The Scholarly Concentration (SC) program provides medical students with faculty-mentored scholarly experiences in areas of individual interest combined with structured coursework to support this scholarship. This required component of the MD curriculum develops critical thinking, skills in evaluating new data, and hands-on experience with the methods by which new scholarly information is generated.

The SC program offers 14 areas of study, including Foundation areas and Application areas. The typical SC program of study consists of work in one Foundation area and one Application area. There are eight Foundation areas, designed to develop skills and tools that can be applied to important problems in health care:

- Bioengineering
- Biomedical Ethics and Medical Humanities
- Clinical Research
- Community Health
- Health Services and Policy Research
- Informatics & Data-Driven Medicine
- Medical Education
- Molecular Basis of Medicine

There are six Application areas that provide opportunities to apply research skills to particular areas of medicine.

- Cancer Biology
- Cardiovascular Pulmonary
- Immunology
- Global Health
- Neuroscience, Behavior, and Cognition
- Women’s Health

Students who wish to approach the SC requirements in alternate ways must consult with SC program staff. Students may, after consultation with SC program staff and appropriate SC area directors, concentrate their SC studies within one Foundation area, rather than pursuing both a Foundation and Application. Students who wish to pursue interests in areas not included among the available SC areas may consult with staff about developing a proposal for an independently designed program of study and scholarship.

FIRST STEPS

During the first year, MD students are encouraged to explore and compare the palette of Scholarly Concentration opportunities by:

- talking with Foundation and Application area directors and others, such as research mentors
- taking introductory courses
- attending seminars
- examining the SC and MedScholars web sites
- reviewing course requirements
- looking at type of scholarship carried out by the faculty advisors in different SC areas

DECLARATION

It is recommended that four-year students declare their Scholarly Concentration programs by April 1 of the first year; however, all students must declare by September 1 of the second year. More information about the declaration process, required documentation, and other resources are available online.

CONTACT

Laurence Baker, PhD
Director, Medical Student Research & Scholarship
Professor Health Services and Policy, Economics
laurence.baker@stanford.edu

Mara Violanti, MS Ed.
Assistant Director, Medical Student Research & Scholarship
MSOB x399
(650) 723-0355
marav@stanford.edu
Scholarly Concentrations Timeline (September, 2014 - September, 2015)

SC Orientation Lunches
These will be your opportunity to learn more about the Scholarly Concentration Program, Dual Degree work, and special sessions with the SC Directors.

SC Info Sessions
These dates spread throughout the year will be your chance to meet with fellow students declared into specific Foundations (December & February), as well as those who have added an Application (October, April). They are required of all students.
The Bioengineering (BENG) Foundation Area exposes students to the intersection between engineering and medicine – from molecular to systems bioengineering – and includes technologies such as computer methods, medical imaging, biosensors, and minimally invasive therapeutic devices. Mirroring the intent of the Department of Bioengineering, the BENG Foundation looks to attract students who are enthusiastic about combining biology-based research with engineering technology and clinical applications.

BENG students develop projects that take advantage of the strong bioengineering environment at Stanford. In addition to core courses and access to mentors in diverse areas, students can interact with a number of programs at Stanford that focus on specialized areas of bioengineering, including:

- biochemical engineering
- biomechanics
- biomedical computation
- biosensors
- imaging
- medical devices
- robotics

Students must complete 12 total Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area complete six units in each.

BENG students are required to complete:

- MED 289 (BIOE 390)
 Introduction to Bioengineering Research
 (2 units)

Remaining BENG units can be selected from any courses listed or crosslisted in Bioengineering at the 200 level or higher or graduate equivalent (http://bioengineering.stanford.edu/education/coursec.html) and/or completed as directed study with any faculty member associated with the Bioengineering Scholarly Concentration Foundation Area.

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.
BIOENGINEERING FOUNDATION

RESEARCH MENTORS

Thomas Andriacchi, PhD
Professor of Mechanical Engineering and Functional Restoration
tandriac@stanford.edu

Dennis Carter, PhD
Professor of Mechanical Engineering
dcarter@stanford.edu

Scott Delp, PhD
Associate Professor of Mechanical Engineering
delp@stanford.edu

Garry Gold, MD
Professor of Radiology and (by courtesy) Bioengineering and Orthopaedic Surgery
gold@stanford.edu

Gregory Kovacs, MD, PhD
Associate Professor of Electrical Engineering
kovacs@cis.stanford.edu

Paul J. Wang, MD
Professor of Medicine (Cardiovascular) and (by courtesy) Bioengineering
paul.j.wang@stanford.edu

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng, Alan</td>
<td>Otolaryngology</td>
<td>Characterization of Wnt-responsive Cells in the Cochlea</td>
</tr>
<tr>
<td>Goodman, Stuart</td>
<td>Orthopedic Surgery</td>
<td>M1 and M2 Macrophage Polarization in Pseudomembranes from Total Joint Replacement</td>
</tr>
<tr>
<td>Dutta, Sanjeev</td>
<td>Surgery</td>
<td>Novel Esophageal Anastomosis Device</td>
</tr>
<tr>
<td>Fleischmann, Dominik</td>
<td>Radiology</td>
<td>Algorithm for automated interpolation through femoro-popliteal arterial occlusions</td>
</tr>
<tr>
<td>Feinstein, Jeffrey</td>
<td>Pediatrics</td>
<td>Use of Computational Simulation to Evaluate Pacemaker Lead Induced Venous Occlusion</td>
</tr>
</tbody>
</table>
The Biomedical Ethics and Medical Humanities (BEMH) Foundation Area employs cross-disciplinary methods – such as those from philosophy, social science, film, literature, art, and law – to examine the meaning, implications, and ethical and humanities dimensions of medical research and practice, whether at the laboratory bench or the bedside.

Topics range from the ethics of biomedical research, medicine, and health care, to issues related to the traditional humanities fields of literature, philosophy, history, religion, and the arts (visual, theatre, media), to issues that arise out of humanities-oriented social sciences (including anthropology and sociology).

Maren Grainger-Monsen, MD
Associate Director, BEMH
Filmmaker-in-Residence & Senior Research Scholar
Stanford Center for Biomedical Ethics
mmonsen@stanford.edu

Rachelle Roxas, MBA
Administrative Associate
650.723.5760
raroxas@stanford.edu

BEMH is housed at the Stanford Center for Biomedical Ethics, which includes the Medicine and the Muse Program. In addition, medical students in BEMH benefit from multiple opportunities for interdisciplinary work across the campus.

http://med.stanford.edu/bemh/
ADVISORS AND MENTORS (PARTIAL LIST)

Jonathan Berger, DMA
Denning Family Provostial Professor, Music
brg@ccrma.stanford.edu

Mildred Cho, PhD
Professor of Pediatrics (Research)
micho@stanford.edu

Angela Garcia, PhD
Assistant Professor, Anthropology
garcia2@stanford.edu

Shaili Jain, MD
Assistant Professor, Psychiatry
sjain1@stanford.edu

Katrina Karkazis, PhD
Senior Research Scholar, SCBE
karkazis@stanford.edu

Tanya Luhrmann, PhD
Watkins University Professor, Anthropology
luhrmann@stanford.edu

Christopher Thomas Scott, PhD
Senior Research Scholar, SCBE
Director, Program on Stem Cells in Society
cscott@stanford.edu

Sakti Srivastava, MD
Associate Professor, Surgery – Anatomy
sakti.srivastava@stanford.edu

Lawrence Zaroff, MD, PhD
Senior Research Scholar, SCBE; Consulting Professor, Anesthesiology, Program in Human Biology
larryz.zaroff@gmail.com

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Christopher</td>
<td>SCBE</td>
<td>Wrinkles in Reporting: Geographical, Political, and Social Dimensions of Print Media Representation of Stem Cell Research</td>
</tr>
<tr>
<td>Jackler, Robert</td>
<td>Otolaryngology</td>
<td>A Prescription for Conflict: Tobacco Advertisements in Medical Journals</td>
</tr>
<tr>
<td>Jain, Shaili</td>
<td>Psychiatry</td>
<td>Dreamers: A Fictional Exploration of Sleep</td>
</tr>
<tr>
<td>Garcia, Angela</td>
<td>Anthropology</td>
<td>Addiction, Regulation and Care in Mexico City, Mexico</td>
</tr>
<tr>
<td>Magnus, David</td>
<td>Pediatrics</td>
<td>Physician Communication Content and Style in the Pediatric Intensive Care Setting</td>
</tr>
<tr>
<td>Grainger Monsen, Maren</td>
<td>SCBE</td>
<td>Map Your World - Kolkata</td>
</tr>
<tr>
<td>Shafer, Audrey & Good, Julie</td>
<td>Anesthesiology</td>
<td>The Imperfect is Our Paradise</td>
</tr>
<tr>
<td>Schillinger, Erika</td>
<td>Medicine</td>
<td>Your Voice: Medical Student Stories from the Preclerkship Years</td>
</tr>
<tr>
<td>Ramchandran, Kavitha</td>
<td>Medicine</td>
<td>Determination of Operational Goals in Seriously Ill Patients with Life Limiting Illness</td>
</tr>
<tr>
<td>Srivastava, Sakti</td>
<td>Surgery & Anatomy</td>
<td>The Camouflage Closet: Stories of LGBT Veterans’ Trauma</td>
</tr>
<tr>
<td>Gabiola, Julieta</td>
<td>Medicine</td>
<td>Health Narratives in the Aftermath of Typhoon Haiyan</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/bemh/
The Clinical Research (CR) Foundation Area introduces students to the critical concepts that underpin clinical research. In addition to didactic instruction, students participate in the conduct of faculty-mentored, hypothesis-driven, clinical research projects. The projects may be descriptive (observational) or interventional in design.

