening

The three sets of PSLs were assayed against purifiedassess the inhibitory characteristics of a set of small
molecule libraries toward this panel of closely related protease targets by competition with the radiolabeled

active-site-directed probe 125I-DCG-04. Samples wereprotease targets. This resulting inhibition data set is a
compilation of affinity fingerprints for the set of purified analyzed by SDS-PAGE followed by phosphorimaging

to determine the intensity of labeled bands using a com-targets and was used as a method to classify individual
family members. In addition, the identity of proteases mercial software package (Figure 2). Competition (i.e.,

loss of labeling) was indicative of inhibition by the unla-from crude cellular lysates could be determined by clus-
tering affinity fingerprints of “unknown” targets with the beled library member. Competition assays are per-

formed by preincubation of protease targets with inhibi-data set of purified targets. A computational protocol
was then developed and used to generate predictions tor libraries followed by labeling with the general probe.

Since the extent of inhibition by the inhibitor libraries isfor cysteine proteases based on experimentally deter-
mined crystal structures. Ultimately, this method could a function of preincubation and labeling times, these

parameters had to be carefully controlled, and assaysaid the process of development of small molecule inhibi-
tors for families of related targets when only limited were performed in triplicate to confirm the run-to-run

reproducibility of the assay. Furthermore, for thisstructural and functional information is available.
method to provide a valid readout, final concentration
of inhibitors (10–50 �M) must be held in excess overResults and Discussion
concentrations of the target protease (100–300 nM)
throughout the assay. Using this method it was possibleInhibitor Library Design

We have previously described a set of positional scan- to determine a percent competition for each fixed posi-
tion library by determining the ratio of intensity of labeledning libraries (PSLs) based on the epoxide electrophile

scaffold found in the natural product E-64 [10, 11]. This bands in the treated samples to the intensity of the
untreated control. These data were subsequently usedscaffold can be used to generate compounds that are

mechanism-based irreversible inhibitors of the papain to generate affinity fingerprints.
Covalent irreversible inhibitors such as the peptidefamily of cysteine proteases [12]. The compounds in

these libraries are made up of a primary tripeptide back- epoxides function mechanistically through a two-step
process involving an initial reversible binding eventbone linked to a reactive epoxide electrophile. The

amino acids found adjacent to the epoxide moiety are (measured as an equilibrium constant, Ki) followed by an
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Figure 2. Methods for Generating Affinity Fingerprints

Example of an affinity fingerprint generated by screening of a P2 diverse peptide epoxide library. Purified cathepsin K was pretreated with
individual constant P2 sublibraries (X position on competitor) followed by labeling with 125I-DCG-04 (label). Samples were separated on a
12.5% SDS-PAGE gel and visualized by PhosphoImaging (Molecular Dynamics). Labeling intensity of each target relative to the control
untreated sample was used to generate percent competition values. This method was used to generate competition values for multiple
enzymes and for libraries with diversity at the P2, P3, and P4 positions on the inhibitor scaffold.

irreversible alkylation step (measured as rate constant through a PVDF membrane provides a method to isolate
and measure the amount of labeled target protein. Thiskinact). Potency values for this class of inhibitors are

expressed as a ratio of the Ki/kinact. Detailed kinetic assay method circumvents the need for SDS-PAGE gels
and allows the assay to be performed in a 96-well platestudies of the peptide epoxides have shown that the

rates of inactivation (kinact) remain relatively constant format (data not shown).
across structurally diverse inhibitor scaffolds [14]. As a
result, competition data obtained for libraries of peptide Affinity Fingerprint Analysis

