People: Principal Investigator

Associate Professor (Research) of Medicine (Biomedical Informatics), of Biomedical Data Science and of Surgery

Bio

Dr Hernandez-Boussard is an Associate Professor in Medicine (Biomedical Informatics), Biomedical Data Science, and Surgery at the Stanford University School of Medicine. Dr. Hernandez-Boussard's background and expertise is in the field of computational biology, with concentration on accountability measures, population health, and health policy. A key focus of her research is the application of novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery.

Publications

  • Bias at Warp Speed: How AI may Contribute to the Disparities Gap in the Time of COVID-19. Journal of the American Medical Informatics Association : JAMIA Roosli, E., Rice, B., Hernandez-Boussard, T. 2020

    Abstract

    The COVID-19 pandemic is presenting a disproportionate impact on minorities in terms of infection rate, hospitalizations and mortality. Many believe Artificial Intelligence (AI) is a solution to guide clinical decision making for this novel disease, resulting in the rapid dissemination of under-developed and potentially biased models, which may exacerbate the disparities gap. We believe there is an urgent need to enforce the systematic use of reporting standards and develop regulatory frameworks for a shared COVID-19 data source to address the challenges of bias in AI during this pandemic. There is hope that AI can help guide treatment decisions within this crisis yet given the pervasiveness of biases, a failure to proactively develop comprehensive mitigation strategies during the COVID-19 pandemic risks exacerbating existing health disparities.

    View details for DOI 10.1093/jamia/ocaa210

    View details for PubMedID 32805004

  • MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. Journal of the American Medical Informatics Association : JAMIA Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J. P., Shah, N. H. 2020

    Abstract

    The rise of digital data and computing power have contributed to significant advancements in artificial intelligence (AI), leading to the use of classification and prediction models in health care to enhance clinical decision-making for diagnosis, treatment and prognosis. However, such advances are limited by the lack of reporting standards for the data used to develop those models, the model architecture, and the model evaluation and validation processes. Here, we present MINIMAR (MINimum Information for Medical AI Reporting), a proposal describing the minimum information necessary to understand intended predictions, target populations, and hidden biases, and the ability to generalize these emerging technologies. We call for a standard to accurately and responsibly report on AI in health care. This will facilitate the design and implementation of these models and promote the development and use of associated clinical decision support tools, as well as manage concerns regarding accuracy and bias.

    View details for DOI 10.1093/jamia/ocaa088

    View details for PubMedID 32594179

  • Association between patient-initiated emails and overall 2-year survival in cancer patients undergoing chemotherapy: Evidence from the real-world setting. Cancer medicine Coquet, J., Blayney, D. W., Brooks, J. D., Hernandez-Boussard, T. 2020

    Abstract

    Prior studies suggest email communication between patients and providers may improve patient engagement and health outcomes. The purpose of this study was to determine whether patient-initiated emails are associated with overall survival benefits among cancer patients undergoing chemotherapy.We identified patient-initiated emails through the patient portal in electronic health records (EHR) among 9900 cancer patients receiving chemotherapy between 2013 and 2018. Email users were defined as patients who sent at least one email 12 months before to 2 months after chemotherapy started. A propensity score-matched cohort analysis was carried out to reduce bias due to confounding (age, primary cancer type, gender, insurance payor, ethnicity, race, stage, income, Charlson score, county of residence). The cohort included 3223 email users and 3223 non-email users. The primary outcome was overall 2-year survival stratified by email use. Secondary outcomes included number of face-to-face visits, prescriptions, and telephone calls. The healthcare teams' response to emails and other forms of communication was also investigated. Finally, a quality measure related to chemotherapy-related inpatient and emergency department visits was evaluated.Overall 2-year survival was higher in patients who were email users, with an adjusted hazard ratio of 0.80 (95 CI 0.72-0.90; p < 0.001). Email users had higher rates of healthcare utilization, including face-to-face visits (63 vs. 50; p < 0.001), drug prescriptions (28 vs. 21; p < 0.001), and phone calls (18 vs. 16; p < 0.001). Clinical quality outcome measure of inpatient use was better among email users (p = 0.015).Patient-initiated emails are associated with a survival benefit among cancer patients receiving chemotherapy and may be a proxy for patient engagement. As value-based payment models emphasize incorporating the patients' voice into their care, email communications could serve as a novel source of patient-generated data.

    View details for DOI 10.1002/cam4.3483

    View details for PubMedID 32986931

  • Reporting of demographic data and representativeness in machine learning models using electronic health records. Journal of the American Medical Informatics Association : JAMIA Bozkurt, S., Cahan, E. M., Seneviratne, M. G., Sun, R., Lossio-Ventura, J. A., Ioannidis, J. P., Hernandez-Boussard, T. 2020

    Abstract

    The development of machine learning (ML) algorithms to address a variety of issues faced in clinical practice has increased rapidly. However, questions have arisen regarding biases in their development that can affect their applicability in specific populations. We sought to evaluate whether studies developing ML models from electronic health record (EHR) data report sufficient demographic data on the study populations to demonstrate representativeness and reproducibility.We searched PubMed for articles applying ML models to improve clinical decision-making using EHR data. We limited our search to papers published between 2015 and 2019.Across the 164 studies reviewed, demographic variables were inconsistently reported and/or included as model inputs. Race/ethnicity was not reported in 64%; gender and age were not reported in 24% and 21% of studies, respectively. Socioeconomic status of the population was not reported in 92% of studies. Studies that mentioned these variables often did not report if they were included as model inputs. Few models (12%) were validated using external populations. Few studies (17%) open-sourced their code. Populations in the ML studies include higher proportions of White and Black yet fewer Hispanic subjects compared to the general US population.The demographic characteristics of study populations are poorly reported in the ML literature based on EHR data. Demographic representativeness in training data and model transparency is necessary to ensure that ML models are deployed in an equitable and reproducible manner. Wider adoption of reporting guidelines is warranted to improve representativeness and reproducibility.

    View details for DOI 10.1093/jamia/ocaa164

    View details for PubMedID 32935131

Academic Appointments

Associate Professor, Medicine - Biomedical Informatics Research 

Associate Professor, Biomedical Data Science

Associate Professor, Surgery - General Surgery

Member, Stanford Cancer Institute

Professional Education

M.S., Stanford University, Health Services Research (2013)

Ph.D., University Claude Bernard, Lyon 1, Computational Biology (1999)

M.P.H., Yale University, Epidemiology (1993)

B.A., University California, Irvine, Psychology (1991)

B.S., University of California, Irvine, Biology (1991)