CR training enables students to evaluate the medical literature, underscoring the limitations of much of the current practice of medicine. The ability to critique the burgeoning body of medical publications paves the way for a lifetime of learning that is essential to the prudent, cost-effective practice of scholarly medicine.

Studying Clinical Research also lays the foundation for students who ultimately decide to pursue academic careers as clinical research scientists. Acquiring the necessary design, analytic, and practical skills to facilitate a clinical research career during medical school substantially enhances fellowship education and productivity, increasing the likelihood of securing an academic position and continued funding following fellowship training.

The CR Foundation Area integrates members of the School of Medicine clinical departments and the Department of Health Research and Policy, which are closely aligned with the departments of Biostatistics and Economics, and the Graduate School of Business. In addition, many existing clinical research projects represent interdisciplinary collaborations between faculty in the Schools of Medicine, Health and Humanities, Engineering, and Business.

Steven Goodman, MD, MHS, PhD
Associate Dean for Clinical and Translational Research
Professor of Medicine and Health Research Policy
steve.goodman@stanford.edu

Tammi Nicosia
Administrative Coordinator
(650) 721-5788
nicosia@stanford.edu

Students must complete 12 total Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area may chose to complete six units in each.

CR students are required to complete HRP 225 and either HRP 258 or HRP 259:

- **HRP 225**
 Design and Conduct of Clinical and Epidemiologic Studies (3 units)

- **HRP 258**
 Intro. to Probability and Statistics for Clinical Research (3 units)

OR

- **HRP 259**
 Intro. to Probability and Statistics for Epidemiology (4-5 units)

Remaining CR units may be selected based upon specific interests and preferences. Students also may chose to build on their course work in the pursuit of a Master’s degree in Epidemiology, offered by our Department of Health and Research Policy.

Students are encouraged to devise a course plan to present to the Director.

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/cr/
CLINICAL RESEARCH ADVISORY COMMITTEE

Mark Genovese, MD
Professor of Medicine, Immunology and Rheumatology

John Morton, MD, MPH, FACS
Associate Professor, General Surgery

Sandip Biswal, MD
Associate Professor, Diagnostic Radiology

Rita Popat, PhD, MS
Clinical Assistant Professor, Health Research & Policy and Epidemiology

Quynh-Thu Le, MD
Professor, Radiation Oncology and Radiation Therapy
Professor (By courtesy), Otolaryngology (Head and Neck Surgery)

Anne Lynn Chang, MD
Assistant Professor, Dermatology

Terence Ketter, MD, MS
Professor Psychiatry & Behavioral Science
Psychopharmacology

Kristin Sainani, PhD, MS
Clinical Assistant Professor, Health Research & Policy and Epidemiology

Alan Cheng, MD
Assistant Professor, Otolaryngology (Head and Neck Surgery)
Professor (by courtesy) Pediatrics

Darrell Wilson, MD
Professor, Pediatrics Endocrinology and Diabetes

John Brock-Utne, MD
Professor Emeritus, Anesthesia

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldman, Heidi</td>
<td>Pediatrics</td>
<td>Trial of Myofascial Manipulation Therapy for Young Children With Cerebral Palsy</td>
</tr>
<tr>
<td>Chang, Kay W.</td>
<td>Otolaryngology</td>
<td>Cochlear height measurements in the diagnosis of cochlear hypoplasia</td>
</tr>
<tr>
<td>Lee, Gordon</td>
<td>Plastic Surgery</td>
<td>Outcomes analysis and financial impact of reconstructive procedures in patients with cancer of the head and neck</td>
</tr>
<tr>
<td>Dragoo, Jason</td>
<td>Orthopedic Surgery</td>
<td>Effect of intramuscular and intratendinous platelet-rich plasma injections on systemic concentrations of performance-enhancing growth factors</td>
</tr>
<tr>
<td>Morton, John</td>
<td>Surgery</td>
<td>Does Body Image Affect the Outcomes of Bariatric Surgery Patients?</td>
</tr>
<tr>
<td>Shaw, Richard</td>
<td>Psychiatry</td>
<td>Prospective study of delirium in pediatric patients in the intensive care unit</td>
</tr>
<tr>
<td>Tang, Jean</td>
<td>Dermatology</td>
<td>Photoprotection Practices Among Stanford NCAA Athletes and its Effect on Serum Vitamin D Levels</td>
</tr>
<tr>
<td>Guardino, Alice</td>
<td>Medicine</td>
<td>Evaluation of knowledge gaps in patients with breast cancer</td>
</tr>
<tr>
<td>Chang, Robert</td>
<td>Ophthalmology</td>
<td>Prevalence of ocular diseases in school-aged children in China</td>
</tr>
<tr>
<td>Ikeda, Debra</td>
<td>Radiology</td>
<td>Compliance with Recommended Follow-up After MRI-guided Fine Needle Aspiration or MRI-guided Core Needle Biopsy</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/cr/
The Community Health (CH) Foundation Area empowers future physicians to improve the health of diverse communities and reduce health inequities through innovative scholarship and direct community engagement. The CH Foundation focuses on the intersection between physicians and the social and environmental determinants of health. These health determinants profoundly influence the health of populations, leading to the wide health disparities experienced in the United States. Students learn the means to effect change through rigorous community-responsive research, advocacy, and civic leadership. The CH Foundation Area encourages the development of physicians with the commitment and capacity to become leaders in community health and health policy.

This Foundation Area focuses on the knowledge and skills used to address health challenges of diverse and often underserved communities, both domestically and internationally. Topics include:

- Qualitative research methods
- Quantitative research methods
- Community-based participatory research
- Survey design and evaluation
- Practice of health-focused public service

CH draws upon the resources of nine cooperating university centers, departments and student organizations, such as the Center for Education in Family and Community Medicine (CEFCM), Department in Pediatrics, Stanford Prevention Research Center (SPRC), and the Office of Community Health.

Students must complete 12 total Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area complete six units in each.

CH students are required to complete:

- **PEDS 250:** *Social and Environmental Determinants of Health* (3 units)

And one of the following:

- **MED 247:** *Methods in Community Assessment, Evaluation and Research* (3 units)

- **PEDS 202C:** *Qualitative Research Methods and Study Design* (3 units)

Other recommended courses include:

- **PEDS 258:** *Developing and Defining Strong Community Partnerships* (2 Units)
- **MED 253:** *Proposal Development for Community and Population Health Research* (2 Units)
- **PEDS 202A & 202B:** *Practical Applications for Qualitative Data Analysis* (3 units each)
- Other method courses students find applicable to their projects; requires Foundation Director approval

CH students are to complete six units in elective courses drawn from a wide range of coursework on Health Research and Policy, Management Science and Engineering, Public Policy, Statistical Methods, Education, and Business. Students are encouraged to devise a course plan to present to the director.

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.
COMMUNITY HEALTH FOUNDATION

ADVISORY COMMITTEE

Lisa Chamberlain, MD, MPH
Assistant Professor - Pediatrics
lchamberlain@stanford.edu

Cynthia Castro, PhD
Senior Research Scientist - Stanford Prevention Research Center
cync@stanford.edu

Eunice Rodriguez, Dr. Ph
Associate Professor - Pediatrics
er23@stanford.edu

Michaela Kiernan, PhD
Senior Research Scientist - Stanford Prevention Research Center
michaela.kiernan@stanford.edu