This affinity-probe-based method of screening of PSLsepoxides provide mainly information that relates to the
relative Ki values of an inhibitor for a given target. Fur- has been validated by our laboratories in a representa-

tive crude proteome [11] and for a specific proteasethermore, any small molecule that binds in the active
site of a target will block the reversible binding step of target [15]. These studies show that it is possible to

use this screening method to rapidly identify selectivethe probe and will lead to loss of labeling (competition).
Therefore, this method is suitable for screening of both inhibitors of protease targets. It was therefore of interest

to apply the same set of PSLs to profiling the specificityreversible and irreversible inhibitors. In fact, similar
screens with libraries of reversible cysteine protease of an expanded set of papain family enzymes. While

this family of proteolytic enzymes has been extensivelyinhibitors have been carried out for the parasitic prote-
ase target cruzain. These competition results were studied, most inhibitor SAR studies have been focused

on a limited number of compounds screened against afound to closely correlate with kinetic inhibition values
obtained by standard substrate-based methods (D.C.G., small set of family members. It was therefore of interest

to determine if a large data set could be used to classifyM.B., and J. Ellman, unpublished results).
While substrate-based kinetic assays provide for this set of proteases into distinct subfamilies based on

substrate/inhibitor binding.high-throughput screening of targets, the competition-
based method can be multiplexed to accommodate mul- PSLs were screened against a set of purified and

recombinant papain family cysteine proteases that weretiple targets in a single gel-based assay. Additionally,
this screening method allows for rapid analysis of multi- obtained from commercial and public sources. To aid

in the analysis of the data, numerical competition valuesple related targets without the need to optimize sub-
strate and kinetic conditions for each enzyme. Finally, were visualized by conversion to a color format using

software developed by Eisen and coworkers designedthe competition screen allows separation of the target
from the substrates and small molecules in the screen, for data generated from microarray analysis [16]. This

software assigns colors based on the numerical competi-thereby eliminating problems of insoluble and intrinsi-
cally fluorescent compounds that can hinder an ab- tion values in the range from 0%–100%. Compounds that

were potent inhibitors (i.e., 100% competition) were as-sorbance-based detection method. To increase the
assay throughput, we have also designed a dot-blot- signed a red (hot) color, while compounds that were weak

inhibitors, showing little or no competition, were assignedbased readout for competition. In the case where a sin-
gle protein target is screened, filtering of samples a blue (cold) color. Compounds with intermediate activi-
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Figure 3. Cluster Analysis of Affinity Fingerprints for a Set of Papain Family Proteases: Subsite Specificities within the Active Sites

Inhibition data from screening of P2, P3, and P4 diverse inhibitor libraries (scaffold structures indicated on right of data panels). Sublibraries
were composed of a single constant amino acid position that was varied through all natural amino acids (C1–19) and two variable positions
composed of a mixture of all 19 amino acids (mix). Competition data were obtained as describe in Figure 2 and were clustered and visualized
using programs designed for analysis of microarray data (see Experimental Procedures). Colors indicate the potency of a sublibrary with the
indicated fixed amino acid for a designated target protease. Potent (hot) inhibitors are assigned a red color, and weak or ineffective (cold)
inhibitors are assigned a blue color. Target enzymes are arrayed along the y axis, and each of the constant amino acids is arrayed along the
x axis. The tree structures at the left of the diagrams were obtained by hierarchical clustering and indicate the degree of similarity of enzymes
as a function of the height of the lines connecting profiles. The color key is shown at the bottom. Amino acids are indicated by their single-
letter code, with n used for norleucine.

ties were assigned lighter shades of red and blue, with selected and used to generate a nonnatural P2 library
(for structures, see Supplemental Data). For this ex-white assigned to compounds with 50% inhibition. Fur-

thermore, hierarchical clustering software was used to tended P2 library, each of the 41 nonnatural amino acids
was held constant in the P2 position, while the P3 andgroup the data based on similarities among profiles of

enzymes (y axis) or small molecules (x axis). P4 positions were composed of a mix of all possible
natural amino acids. The mixture method was chosenCluster analysis of inhibition data from each of the