Paul Wise, MD, MPH
Professor - Pediatrics & HRP
pwise@stanford.edu

Yvonne Maldonado, MD
Professor - Pediatrics & HRP
bonniem@stanford.edu

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor Name</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamberlain, Lisa</td>
<td>Pediatrics</td>
<td>Evaluating the Mexican heritage plaza farmer market as an obesity intervention tool in East San Jose, CA</td>
</tr>
<tr>
<td>Gilbert, Gregory</td>
<td>Surgery</td>
<td>Teaching Medical Trainees in Emergency Medicine: Simulators, Computers, or Problem-Based Learning?</td>
</tr>
<tr>
<td>Gore-Felton, Cheryl</td>
<td>Psychiatry</td>
<td>Trauma, psychological distress, and HIV risk behavior in Zimbabwe: a cross-sectional survey</td>
</tr>
<tr>
<td>Le Baron, Samuel</td>
<td>Medicine</td>
<td>International medical aid in North Korea</td>
</tr>
<tr>
<td>Mahadevan, Swaminatha</td>
<td>Surgery</td>
<td>Internationalizing the Broselow Pediatric Emergency Tape: How reliable is weight estimation in Indian children</td>
</tr>
<tr>
<td>Norris, Robert</td>
<td>Surgery</td>
<td>Patients who leave the emergency department without being seen: What services might help them to stay</td>
</tr>
<tr>
<td>Parsonnet, Julie</td>
<td>Medicine</td>
<td>Promotion of Insecticide-Treated Net Use in the Upper River Division, The Gambia: Focus Groups to Explore Current Knowledge and the Acceptability of a Proposed Intervention Strategy</td>
</tr>
<tr>
<td>Robinson, Tom</td>
<td>Pediatrics</td>
<td>Do television advertisements influence children’s food consumption patterns</td>
</tr>
<tr>
<td>Rodriguez, Eunice</td>
<td>Pediatrics</td>
<td>Maternal unemployment and child BMI: A longitudinal study</td>
</tr>
<tr>
<td>Winkleby, Marilyn</td>
<td>Medicine</td>
<td>Neighborhood physical assessments: examining the influence of neighborhoods on health.</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/chps/

2010.06.16
OVERVIEW

The Health Services and Policy Research (HSPR) Foundation Area explores the ways that health care systems, governments, doctors, and patients interact to deliver health care. From regulatory policy and market forces to financial incentives and the costs and benefits of new technologies, students study ways to improve the efficiency and effectiveness of health care systems in delivering high quality care in the U.S. and abroad.

Given the complexity of health policy and its far-reaching effects on societal health, it is important that physicians with training in health policy issues and research are involved in shaping national health policies. Healthcare quality, cost, and access are significantly affected by government policies and by a wide range of institutions, including hospitals, physician groups, pharmaceutical companies, and health insurers. To formulate effective health policy and improve clinical practice, it is essential to understand the interactions among these institutions, medical decision-making at the population level, and the social and economic environment of healthcare. HSPR students work with internationally known faculty in coursework and projects addressing these issues.

CONTACTS

Corinna Haberland, MD, MS
Lecturer, Department of Health Research & Policy
corinnah@stanford.edu

Laurence Baker, PhD
Professor of Health Research and Policy and Economics
laurence.baker@stanford.edu

Kathryn McDonald, MM/MBA
Senior Scholar & Executive Director, Center for Health Policy/Center for Primary Care and Outcomes Research (CHP/PCOR)
kathy.mcdonald@stanford.edu

CORE COURSES

Students must complete a total of 12 Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area complete six units in each.

All HSPR students are required to complete HRP 207 and HRP 208:

- HRP 207: Intro to Concepts & Methods in HSPR I (2 units)
- HRP 208: Intro to Concepts & Methods in HSPR II (3 units)

As well as one methods / skills course from the following:

- HRP 206: Meta-Research (3 units)
- HRP 223: Data Management & Programming (2-3 units)
- HRP 252: Outcomes Analysis (3 units)
- HRP 259: Intro to Probability & Statistics (3-4 units)
- HRP 261: Intermed. Biostatistics: Data Analysis (3 units)
- HRP 262: Biostatistics: Regression & Prediction (3 units)
- HRP 263: Decision Sci. Methods & Modeling (3 units)
- HRP 392: Costs, Risks & Benefits in Health Care (4 units)

For those students interested in completing the remaining SC units in HSPR a list of elective courses is available at: http://med.stanford.edu/hspr/course.html

Students are encouraged to talk with the HSPR co-directors for guidance on appropriate coursework, as well as to discuss exceptions or substitutions (e.g. if previous coursework and / or experience allow for enrolling in alternate courses).

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.
Health Services & Policy Research Foundation

Selected Faculty Advisors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jay Bhattacharya, MD, PhD</td>
<td>Associate Professor, Medicine (CHP/PCOR)</td>
</tr>
<tr>
<td>M. Kate Bundorf, PhD</td>
<td>Associate Professor, Division of Health Services Research and Economics</td>
</tr>
<tr>
<td>Jeremy Goldhaber-Fiebert, PhD</td>
<td>Assistant Professor, Medicine (CHP/PCOR)</td>
</tr>
<tr>
<td>Mary Goldstein, MD, MS</td>
<td>Professor, Medicine (CHP/PCOR)</td>
</tr>
<tr>
<td>Paul Heidenreich, MD, MS</td>
<td>Associate Professor, Medicine (Cardiovascular)</td>
</tr>
<tr>
<td>Grant Miller, PhD, MPP</td>
<td>Assistant Professor, Medicine (CHP/PCOR)</td>
</tr>
<tr>
<td>Douglas Owens, MD, MS</td>
<td>Professor, Medicine (General Internal Medicine)</td>
</tr>
<tr>
<td>Ciaran Phibbs, PhD</td>
<td>Health Economist, VA Palo Alto & Research Affiliate (CHP/PCOR)</td>
</tr>
</tbody>
</table>

Faculty interests and contact information for these advisors and many others is available on HSPR website.

Recent Projects (Research Mentors, Departments, and Project Titles)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker, Laurence</td>
<td>HRP</td>
<td>Measuring Physician Group Consolidation and its Effects on Price Bargaining</td>
</tr>
<tr>
<td>Bhattacharya, Jay</td>
<td>Medicine</td>
<td>Estimating Potential Medicare Savings from Comparative Effectiveness Research</td>
</tr>
<tr>
<td>Haberland, Corinna</td>
<td>HRP</td>
<td>Disparities in Treatment for Pediatric Patients with Indications for Tonsillectomy</td>
</tr>
<tr>
<td>Hernandez-Boussard, Tina</td>
<td>Surgery</td>
<td>Population-Based Study of Adverse Events in Cranial Neurosurgical Procedures</td>
</tr>
<tr>
<td>McDonald, Kathryn</td>
<td>Medicine</td>
<td>A Systematic Review and Meta-Analysis of Interventions to Decrease Diagnostic Errors and Improve Patient Outcomes</td>
</tr>
<tr>
<td>Mell, Matthew</td>
<td>Surgery</td>
<td>Refining Best-Practice Guidelines for Postoperative Surveillance after Endovascular Aortic Aneurysm Repair</td>
</tr>
<tr>
<td>Miller, N. Grant</td>
<td>Medicine</td>
<td>A Three-Step Qualitative Analysis of the Barriers to Institutional Delivery in Uttar Pradesh, India</td>
</tr>
<tr>
<td>Morton, John</td>
<td>Surgery</td>
<td>Impact of Nosocomial Infection on Hospital Finances</td>
</tr>
<tr>
<td>Owens, Douglas</td>
<td>Medicine</td>
<td>Cost-Benefit Analysis of a Universal Pre-Conception Carrier Test for Genetic Disease</td>
</tr>
<tr>
<td>Park, KT</td>
<td>Pediatrics</td>
<td>Socioeconomic Predictors and Utilization of ED Services Associated with Abdominal Pain in U.S. Children</td>
</tr>
<tr>
<td>Staudenmayer, Kristan</td>
<td>Surgery</td>
<td>Variations in Patterns of Helicopter EMS for Scene Transports by Regional Trauma Centers in the United States</td>
</tr>
<tr>
<td>Wang, N. Ewen</td>
<td>Emergency Medicine</td>
<td>Evaluation of an Emergency Department-based Health Insurance Enrollment Program for Children</td>
</tr>
<tr>
<td>Zulman, Donna</td>
<td>Medicine</td>
<td>The Prevalence of Mental Health Conditions and Health Care Utilization among High Cost Patients at the VA</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/hspr/

2013.08.09
Informatics & Data-Driven Medicine (IDDM) encompasses the development and evaluation of computational methods and information technology in healthcare delivery and biomedical research. Informatics is now critical for making breakthroughs in personalized medicine, molecular imaging, population science and other emerging biomedical fields. The IDDM Foundation Area introduces students to a variety of approaches for acquiring, analyzing and using biomedical data and knowledge, from the interpretation of genomic datasets in translational medicine to the evaluation of mobile and Internet technologies in patient care.

IDDM students gain exposure to research in areas such as:

- Clinical informatics and health IT
- Bioinformatics
- Computational biology, genomics and proteomics
- Imaging informatics
- Population science
- Personalized medicine

The IDDM Foundation Area builds upon a 25-year history of research and training in biomedical informatics at Stanford, including the Stanford Center for Biomedical Informatics Research, the Stanford Biomedical Informatics Training Program, and two National Centers for Biomedical Computing based at Stanford.

Information is the lifeblood of modern medicine. Health information technology is destined to be its circulatory system.

– David Blumenthal, MD
Former National Coordinator for Health Information Technology
New England Journal of Medicine
February 4, 2010

http://med.stanford.edu/bmicconcentration/
KEY FACULTY

Daniel Rubin, MD, MS
Assistant Professor of Radiology and Medicine (Biomedical Informatics)
Director of the IDDM Scholarly Concentration
dlrubin@stanford.edu

Russ B. Altman, MD, PhD
Professor of Bioengineering, Genetics, Medicine, and by courtesy, Computer Science
russ.altman@stanford.edu

Atul Butte, MD, PhD
Assistant Professor of Pediatrics and Medicine, and by courtesy, Computer Science
abutte@stanford.edu

Teri Klein, PhD
Director, PharmGKB
teri.klein@stanford.edu

Henry J. Lowe, MD
Senior Associate Dean for Information Resources and Technology, Associate Professor of Medicine
hlowe@stanford.edu

Mark Musen, MD, PhD
Professor of Medicine, and by courtesy, Computer Science
musen@stanford.edu

David Paik, PhD
Assistant Professor of Radiology
david.paik@stanford.edu

Nigam Shah, MBBS, PhD
Assistant Professor in Medicine
nigam@stanford.edu

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altman, Russ</td>
<td>Genetics</td>
<td>Using drug taxonomics to improve searching and indexing of PharmGKB</td>
</tr>
<tr>
<td>Butte, Atul</td>
<td>Pediatrics/Medicine</td>
<td>Developing novel bioinformatics methods to integrate antibody and gene expression profiling to find novel acute myeloid leukemia markers</td>
</tr>
<tr>
<td>Jeng, Michael</td>
<td>Pediatric Hematology/Oncology</td>
<td>Do silent infarcts occur in children with sickle cell disease who are chronically transfused for stroke?</td>
</tr>
<tr>
<td>Kim, Stuart</td>
<td>Genetics</td>
<td>A multi-organism gene-coexpression network for discovery of conserved genetic modules</td>
</tr>
<tr>
<td>Musen, Mark</td>
<td>Medicine</td>
<td>Creating and translating guideline ontologies</td>
</tr>
<tr>
<td>Plevitis, Sylvia</td>
<td>Radiology</td>
<td>Biological synergism in the treatment of primary lung cancer: can a cisplatin-based chemotherapy regimen enhance the effects of a recombinant cancer vaccine in the setting of primary lung cancer?</td>
</tr>
<tr>
<td>Rubin, Daniel</td>
<td>Radiology and Medicine</td>
<td>Rapid Learning: Using data in medical records to personalize treatment. Radiogenomics: Discovering features in radiology images that correlate with molecular features of disease and that can be used to identify disease subtypes and personalized treatments.</td>
</tr>
<tr>
<td>Ta, Christopher</td>
<td>Ophthalmology</td>
<td>Prospective comparison of 1 day vs. 1 hour pre-operative gatifloxacin prophylaxis for cataract surgery</td>
</tr>
<tr>
<td>Vollrath, Doug</td>
<td>Genetics</td>
<td>Relationship of genotype & phenotype to complement factor H & LOC387715 polymorphisms in age-related macular degeneration</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/bmicconcentration/
The purpose of the Foundation in Medical Education is to prepare students for engagement and leadership in the field of medical education. This concentration aims to promote excellence in the following areas:

1. Curriculum development and delivery
2. Evaluation and assessment
3. Educational technology and simulation

Students will choose a specific area of interest from one of the three major categories above and develop an individual plan for coursework and the required project in consultation with the concentration directors. Students electing this concentration are also strongly encouraged to pursue teaching experience, most often as a Teaching Assistant. While this concentration can be completed as part of a four-year curriculum, the optimum experience will be received in a five-year plan, with one year for scholarly work and teaching experience.

Students must complete 12 total Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area complete six units in each.

Core Courses

Formal Coursework – 6 units total

- **INDE 233** Medical Education Seminar Series – total of 3 units (1 unit/quarter – Autumn, Winter, Spring)

PLUS a personalized series of courses totaling at least 3 more units. Suggested courses include, but are not limited to:

 - 229B: Winter/1 unit;
 - 229C: Spring/1 unit;
 - 229D: Summer/2-5 units (incorporates project).

 Note: the timing of EDUC 229 B, C, D will in most cases necessitate that participating students be either first year students, or second year students on a five year curriculum. Exceptions will be considered on a case-by-case basis.

2. **EDUC 208B**: Curriculum Construction
 - Winter/3-4 units

For those students interested in completing the final 6 SC units in MedEd, there are a variety of other options including, but not limited to:

- **EDUC 298**: Learning in a Networked World
- **EDUC 311X**: Open Access Education
- **EDUC 333A**: Understanding Learning Environments
- **EDUC 319X**: Web-based Technologies in Teaching and Learning
- **INDE 229**: Managing Difficult Conversations
- **INDE 236**: Introduction to Teaching and Mentoring
- **PEDS202A–B/Med 200A–B**: Practical Applications for Qualitative Data Analysis
 - 3 units, Fall – Winter
- **PEDS202C/Med202C**: Qualitative Research Methods and Study Design
 - 3 units, Spring

Please note: This foundation offers flexibility in the selection of coursework, so students are encouraged to talk with the concentration co-director for guidance on appropriate coursework, as well as to discuss exceptions or substitutions (e.g., if previous coursework and/or experience allow for enrolling in alternate courses).
In addition to coursework, it is assumed that students in the Medical Education Foundation will complete an:

Experiential Component –
- Scholarly Project – design and implement a research project in medical education under the guidance of a faculty advisor or research co-director
- It is assumed that all students will serve as a Teaching Assistant (TA) in one or more required courses in the pre-clerkship MD curriculum
- Develop resource materials for and participate in the delivery of annual TA Training program
- Participate in the development and implementation of other faculty development activities as opportunity arises

http://med.stanford.edu/meded/
The Molecular Basis of Medicine (MBM) Foundation Area trains future practicing physicians in how scientific data are generated and evaluated in the research laboratory, with a focus on the molecular mechanisms that underlie fundamental biological processes. Medical students participate in coursework and laboratory research side-by-side with doctoral students and postdoctoral trainees and are exposed to the rigor and structure that support first-rate scientific investigation.

MBM physician scholars are positioned to be key originators and participants in the “bench-to-bedside” incorporation of advances in basic biomedical science into clinical practice. MBM training serves as firm grounding for future academic physicians who may later integrate major basic science research component in their careers, including a PhD or postdoctoral research.

This foundation area also serves future practicing physicians by training them in how scientific data are generated and evaluated in the research laboratory, and equipping them to follow the forefront of basic science literature related to their clinical specialties. Working side-by-side with graduate students and postdoctoral trainees in basic science disciplines provides invaluable background and a common language to physicians who will nucleate or participate in interdisciplinary teams, bringing current advances in basic biomedical research to clinical treatment.

Contacts

James Chen, PhD
Associate Professor
Departments of Chemical and Systems Biology, Developmental Biology, and (by courtesy) Chemistry
jameschen@stanford.edu

Stuart Jeung
Administrative Coordinator
(650) 736-2999
stuartj7@stanford.edu

Core Courses

Students must complete 12 total Scholarly Concentration coursework units. Students selecting only a Foundation Area complete all 12 units in that Foundation Area. Students undertaking both a Foundation Area and an Application Area complete six units in each.

MBM students are required to complete:

- CSB 210
 Cell Signaling
 (4 units)

All other coursework taken to complete the MBM curriculum requirement is elective and can focus on any area of basic science. Classes should include a combination of didactic and literature-based education, and students are encouraged to devise a course plan to present to the MBM Director, and if appropriate, to the Director of their Application Area.

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/mbm/

2013.08.09
SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nusse, Roel</td>
<td>Developmental Biology</td>
<td>Wnt proteins in neural stem cell fate decisions</td>
</tr>
<tr>
<td>Lui, Liqun</td>
<td>Biology</td>
<td>Mosaic analysis with double markers in mice</td>
</tr>
<tr>
<td>Goodman, Stuart</td>
<td>Orthopedic Surgery</td>
<td>Assessing the role of the toll pathway in the inflammatory response stimulated by particulate debris</td>
</tr>
<tr>
<td>Shizuru, Judith</td>
<td>Medicine</td>
<td>Purified MHC-matched hematopoietic stem cell transplantation following total lymphoid irradiation and anti-thymocyte globulin (TLI+ATG) blocks EAE pathogenesis</td>
</tr>
<tr>
<td>Herschlag, Daniel</td>
<td>Biochemistry</td>
<td>Testing the importance of surrounding residues in positioning hydrogen bond donors in the oxanyion hole of ketosteroid isomerase</td>
</tr>
<tr>
<td>Levy, Ronald</td>
<td>Medicine</td>
<td>Homeostatic proliferation of T-cell subpopulations following adoptive transfer to a lymphopenic recipient</td>
</tr>
<tr>
<td>Meyer, Tobias</td>
<td>Chemical & Systems Biology</td>
<td>Dynamic cell interactions promote endothelial monolayer integrity and directed migration</td>
</tr>
<tr>
<td>Scott, Matthew P.</td>
<td>Developmental Biology</td>
<td>Neurodegeneration and Niemann-Pick C disease: the role of Npc1 in steroidogenesis</td>
</tr>
<tr>
<td>Steinman, Lawrence</td>
<td>Neurology</td>
<td>Interactions between Vitamin D and osteopontin in EAE</td>
</tr>
<tr>
<td>Weissman, Irving</td>
<td>Pathology</td>
<td>Gaining access to the hematopoietic stem cell niche--novel non-myeloablative conditioning approaches</td>
</tr>
</tbody>
</table>
The Cancer Biology (CBIO) Application Area educates medical students in the complex nature of cancer from the molecular mechanism of cancer etiology, to evaluation of the efficacies of various cancer treatments. Through this extension of the Stanford Cancer Center students have access to faculty, fellows, and residents who represent molecular, cellular, genetic and pathological approaches to developing effective medical tools for cancer diagnosis, treatment, and prevention.