P2, P3, and P4 library sets against 12 papain family rather than using general favorable binding P2 and P3
amino acids because this resulted in sublibraries thatproteases revealed patterns of specificity for each of

the three primary substrate binding pockets (Figure 3). had greater overall utility for screening. These libraries
were not biased in the P3 and P4 positions and thereforeThe resulting specificity data agreed with previously re-

ported findings identifying the P2 position as the primary could be used to assay the contribution of the P2 ele-
ment for virtually any cysteine protease target. In ordersite for enzyme-substrate interactions [13]. Further-

more, the S2 pocket of the papain family enzymes pre- to further increase the diversity of compounds for affinity
fingerprinting, a second set of libraries was synthesizedferred many of the hydrophobic and aromatic amino

acids, suggesting the need for a more diverse set of using the complete set of natural amino acid building
blocks in the P2 position attached to the enantiomerichydrophobic P2 residues in order to obtain distinct bind-

ing profiles for this class of enzymes. form of the epoxide electrophile (2R, 3R, versus 2S, 3S;
Figure 4). Previous work has shown that this change inA set of 41 hydrophobic nonnatural amino acids was
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Figure 4. Cluster Analysis of an Extended P2 Diversity Library

A large set of P2 amino acids including the 19 natural amino acids and 41 nonnatural hydrophobic amino acids was selected and used to
generate an extended P2 inhibitor library (structures and corresponding numerical assignments of the nonnatural amino acids can be found
in the Supplemental Data). In addition to the set of 60 natural and nonnatural amino acids coupled to the epoxide moiety containing the (S,S)
stereochemistry, the natural 19 amino acids were coupled to the enatiomeric form of the epoxide (R,R isomer; see structures at left). The
resulting 79 sublibraries were assayed against the reference set of 12 papain family protease as described in Figures 2 and 3. Single-letter
codes were used for natural amino acids, with n being assigned to norleucine. The 41 nonnatural amino acids were assigned arbitrary numbers
(1–41) and listed with the NN prefix. Libraries containing the R,R enantiomer of the epoxide are listed with “R,R” following the single-letter
amino acid code. Regions of weak binding, nonselective strong binding, and selective binding are labeled at the left.
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stereochemistry is likely to favor binding of the inhibitors by mass spectrometry [11]. Protease bands 3 and 4
had identical fingerprints and clustered together in thein the prime side of the active site, thus increasing the

potential for finding binding pockets unique to each cluster tree as a distinct branch, which included cathep-
sin H. Again, this cluster-based assignment of bands 3papain family protease [17].

The clustering of the extended P2 library data revealed and 4 was confirmed by purification, sequencing, and
identification of these two bands as differentially pro-underlying patterns of inhibition by grouping com-

pounds with overall poor binding, promiscuous binding, cessed forms of cathepsin H [11]. Protease band 1,
unlike the other proteases, clustered into its own branchor selective binding together (see annotation at left of

clustergram in Figure 4). Grouping the data in this man- and had no direct counterpart in the database. This
protease activity was identified as cathepsin Z [11], anner immediately identified P2 amino acids in the central

region of the clustergram that conferred specificity for enzyme that was not fingerprinted and therefore had no
reference points in the database. Thus, the clusteringindividual protease targets. Interestingly, the bulk of the

amino acids found in this “specificity region” were non- method was able to predict the identity of enzyme activi-
ties within a crude tissue lysate by virtue of their uniquenatural amino acids and natural amino acids linked to

the (R,R) enantiomer of the epoxide. These results sug- affinity fingerprints.
The results from this experiment highlight severalgest that changing the stereochemistry of the epoxide

provided access to different binding sites in the prote- strengths of combined inhibitor screening and cluster-
ing technology. First, the inhibitor libraries allow screen-ase active-site cleft. These differences are likely due to

interactions of the R,R compounds with the prime-side ing against cysteine proteases present in a crude cell
and tissue proteome. The ability to use crude proteinbinding pockets of the papain family proteases. This

hypothesis will be confirmed through structural studies extracts, rather than recombinant or purified protein,
greatly reduces the effort required to screen large inhibi-of inhibitor binding and will be the focus of future work.