CBIO students develop an eclectic understanding of cancer not only at the patient level, but also at the molecular and the disease level. Research training produces future physicians who, upon gaining the molecular insight to the complexity of cancer, can think creatively about cancer treatment and prevention, and translate the most advanced biomedical discoveries (at the bench) into effective cancer therapies (at bedside). Students learn to utilize animal models and human materials while conducting research using the latest technologies.

Under the direction of Beverly Mitchell, a pioneer in cancer research, the Stanford Cancer Center boasts over 200 independent basic science and clinical investigators, including a large number of cancer biology faculty. Students have the opportunity to work with investigators at the forefront of cancer research, choosing from diverse topics, such as:

- tumor initiation and development
- angiogenesis
- hypoxia
- metastasis
- apoptosis
- cancer stem cells
- molecular profiling of cancer
- targeted therapeutics

Students must complete 12 total Scholarly Concentration coursework units. Students undertaking both a Foundation Area and an Application Area complete six units in each.

CBIO students are required to complete:

- CBIO 242
 Molecular, Cellular and Genetic Basis of Cancer
 (3 units)

- CBIO 280
 Cancer Biology Journal Club
 (1 unit, taken 3 quarters for 3 total units)

Students are also expected to participate in the Seminar Series in Cancer Biology (non-credit).

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/cbio/
KEY FACULTY

Amato Giaccia, Ph.D.
Professor of Radiation Oncology and Cancer Biology
giaccia@stanford.edu

Jeff Axelrod, M.D., Ph.D.
Associate Professor of Pathology
jaxelrod@stanford.edu

Katrin Chua, M.D., Ph.D.
Assistant Professor of Medicine, Division of Endocrinology
kfchua@stanford.edu

Steven Artandi
Professor of Medicine (Hematology) and of Biochemistry
sartandi@stanford.edu

Max Diehn
Assistant Professor of Radiation Oncology
diehn@stanford.edu

Edward Graves
Associate Professor of Radiation Oncology (Radiation Physics)
egraves@stanford.edu

Ashby Morrison, Ph.D
Assistant Professor, Biology
ashbym@stanford.edu

Sylvia Plevritis, Ph.D.
Associate Professor of Radiology
sylvia.plevritis@stanford.edu

Jonathan Pollack, M.D. Ph.D
Associate Professor of Pathology
pollack1@stanford.edu

Alejandro Sweet-Cordero, M.D., Ph.D.
Assistant Professor of Pediatrics, Division of Pediatric Oncology
ascor@stanford.edu

Monte Winslow
Assistant Professor of Genetics and of Pathology
mwinslow@stanford.edu

RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, Daniel T.</td>
<td>Radiation Oncology</td>
<td>Characterization of Liver Tumor Motion Using 4D-CT Scan</td>
</tr>
<tr>
<td>Sage, Julien</td>
<td>Pediatrics</td>
<td>Recurrence and Resistance to Chemotherapy in a Model for Small Cell Lung Cancer</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/cbio/
OVERVIEW

The Cardiovascular and Pulmonary Sciences (CVP) Application Area addresses the heart and the lungs as an integrated system and utilizes this system to develop more effective diagnostic tools and more selective treatments. Through the Stanford Cardiovascular Institute medical students have access to an educational structure provided by key faculty in this area. The goal is to train a new generation of basic and clinician investigators to have a broad understanding of cardiovascular and pulmonary medicine and biology and to apply cutting-edge technology to clinically relevant questions.

There is a need for greater integration of educational and research efforts in cardiovascular and pulmonary biology, improved transfer of knowledge between the various disciplines that constitute this research field, and accelerated application of the basic information to clinical practice. A broad range of scientific and clinical disciplines relate to this area, including:

- cardiology
- vascular medicine
- pulmonary medicine
- respiratory medicine
- surgery
- endocrinology-metabolism
- hematology
- nephrology
- immunology
- cardiac and vascular regeneration
- developmental and stem cell biology
- cell and molecular biology
- tissue and mechanical engineering
- physics and computer modeling
- genetics/genomics/epigenetics/proteomics
- physiology and molecular pharmacology
- epidemiology and clinical trials design
- outcome studies

CONTACTS

Marlene Rabinovitch, MD
Professor of Pediatrics (Cardiology) and, by courtesy, Developmental Biology
(650) 723-8239
marlener@stanford.edu

Stanley G. Rockson, MD
Professor of Medicine (Cardiovascular)
(650) 725-7571
rockson@stanford.edu

Philip S. Tsao, PhD
Professor of Medicine (Cardiovascular)
Associate Chief of Staff for Research & Development, VA Palo Alto Health Care System
(650) 493-5000 x62991
ptsao@stanford.edu

Patricia Nguyen, MD
Assistant Professor of Medicine (Cardiovascular)
(650) 493-5000 x62299
pknguyen@stanford.edu

Michal Bental Roof, PhD
Coordinator
(650) 724-9589
mroof@stanford.edu

David L.M. Preston, MA
Administrative Coordinator
(650) 725-7964
preston@stanford.edu

CORE COURSES

Students must complete 12 total Scholarly Concentration coursework units. Students undertaking both a Foundation Area and an Application Area complete six units in each.

CVP students are required to complete:

- MED 223
 Cardiovascular Pulmonary Sciences Seminars
 (2 units, taken 3 quarters for 6 units total)

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/cvp/
The list below is a sampling of the CVP mentors. For a complete list of faculty advisors, their contact information, research interests and available projects, please visit the CVP Application website, at http://med.stanford.edu/cvp.

Cristina Alvira, MD, Pediatric Pulmonary & Critical Care: Inflammation angiogenesis and lung development
Euan Ashley, MRCP, DPhil, Cardiovascular Medicine: Genomics and heart failure
Daniel Bernstein, MD, Pediatric Cardiology: Cardiomyocyte receptors and heart failure
Richard D. Bland, MD, Pediatrics/Neonatology: Molecular pathways in lung development and disease
Ron Dalman, MD, Surgery: Inflammation and MR imaging of abdominal aortic aneurysms
Anne Dubin, MD, Pediatric Cardiology: Cardiac pacing and prevention of heart failure
William F. Fearon, MD, Cardiovascular Medicine: Coronary flow dynamics and heart transplantation
Jeffrey Feinstein, MD, MPH, Pediatric Cardiology: MR-Based computational modeling in congenital heart disease
Victor Froelicher, MD, Cardiovascular Medicine: Heart rate variability during exercise and risk of cardiac events
Geoffrey Gurtner, MD, Surgery: Progenitor cell dysfunction and impaired vasculogenesis in diabetic complications
Calvin Kuo, MD, Medicine/Hematology: Exploration of GPR124 as a novel target for antiangiogenic therapy
Michael V. McConnell, MD, MSEE, Cardiovascular Medicine: MR Imaging of cardiac structures and function
Kari Nadeau, MD, Pediatrics/Immunology and Allergy: Genomics and Asthma
Patricia Nguyen, MD, Pediatrics/Immunology and Allergy: Cardiovascular Imaging
Mark Nicolls, MD, Pulmonary & Critical Care Medicine: Complement, microvascular injury, and lung rejection
Daria Mochly-Rosen, PhD, Chemical & Systems Biology: Therapeutics for myocardial infarction and heart failure
Marlene Rabinovitch, MD, Pediatric Cardiology: Reversing molecular pathways in pulmonary vascular disease
Stanley Rockson, MD, Cardiovascular Medicine: Lymphatic Biology and Disease
Glenn D. Rosen, MD, PhD, Pulmonary & Critical Care Medicine: Apoptotic and cell cycle pathways in the lung
David Rosenthal, MD, Pediatric Cardiology: Assessing vulnerability of the right ventricle in pediatric heart disease
Jennifer Tremmel, MD, Cardiovascular Medicine: Stress reduction and angina, coronary disease in women
Philip Tsao, PhD, Cardiovascular Medicine: Etiology and genomics of vascular disease
Paul Wang, MD, Cardiovascular Medicine: Evaluating implantable defibrillator
Joseph Wu, MD, PhD, Cardiovascular Medicine: Induced pluripotent stem cells as therapy for heart disease
Sean Wu, MD, PhD, Cardiovascular Medicine: Cardiac lineage commitment during embryonic development

http://med.stanford.edu/cvp/
Providing for the health of the poorest people in the world’s poorest countries has increasingly become the focus of industrialized countries. Global Health is a field which involves the intersection of many disparate disciplines, such as infectious diseases/epidemiology, sanitation, economics, engineering/design, the environment, behavior, and others.

The domain of the far-ranging discipline of Global Health might include examples such as:

- Infectious diseases
- Nutrition and maternal/child medicine
- Distribution of health resources
- Access to medical information
- Post-disaster health care and disease prevention

Stanford has many activities that touch on global health, including research, education, and clinical care. There are investigator-driven research projects in all of Stanford’s schools and institutes, most notably in Medicine, H&S, Engineering, Business, Law, the Woods Institute, and the Freeman Spogli Institute.

The goals of this SC Application are to:

- Give students an understanding of the spectrum of challenges—from political, to sociological, to biomedical—that limit provision of health care to the world’s poorest people.
- Provide students with insights into problem-solving for complex global health issues.
- Enable mentored, hands-on experience in the field that applies knowledge attained in this application to real world problems of the world’s poorest people.
- Prepare students for the unique challenges of working in an overseas setting.
- Fostering the development of creative solutions in resource poor environments.

Contacts

Brian Blackburn, MD
Co-Director
Clinical Associate Professor, Medicine/Infectious Diseases
(650) 725-7902
blackburn@stanford.edu

David Katzenstein, MD
Co-Director
Professor (Research), Medicine/Infectious Diseases
(650) 725-6606
davidkk@stanford.edu

Core Courses

Students must complete 12 total Scholarly Concentration coursework units. Students selecting this Application Area must complete six units in their Foundation Area and six units in Global Health.

GH students are required to complete a core course requirement. This requirement can be fulfilled by any one of the following eight core courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 291X (EDUC 191X)</td>
<td>Introduction to Survey Research</td>
<td>3-4</td>
</tr>
<tr>
<td>HRP 225</td>
<td>Design & Conduct of Clinical & Epidemiologic Studies</td>
<td>3-4</td>
</tr>
<tr>
<td>HRP 241 (HUMBIO 129M, MED 231)</td>
<td>Measuring Global Health</td>
<td>4</td>
</tr>
<tr>
<td>HUMBIO 129S</td>
<td>Global Public Health</td>
<td>4</td>
</tr>
<tr>
<td>MED 108Q</td>
<td>Human Rights and Health</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 185</td>
<td>Global Work</td>
<td>4</td>
</tr>
<tr>
<td>PEDS 223</td>
<td>Human Rights and Global Health</td>
<td>3</td>
</tr>
<tr>
<td>SURG 250 (SURG 150)</td>
<td>Global Humanitarian Medicine</td>
<td>2-3</td>
</tr>
</tbody>
</table>

Alternatively, the GH core course requirements can be fulfilled by completing at least three of the following five core seminars:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED 204</td>
<td>Access and Delivery of Essential Medicines to Poor and Underserved Communities</td>
<td>1</td>
</tr>
<tr>
<td>MED 228</td>
<td>Physicians and Social Responsibility</td>
<td>1</td>
</tr>
<tr>
<td>MED 229</td>
<td>Introduction to Global Health</td>
<td>1</td>
</tr>
<tr>
<td>MED 232</td>
<td>Discussions in Global Health</td>
<td>2</td>
</tr>
<tr>
<td>MED 242</td>
<td>Physicians and Human Rights</td>
<td>1</td>
</tr>
</tbody>
</table>

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

Research

All students in the Application must complete at least one quarter of overseas research; 4 quarters are preferred.

The GH application faculty are continually in the process of fostering relationships with sites abroad that could serve as locales for well-mentored research projects for our students. Some current partners which welcome Stanford students include the Centers for Disease Control and Prevention (CDC)-Kenya and the International Center for Diarrheal Disease Research, Bangladesh (ICDDR,b) in Dhaka, Bangladesh. Opportunities with other partners exist as well, and students are encouraged to contact the Application directors for more information about these.
GLOBAL HEALTH APPLICATION

MENTORSHIP COMMITTEE

Jason Andrews, MD
Assistant Professor, Infectious Diseases
jasonandr@gmail.com

Michele Barry, MD
Senior Associate Dean for Global Health
mbarry11@stanford.edu

Eran Bendavid, MD
Assistant Professor, Medicine
ebd@stanford.edu

Brian Blackburn, MD
Clinical Assistant Professor, Medicine/Infectious Diseases
blackburn@stanford.edu

Paul Blumenthal, MD, PhD
Professor, Obstetrics/Gynecology
pblumen@stanford.edu

Jenna Davis
Assistant Professor, Civil/Environmental Engineering
jennadavis@stanford.edu

Gabriel Garcia, MD
Professor, Medicine/Gastroenterology & Hepatology
ggarcia@stanford.edu

Kevin Grimes, MD
Consulting Professor, Chemical & Systems Biology
kgrimes@stanford.edu

Saraswati Kache, MD
Clinical Associate Professor, Pediatrics
skache@stanford.edu

David Katzenstein, MD
Professor, Medicine/Infectious Diseases
davidkk@stanford.edu

Evaleen Jones, MD
Clinical Associate Professor, Medicine/Family & Community Medicine
evaileen@stanford.edu

Stephen Luby, MD
Professor, Medicine/Infectious Diseases / Woods Institute
sluby@stanford.edu

Lauren Maggio, MS (LIS), MA
Lecturer, Department of Medicine, Medical Education Librarian
lmaggio@stanford.edu

Yvonne Maldonado, MD
Professor, Medicine/Infectious Diseases
bonniem@stanford.edu

Grant Miller
Assistant Professor, Medicine/PCOR
ngmiller@stanford.edu

Julie Parsonnet, MD
Professor, Medicine/Infectious Diseases
parsonnt@stanford.edu

Andrew Patterson, MD, PhD
Associate Professor, Med Center Line/Anesthesia & Surgery
awp@stanford.edu

Gary Schoolnik, MD
Professor, Medicine/Infectious Diseases
schoolni@stanford.edu

Robert Siegel, MD, PhD
Associate Professor, Microbiology & Immunology
robertsiegel@stanford.edu

Paul Wise, MD, MPH
Professor, Pediatrics & HRP
pwise@stanford.edu

Sherry Wren, MD
Professor, Surgery
swren@stanford.edu

SAMPLE OF RECENT PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>MENTOR</th>
<th>DEPARTMENT</th>
<th>PROJECT TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barry, M</td>
<td>Medicine</td>
<td>Longitudinal GIS Study of the Healthcare Infrastructure of Leogane Haiti, Pre and Post Earthquake</td>
</tr>
<tr>
<td>Blackburn, B</td>
<td>Medicine</td>
<td>Assessment of factors related to Insecticide-Treated Bednet use in Orissa, India</td>
</tr>
<tr>
<td>Blackburn, B</td>
<td>Medicine</td>
<td>Evaluation of Gastrointestinal Infections by Norovirus and Parasites in Urban Marginal Peruvian Communities</td>
</tr>
<tr>
<td>Castro, C</td>
<td>Pediatrics</td>
<td>Understanding community perspectives on water, health and behavior in Dar es Salaam, Tanzania</td>
</tr>
<tr>
<td>Fredrick, D</td>
<td>Ophthalmology</td>
<td>Prevention of Blinding Retinopathy of Prematurity in Vietnam</td>
</tr>
<tr>
<td>Gesundheit, N</td>
<td>Medicine</td>
<td>Risk Factors for Mortality Among Children with Pneumonia in Western Kenya</td>
</tr>
<tr>
<td>Haberland, C</td>
<td>HRP</td>
<td>Retrospective Study of Treatment Adherence Among HIV/AIDS Patients in Ethiopia</td>
</tr>
<tr>
<td>Mahadevan, S</td>
<td>ER/Surgery</td>
<td>Outcome Analysis of a Public Pediatric Emergency Department in Karachi, Pakistan</td>
</tr>
<tr>
<td>Maldonado, Y</td>
<td>Pediatrics</td>
<td>Use of intermittent preventative treatment for Malaria in pregnancy on Bioko Isla, Equatorial Guinea</td>
</tr>
<tr>
<td>Montoya, J</td>
<td>Medicine</td>
<td>Risk factors for toxoplasmosis among pregnant women in Cali, Colombia</td>
</tr>
<tr>
<td>Parsonnet, J</td>
<td>Medicine</td>
<td>Promotion of Insecticide-Treated Bednet Use in The Gambia: Current Knowledge and a Proposed Intervention Strategy</td>
</tr>
<tr>
<td>Wren, S</td>
<td>Surgery</td>
<td>Assessment of the Burden of Surgical Disease in Sierra Leone</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/gh/

2013.08.08
The Immunology Application Area introduces students to immunology research and scholarship. Working with internationally recognized experts, students become involved in projects in any of the major areas of immunology, from basic cellular and molecular immunology, to translational areas, including allergy, autoimmunity, microbial immunity, tumor immunology, transplantation immunology, and vaccine development.