This clustering methodology therefore shows that af- tor libraries and allows rapid lead identification for en-
dogenously expressed enzymes. Second, the tight clus-finity fingerprinting data can be used to reveal informa-

tion about the topology of each of these protease bind- tering of endogenous cathepsins with their recombinant
counterparts suggests that this methodology could being pockets. Ultimately a screen of a larger, more

structurally diverse small molecule library is likely to used for rapid, crude characterization of unknown en-
zymes from complex protein samples without absoluteprovide a higher-resolution image of these inhibitor/

enzyme interactions. knowledge of their identity.

Classification of Enzymes BasedIdentifying Enzymes from Crude Cellular Lysates
Another powerful application of this affinity-fingerprint- on Fingerprint Clustering

In addition to being useful for optimization of small mole-ing methodology is its ability to classify an unknown
protease activity from a crude cell or tissue lysate by cule inhibitors, clustergrams of affinity fingerprints also

yield functional information about the topology of theclustering its affinity fingerprint within a database of
standard protease fingerprints. We have previously active site of the protein. The dendrogram that results

from clustering of the library data using the programsdemonstrated the utility of activity-based probes as a
means to profile cysteine protease activities within in- Cluster and TreeView [16] pictorially describes the rela-

tionships amongst individual proteases. This dendro-tact cells or crude cell lysates. This technology therefore
allowed the extended P2 inhibitor library to be screened gram is analogous to homology trees that are generated

through sequence alignments. However, it provides in-against several cysteine proteases in a crude cell ex-
tract [11]. hibitor-generated functional alignments, in contrast to

traditional sequence alignments based on linear aminoThe rat liver proteome was chosen for initial studies
due to its high content of proteolytic enzymes and be- acid relationships.

For comparison, a dendrogram of proteases was gen-cause the major protease activities in this sample were
previously identified by purification and sequencing [11]. erated using the sequence alignment program Clustal W

and compared against the affinity-fingerprint alignment.Total protein extracts were probed for cysteine protease
activity using 125I-DCG-04 (Figure 5A). Four major prote- The two dendrograms have overall similarities but upon

closer inspection reveal significant differences (Figurease activities were observed by affinity labeling and
SDS-PAGE analysis (Figure 5B). This profile exactly 6). For example, cathepsin B and cathepsin C cluster

together based on primary sequence alignments. Al-matched the results reported by our laboratory in an
earlier publication [11], indicating that the labeling though these are both exoproteases, cathepsin B is a

carboxypeptidase while cathepsin H is an aminopepti-method is highly reproducible.
Affinity fingerprints were generated for each protease dase, and their true functions are highly divergent. The

fingerprint clustering yields a more satisfying picture ofactivity by pretreatment of extracts with inhibitor PSL
sublibraries followed by affinity labeling. The resulting the large functional difference between cathepsin B and

C (Figure 6, red labels). On the other hand, sequencedata sets were clustered with the database of extended
P2 cysteine protease inhibition fingerprints (Figure 5C, alignment of cathepsin K clusters it within a subfamily

with cathepsins S, V, and L. However, affinity-fingerprintblack boxes). Protease band 2 clustered into a small
subgroup of cathepsin proteases, with the greatest simi- clustering identified cathepsin F as its closest neighbor

and, therefore, the major concern for efforts to designlarity to cathepsin B. The identity of this band was con-
firmed to be cathepsin B by isolation and sequencing cathepsin K selective inhibitors (Figure 6, green labels).
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Figure 5. Identifying Unknown Proteases’ Targets Using Fingerprint Clustering

(A) Structure of the activity based probe, 125I-DCG-04.
(B) Profile of active papain family cysteine proteases in crude rat liver homogenates. “Unknown” proteases are labeled 1–4 (liver #1–liver #4
at left). The true identity of each protease was determined by mass-spectromety-based sequencing and is listed for reference at right.
(C) Competition data obtained by treatment of crude homogenates with the extended P2 sublibraries described in Figure 4 followed by labeling
with the probe. Competition data for each unknown (see black boxes) were added to the reference protease data, and the complete data set
was clustered as described in Figures 3 and 4. Identity of the unknown proteases could be inferred by inspection of the closest neighbors
in the vertical dendrogram shown on the left.