In conjunction with Stanford Immunology, and the Stanford Institute for Immunology, Transplantation and Infection, the IMM Application Area provides access to faculty who are engaged in areas such as:

- basic research in immunology
- host-parasite interactions and pathogenesis
- organ transplantation
- regenerative medicine
- clinical immunology (including many chronic diseases)
- clinical infectious diseases
- emerging global infections

Studying immunology not only provides strong opportunities for scholarship, but also contributes to improved clinical skills. All aspects of immunology are highly relevant to translational medicine, and application of bench research or scholarship to the bedside is a natural, frequent, and important aspect of modern medicine. A large segment of the faculty has joint membership in the Center for Clinical Immunity at Stanford, and many faculty members currently have experimental therapies in clinical trials. Many of the laboratories work with human materials or animal models of human diseases.

CONTACTS

David Miklos, MD, PhD
Director
Assistant Professor of Medicine (Blood & Bone Marrow Transplant)
dmiklos@stanford.edu

Maureen Panganiban
Program Administrator
(650) 725-5076
mopan@stanford.edu

CORE COURSES

Students must complete 12 total Scholarly Concentration coursework units. Students undertaking both a Foundation Area and an Application Area complete six units in each.

Students may fulfill the 6 unit requirement by taking any combination of the following courses with approval of the IMM Director.

- **IMMUNOL 207**
 Introduction to Applied Computational Tools in Immunology
 (1-2 units)

- **IMMUNOL 209**
 Translational Immunology
 (1 unit)

- **IMMUNOL 210**
 Immunology Research Seminars for Medical Students
 (2 units)

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/imm/
SELECT KEY FACULTY

Ash Alizadeh, MD, PhD
Assistant Professor, Medicine/Oncology
arasha@stanford.edu

Catherine Blish, MD, PhD
Assistant Professor, Medicine -- Infectious Diseases
eblish@stanford.edu

Paul Bollyky, MD, PhD
Assistant Professor, Medicine -- Infectious Diseases
pbollyky@stanford.edu

Bryan Burt, MD, PhD
Assistant Professor, Pathology
bburt@stanford.edu

Manish J. Butte, MD, PhD
Assistant Professor, Pediatrics -- Immunology
Mjbutte@stanford.edu

Eugene Butcher, MD
Professor, Pathology
ebutcher@stanford.edu

Mark Davis, PhD
Professor, Microbiology and Immunology
mmdavis@stanford.edu

Edgar Engleman, MD
Professor, Pathology
edgareng@stanford.edu

C. Garrison Fathman, MD
Professor, Medicine – Immunology and Rheumatology
cfathman@stanford.edu

Andrew Fire, PhD
Pathology
afire@stanford.edu

Aida Habtezion, MD
Assistant Professor, Medicine – Gastroenterology and Hepatology
Aida.Habtezion@stanford.edu

Mary Han, MD
Assistant Professor, Neurology and Neurological Sciences
mayhan@stanford.edu

Juliana Idoyaga, PhD
Assistant Professor, Microbiology & Immunology

Ravi Majeti, MD, PhD
Assistant Professor, Medicine -- Hematology
rmajeti@stanford.edu

Everett Meyer, MD, PhD
Assistant Professor, Medicine – Blood & Bone Marrow Transplantation
evmeyer@stanford.edu

Ronald Levy, MD
Professor, Medicine – Oncology
levy@stanford.edu

David Lewis, MD
Professor, Pediatrics -- Immunology
dblewis@stanford.edu

David Miklos, MD, PhD
Assistant Professor, Medicine – Blood & Bone Marrow Transplantation
miklos@stanford.edu

William Robinson, MD, PhD
Associate Professor, Medicine and Rheumatology
wrobins@stanford.edu

Robert Shafer, PhD
Associate Professor, Medicine – Infectious Diseases
rshafer@stanford.edu

Judith Shizuru, MD, PhD
Associate Professor, Medicine – Hematology
jshizuru@stanford.edu

Lawrence Steinman, MD
Professor, Neurology
steinman@stanford.edu

PJ Utz, MD
Associate Professor, Medicine – Immunology and Rheumatology
pjutz@stanford.edu

Irving Weissman, MD
Professor, Stem Cell Institute
irv@stanford.edu

Joseph Wu, MD, PhD
Professor, Medicine – Cardiovascular Medicine
joewu@stanford.edu

SAMPLE OF RECENT PROJECTS (STUDENT, RESEARCH MENTOR/DEPARTMENT, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Lopez Angel, Caesar</th>
<th>Davis, Mark</th>
<th>STAT dysregulation and CMV infection in human immunosenescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenland, Nancy</td>
<td>Galli, Stephen Joseph</td>
<td>Role of mast cell- and basophil-associated RabGEF1 in skin inflammation and anaphylaxis</td>
</tr>
<tr>
<td>Lee, Joyce</td>
<td>Miklos, David</td>
<td>H-Y specific B cell recurrence following allogeneic hematopoietic cell transplantation and Rituximab treatment of chronic Graft-vs-Host Disease (cGVHD)</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/imm/

2014.07.28
The Neuroscience, Behavior and Cognition (NBC) Application Area promotes investigation in all areas of neuroscience – systems and behavioral, molecular and cellular, developmental, clinical, and computational – to improve care of the patient with neurological and psychiatric disease. This field seeks to understand both neuronal-related disease and the normal functioning of the central nervous system, from individual molecules to the circuits and computational aspects involved in generating behavior.

NBC students participate in the exciting progress of understanding the nervous system at any level, from molecular to systems. Students develop an appreciation for the relationship between basic neuroscience and behavioral research, translational research, and clinical research by directly participating in one of these areas.

Neuroscience is a field that lends itself to interdisciplinary collaboration, and this emphasis is expanding. The NBC Application Area is supported by the Neuro-Innovation & Translational Neurosciences (SINITN), directed by Gary Steinberg. SINITN is comprised of faculty from 17 basic science and clinical departments, which allows students to pursue research in a broad range of topics. The application of basic science research to the advancement of medicine and improved care of patients with neurological disease is central to SINITN. The approximately 140 faculty members work in all the major areas within neuroscience, including:

- systems/behavioral neuroscience
- cellular and molecular neuroscience
- developmental neuroscience
- electrophysiology
- plasticity and neurodegenerative disease
- translational and clinical research

Students must complete 12 total Scholarly Concentration coursework units. Students undertaking both a Foundation Area and an Application Area complete six units in each.

NBC students are required to complete:

- **ANES 215**
 Journal club course in Neuroscience, Behavior, & Cognition
 (1 unit)

To complete the unit requirement, students should consult with the director about additional graduate-level coursework, which should be selected from one of the following five neuroscience areas:

- Systems and Behavior
- Molecular and Cellular
- Developmental
- Clinical
- Computational

NBC students are encouraged to participate in the annual Stanford Neuroscience Retreat. In addition, NIS sponsors three seminar series annually (*Fundamental Themes in Neuroscience, Neurobiology of Disease*, and *Frontiers in Neuroscience*) at which internationally known speakers discuss recent work.

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.
SELECT KEY FACULTY

Steinberg, Gary, MD
Professor of Neurology and Neurological Sciences
steinberg@stanford.edu

Barres, Ben, MD
Professor of Neurology, Neurological Sciences, and Developmental Biology
barres@stanford.edu

Knudsen, Eric, PhD
Professor of Neurobiology
ekknudsen@stanford.edu

Yeomans, David, PhD
Associate Professor of Anesthesia
dcyomans@stanford.edu

Giffard, Rona, MD, PhD
Professor of Anesthesia
rona.giffard@stanford.edu

EXEMPLATIVE PROJECTS (RESEARCH MENTORS, DEPARTMENTS, AND PROJECT TITLES)

<table>
<thead>
<tr>
<th>Mentor</th>
<th>Department</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barres, Ben</td>
<td>Neurobiology</td>
<td>Characterization of candidate genes for glaucoma in retinal ganglion cells: toward a novel mechanism</td>
</tr>
<tr>
<td>Barres, Ben</td>
<td>Neurobiology</td>
<td>A role for APP in astrocyte mediated synaptogenesis</td>
</tr>
<tr>
<td>Buckmaster, Paul</td>
<td>CompMed</td>
<td>Axon sprouting in layer II of the entorhinal cortex in temporal lobe epilepsy</td>
</tr>
<tr>
<td>Jeng, Michael</td>
<td>Pediatric Hematology/Oncology</td>
<td>Do silent infarcts occur in children with SCD who are chronically transfused for stroke?</td>
</tr>
<tr>
<td>Knudsen, Eric</td>
<td>Neurobiology</td>
<td>Effect of bimodal sensory stimulation on adaptive auditory plasticity in adult barn owls</td>
</tr>
<tr>
<td>Mackey, Sean</td>
<td>Anesthesia</td>
<td>Functional MRI neural correlates of duloxetine efficacy in patients with chronic low back pain</td>
</tr>
<tr>
<td>Menon, Vinod</td>
<td>Psychiatry</td>
<td>FMRI Default mode deactivation predicts memory task performance: A comparison study between healthy young and old subjects</td>
</tr>
<tr>
<td>Scott, Matthew P</td>
<td>Developmental Bio</td>
<td>Neurodegeneration and Niemann-Pick C disease: the role of Npc1 in steroidogenesis</td>
</tr>
<tr>
<td>Steinberg, Gary</td>
<td>Neurosurgery</td>
<td>Neural stem cell migration and synapse formation at sites of injury in the cerebral cortex</td>
</tr>
<tr>
<td>Tse, Victor</td>
<td>Neurosurgery</td>
<td>Optical imaging of U87MG glioblastoma multiforme in an orthotopic mouse model</td>
</tr>
<tr>
<td>Yeomans, David</td>
<td>Anesthesia</td>
<td>Changes in expression of voltage gated sodium channels in incisional pain</td>
</tr>
<tr>
<td>Yeomans, David</td>
<td>Anesthesia</td>
<td>The role of nav1.7 channels in the processes of incisional nociception</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/nbc/
OVERVIEW

The Women’s Health and Sex Differences (WHSD) Application Area addresses a wide scope of sex/gender-based biology and medical topics, with a focus on health issues that are unique, more prevalent or different in women compared to men. Research on differences due to sex (biology) and/or gender (sociocultural influences), and interactions of sex and gender on biology and health outcomes, is encouraged within each foundation and across all applications.

WHSD students receive training in a model that integrates biomedical and social science, by way of interdisciplinary, collaborative experiences driven from basic, translational, clinical and population research. This approach transcends the boundaries of medical specialties, in order to provide a more comprehensive understanding of health for all women, and men, and of basic biology, from conception to old age, in both sexes.

CONTACTS

Marcia Stefanick, PhD
Co-Director
Professor of Medicine (Stanford Prevention Research Center) and, Professor of Obstetrics and Gynecology
Co-Director, Co-Founder, Stanford WSDM* Center
stefanick@stanford.edu

Lynn Westphal, MD
Co-Director
Associate Professor of Obstetrics and Gynecology
Co-Director, Co-Founder, Stanford WSDM* Center
lynnw@stanford.edu

Administrative Coordinator
Sonoo Thadaney
Managing Director, Stanford WSDM* Center
sonoot@stanford.edu

Administrative Support
Terri Oppelt Preising
Program Associate, Stanford WSDM* Center
preising@stanford.edu

wsdm.stanford.edu

*Women and Sex Differences in Medicine

CORE COURSES

Students must complete 12 total Scholarly Concentration coursework units. Students undertaking both a Foundation Area and an Application Area complete six units in each.

WHSD students select coursework from the following:

- MED 240
 Sex and Gender in Human Physiology and Disease (2-3 units)
- OBGYN 256
 Current Controversies in Women’s Health (2-3 units)
- SOMGEN 206
 Global Medical Issues Affecting Women (1 unit)
- SOMGEN 230
 Human Sexual Diversity in Medical Practice (1-3 units)
- INDE 237
 Medical Impact of Sexual and Relationship Abuse Throughout the Life Course (1 unit)
- INDE 298
 Women’s Health Independent Project (1 unit)
- Other Medical School courses may qualify with approval of Course Directors, who are currently developing new WHSD courses for 2014-15

For full descriptions of School of Medicine courses, please visit the online catalog: http://medcatalog.stanford.edu.

http://med.stanford.edu/wh/

2014.07.28
The Stanford WSDM Center (Health Research on Women and Sex Differences in Medicine) mission:
advancing human health across the lifespan through research and education in women’s health, biology of sex differences, and gender medicine.

Co-directed by WHSD application directors, Stefanick and Westphal, the Stanford WSDM Center serves as the administrative home of the medical school’s WHSD application. Launched in January 2013, the Center has an extensive network of School of Medicine and Stanford University faculty partners, including an Advisory Board of 25+ faculty leaders who conduct diverse WSDM-related basic, clinical, and population health research, and faculty representatives from every SoM department.

Annual WSDM symposia include: Basic &Translational Research on Sex Differences in specified disciplines (Neuroscience, 2013; Immunology, 2014; Genetics, 2015); the Women’s Health Forum (focused on clinical issues and special topics); and special Fall symposia, e.g. Trans* Health (Fall 2014). See wsdm.stanford.edu

RECENT WH(SD) PROJECTS (STUDENTS MATRICULATED 2010-PRESENT)

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>MENTOR</th>
<th>MENTOR DEPT</th>
<th>STUDENT SC</th>
<th>PROJECT TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Rawi, Duaa</td>
<td>Westphal, Lynn</td>
<td>Ob-Gyn</td>
<td>N/A</td>
<td>Transitioning Health: A proposal to Assess and Improve Transgender Healthcare at Stanford by Expanding Medical Education and Introducing a Trans Patient Navigator Program</td>
</tr>
<tr>
<td>Hathi, Sejal</td>
<td>Baker, Valerie</td>
<td>Ob-Gyn</td>
<td>N/A</td>
<td>Probing Patient Narratives of Motherhood and Identity: a Combined Retrospective/Prospective Analysis of Primary Ovarian Insufficiency in Women</td>
</tr>
<tr>
<td>Henderson, Michael</td>
<td>Tang, Jean (Stefanick, M)</td>
<td>Dermatology (Med-SPRC)</td>
<td>HSPR</td>
<td>A Prospective Cohort Study of Smoking on Skin Cancer Risk in Multi-Ethnic Post-Menopausal Women</td>
</tr>
<tr>
<td>Lyons, Kenya</td>
<td>Shaw, Kate</td>
<td>Ob-Gyn</td>
<td>N/A</td>
<td>Pre-Operative Effects of Mifepristone on Dilation and Evacuation Services During the Second Trimester</td>
</tr>
<tr>
<td>Mastey, Namrata</td>
<td>Shaw, Kate</td>
<td>Ob-Gyn</td>
<td>HSPR</td>
<td>The implant vs the IUD: Physician counseling biases in Long Acting Reversible Contraception</td>
</tr>
<tr>
<td>Ragavan, Meera</td>
<td>Miller, Norman</td>
<td>Medicine</td>
<td>HSPR</td>
<td>Stanford India Health Policy Initiative: Evaluating Barriers to Improving Institutional Delivery Rates in India</td>
</tr>
<tr>
<td>Ransohoff, Katherine</td>
<td>Tang, Jean (Stefanick, M)</td>
<td>Dermatology (Med-SPRC)</td>
<td>BEMH/CVP</td>
<td>Building a gene-environment model of vitamin D status and its risk with colon and breast cancer risk in the Women's Health Initiative</td>
</tr>
<tr>
<td>Reddy, Himabindu</td>
<td>Miller, Norman</td>
<td>Medicine</td>
<td>HSPR/WH</td>
<td>Stanford India Health Policy Initiative: Evaluating Barriers to Improving Institutional Delivery Usage in Uttar Pradesh</td>
</tr>
<tr>
<td>Robles, Diana</td>
<td>Druzin, Maurice</td>
<td>Ob-Gyn</td>
<td>CH/CH/CBIO</td>
<td>Variations in neonatal transport based on individual and hospital level factors</td>
</tr>
<tr>
<td>Schoen, Lucy</td>
<td>Westphal, Lynn (Stefanick, M.)</td>
<td>Og-Gyn (Med-SPRC)</td>
<td>CR/WH</td>
<td>Reproductive Factors and Postmenopausal Cognition as assessed by Modified Mini-Mental Status (WHI project)</td>
</tr>
<tr>
<td>Solomon, Megan</td>
<td>Chen, Bertha (Stefanick, M.)</td>
<td>Ob-Gyn (Med-SPRC)</td>
<td>CH</td>
<td>Effects of a dietary intervention and weight change on urinary incontinence symptoms in the Women's Health Initiative</td>
</tr>
<tr>
<td>Wang, Ange</td>
<td>Wakelee, Heather (Stefanick, M.)</td>
<td>Medicine (Med-SPRC)</td>
<td>HSPR</td>
<td>Relationship of active, passive, and never-smoking with lung cancer risk in post-menopausal women, stratified by histological subtype</td>
</tr>
<tr>
<td>Winget, Caitlin</td>
<td>Lathi, Ruth Bunker</td>
<td>Ob-Gyn</td>
<td>BENG/WH</td>
<td>Weight Loss Effects on Fertility and Pregnancy Outcomes Among Obese Infertility Patients</td>
</tr>
</tbody>
</table>

http://med.stanford.edu/women/