Furthermore, the fingerprint clustering identified cathep- however, employs only the intermolecular van der Waals
and coulombic terms as an energy scoring function. Wesins K, F, and H as the best candidates in this family of

proteases for design of selective inhibitors due to the therefore combined docking with molecular dynamics
(MD) to develop a new strategy in the spirit of theuniqueness of their specificity profiles (i.e., distinct

branches in the clustering tree). Such information may MMPBSA (molecular mechanics Poisson-Bolzmann
surface area) approach [19]. Relative binding free energ-also help to prioritize targets in large protein families

based on the chances for successful development of ies can be derived from MD trajectories using the theo-
ries of statistical thermodynamics. In this case, however,selective inhibitors.
a simulation of each inhibitor for each enzyme would
require over a hundred individual MD runs. In order toIn Slico Generation of Affinity Fingerprints
make the problem computationally tractable, we per-The affinity fingerprints generated for a control set of
formed MD just once for each enzyme, using only thecysteine proteases was also used to tailor the design
common portion of each inhibitor. Benzyl groups servedof a computational protocol for generating in silico fin-
as “dummy” side chains at the P2-P4 scaffold positionsgerprints based on structural data. A molecular docking
during these simulations and acted as placeholders inscheme [18], which had proven successful for the design
the enzyme pockets. Following the dynamics runs, fullof both peptidic and nonpeptidic inhibitors in a series
side chains at the P2 position were added in an incre-of serine proteases, was unable to distinguish specificity
mental fashion and rank ordered according to the DOCKin the lysosomal cysteine proteases. We found that the
energy score [20]. The top 20 conformations of each sidecovalent linkage between the inhibitor and the enzyme
chain were then minimized in AMBER [21] and rescorednecessitated a complete molecular mechanical force-

field for proper inhibitor placement. The DOCK program, using a PBSA solvation model [19]. Since the scaffold
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Figure 6. Comparison of Fingerprint Clustering and Sequence
Alignment-Based Clustering

Hierarchical clustering of affinity fingerprints for the 12 reference
cysteine proteases produced dendrogram trees that indicate the
degree of functional similarity between enzymes as a function of the
height of the lines connecting profiles. A dendrogram tree generated
using affinity fingerprints was compared to a tree generated by

Figure 7. Comparison of In Silico Affinity Fingerprints with Experi-primary sequence alignment using Clustal W, as described in the
mental FingerprintsExperimental Procedures section. Examples of enzymes with diver-

gent clustering based on sequence alignment but with similarities The affinity-fingerprint inhibition data generated using a subset of
in affinity fingerprints are shown in green, while enzymes that show the PSL P2 data were compared to data generated using a combina-
similar sequence alignment but dramatic differences in classification tion of molecular dynamics and DOCKing algorithms (see text).
based on affinity fingerprinting are shown in red. Computationally derived values for relative free energies were con-

verted to color format similarly to experimentally obtained competi-
tion data. Cluster analysis highlights similarities between the two
sets of data.and enzyme conformational degrees of freedom were

sampled during the dynamics runs, the resulting coordi-
nates were preserved in subsequent steps. The side

than a Ki. The calculations attempt to rank order thechain degrees of freedom were sampled using the less
relative binding affinities of each P2 side chain. Second,expensive incremental growth and energy minimization
the modeled inhibitors were constructed with alanine atroutines. Because we did not carry forth the thermody-
the P3 and P4 sites, while the positional scanning librar-namic ensemble of structures derived from the MD simu-
ies have equimolar mixtures of all amino acids at theselation, the results cannot be considered as time aver-
sites. Third, the protonation states of the modeled acidicaged free energies of binding. Although there is no
and basic residues were estimated based upon the ex-physically rigorous way to isolate individual members
perimental pH; the actual protonation states dependof an MD ensemble for docking, we chose the member
upon the local environments of each amino acid. Fourth,closest to a corresponding X-ray structure [22–27],
the inhibitor could adopt secondary structure in solution,which itself is part of a larger, physical ensemble.
thereby affecting its binding surface in a manner notThe predictions derived from the six enzymes consid-
considered during the simulations. Given these factors,ered are in good qualitative agreement with the experi-
it is reasonable that the theoretical predictions do notmental data (Figure 7). Overall, the computational results
agree perfectly with the experimental results.accurately predict the general nature of favorable S2

Ultimately, the computational protocol generated af-sidechains for each enzyme. The computational results
finity fingerprints that can be used to predict most ofalso agree with some of the fine discrimination seen
the critical elements that control substrate specificity.between enzymes experimentally. Tryptophan, for ex-
Therefore, this method has the potential to be usedample, is predicted to be a poor P2 sidechain for cathep-
to predict small molecule binding properties for othersin K, and arginine is predicted to be poor for both
papain family proteases. Furthermore, the computa-cathepsin K and cathepsin S. These results demonstrate
tional strategy allows for the screening of a virtual librarythat qualitatively accurate results can be derived by
of inhibitors to assist in the design of selective com-DOCKing sidechains onto one member of an MD ensem-
pounds for targets within a family of highly related en-ble. It is reasonable to expect that individual predictions
zymes.would improve as we averaged the docking results of

more members of the scaffold-enzyme MD ensemble.
The largest differences between the in silico predic- Significance

tions and the experimental results are seen with the
lysine, glutamine, and arginine residues (Figure 7). There In the post-genomic world, proteins are being concep-

tualized as members of families or networks, and thisare several differences between the conditions of the
experiment and the assumptions of the models that perspective should govern how all potential drug

targets are analyzed. We have generated an affinitycould account for this. First, the experiment represents
a measurement of relative residual enzymatic activity fingerprinting method to functionally characterize a

family of cysteine proteases both chemically and com-following treatment with each inhibitor sublibrary rather
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For each scaffold-receptor pose selected from the MD runs, sideputationally. This method allows for the rapid visual
chains were incrementally grown away from the P2 scaffold positionanalysis of inhibitor specificity and enzyme active site
according to a previously reported methodology [18]. The resultingtopology. Enzymes can then be subclassified based
conformations of each side chain were then rank ordered by DOCK

on functional relationships rather than simply by linear score [20], and the top twenty conformations of each added side
amino acid sequences. Furthermore, this method pro- chain on each scaffold-receptor pose were energy minimized using

the AMBER program suite [21]. Cartesian restraints were applied tovides a direct readout of the overall inhibitory charac-
the scaffold and receptor atoms during the minimization. A 1 kcal/teristics of compounds under a variety of assay condi-
mol restraint was imposed upon the backbone atoms of the P2tions. This method will ultimately aid in the process of
residue, while a 500 kcal/mol restraint was imposed upon all othertarget selection, prioritization, and inhibitor design.
scaffold atoms and all receptor atoms. Only the P2 side chain atoms
were allowed to move freely during 500 steps of minimization. Fol-

Experimental Procedures lowing minimization, each of the twenty conformations of each P2
side chain in each pose was rescored using a previously reported

Synthesis of Ethyl (2S,3S)-Oxirane-2,3-Dicarboxylate and Poison-Bolzmann continuum solvation scheme [19]. Here, the free
Ethyl (2R,3R)-Oxirane-2,3-Dicarboxylate and DCG-04 energy of binding is approximated by decomposition into molecular
The synthesis of (2R,3R)-oxirane-2,3-dicarboxylate is identical to mechanical, solvation, and conformational entropy (ignored in this
that reported for the (2S,3S) isomer [28]. The synthesis of DCG-04 work) contributions.
is reported elsewhere [10].

Supplemental DataSynthesis of Positional Scanning Libraries
The Supplemental Data contains the structures and number assign-Synthesis of the PSL libraries was reported elsewhere [11]. Struc-
ments of the 41 nonnatural amino acids used to generate the P2tures and corresponding number assignments for the 41 nonnatural
diverse library. All compounds were obtained from commercialamino acids used for the extended P2 library (Figure 4) are provided
sources. Please write to chembiol@cell.com for a PDF.in the Supplemental Data.
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