Right Ventricular Stroke Work Correlates With Outcomes in Pediatric Pulmonary Arterial Hypertension (PAH) Patients

Weiguang Yanga, Alison Marsdena,b, Michelle Ogawaa, Charlotte Sakarovitcha, Keeley Phillipsa, Marlene Rabinovitcha, Jeffrey Feinsteina,b

Departments of aPediatrics and bBioengineering, Stanford University
Pulmonary arterial hypertension (PAH): PAP >25 mmHg and PVR >3 WU

- Progression is highly variable and poorly understood (5-year survival rates: 60-70%).
- Endpoints are not well characterized in children (e.g. 6MW).
- Need improved clinical markers

Van Loon et al., Circulation, 2011
Pressure-volume (P-V) loops characterize ventricular performance.

Right ventricular stroke work (RVSW): area enclosed by the P-V loop.
Pressure-volume (P-V) loops characterize ventricular performance.

Right ventricular stroke work (RVSW): area enclosed by the P-V loop.

P-V loops are difficult to measure routinely.
Pressure-volume (P-V) loops characterize ventricular performance.

Right ventricular stroke work (RVSW): area enclosed by the P-V loop

P-V loops are difficult to measure routinely.

Goals: assess RVSW in pediatric patients with PAH:

\[RVSW = \int_0^T P(t)V(t)dt, \quad RVSW_{BSA} = \frac{RVSW}{BSA^{1.407}} \]

\[RVSW_{EF} = \frac{RVSW_{BSA}}{EF} \]
Methods

- Use computational modeling + routinely measured clinical data
 - Lumped parameter model (LPM): use electric circuits to model hemodynamics
 - Right heart catheterization (RHC): RV and PA pressures
 - MRI: RV volumes (EDV and ESV) and PA flow
- Tune LPM to match RHC/MRI measurements by optimization.
Study Design

<table>
<thead>
<tr>
<th></th>
<th>Stable n=9</th>
<th>Worsening* n=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>Age (years)</td>
<td>10.7(4.9-16.3)</td>
<td>8.4(4.4-13.5)</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.0(0.6-1.7)</td>
<td>0.9(0.7-1.8)</td>
</tr>
<tr>
<td>IPAH</td>
<td>n=5</td>
<td>n=7</td>
</tr>
<tr>
<td>Prostacyclin therapy</td>
<td>n=3</td>
<td>n=7</td>
</tr>
<tr>
<td>Follow-up (years)</td>
<td>4.2(1.2-8)</td>
<td>3.7(1.1-6)</td>
</tr>
<tr>
<td>PVRI (WU × m²)</td>
<td>6.8 (5.2-31.6)</td>
<td>14.8 (8.1-24.7)</td>
</tr>
<tr>
<td>RVEF (%)</td>
<td>48(30-55)</td>
<td>48(18-54)</td>
</tr>
</tbody>
</table>

- **Inclusion criteria**
 - Age<18
 - IPAH or PAH-CHD
 - multiple paired RHC/MRI (n≥2)

- **17 patients with 61 data points**
- *Clinical worsening: death, listed or considered for transplantation, poor hemodynamic responses to maximal therapy*
Results

a) Stable

b) Worsening

- Patients with clinical worsening have increased RVSW.
Patients with clinical worsening have increased RVSW.

Quantities of interest are grouped and compared by outcomes (stable vs clinical worsening) within 2 years following RHC/MRI.
- Patients with clinical worsening have increased RVSW.
- Quantities of interest are grouped and compared by outcomes (stable vs clinical worsening) within 2 years following RHC/MRI.
- A linear mixed model is used to test the associations between predictors and outcomes.
Results

7 / 12

(a) RV_{SWF}

- Stable
- Worsening

$P < 0.0001$

$n = 55$
$n = 6$

1 yr following MRI/RHC

(b) RV_{SWF}

- Stable
- Worsening

$P = 0.0007$

$n = 47$
$n = 13$

2 yrs following MRI/RHC

(c) RV_{SWF}

- Stable
- Worsening

$P = 0.0002$

$n = 25$
$n = 25$

5 yrs following MRI/RHC

(d) $PVRI$

- Stable
- Worsening

$P = 0.11$

$n = 55$
$n = 6$

1 yr following MRI/RHC

(e) $PVRI$

- Stable
- Worsening

$P = 0.17$

$n = 47$
$n = 13$

2 yrs following MRI/RHC

(f) $PVRI$

- Stable
- Worsening

$P = 0.04$

$n = 25$
$n = 25$

5 yrs following MRI/RHC

(g) $R_P : R_S$

- Stable
- Worsening

$P = 0.02$

$n = 55$
$n = 6$

1 yr following MRI/RHC

(h) $R_P : R_S$

- Stable
- Worsening

$P = 0.002$

$n = 47$
$n = 13$

2 yrs following MRI/RHC

(i) $R_P : R_S$

- Stable
- Worsening

$P = 0.002$

$n = 25$
$n = 25$

5 yrs following MRI/RHC
\[y = 319.01x + 2457.5 \]

\[R^2 = 0.3775 \]

\[p < 1 \times 10^{-6} \]
RV SWEF is an independent predictor.
Receiver operating characteristic (ROC)

- TPR: true positive rate = sensitivity, FPR: false positive rate = 1 - specificity
- RVSW outperforms PVRI and Rp:Rs for predicting worsening 2 years following RHC/MRI (AUC: 0.86 vs 0.74 vs 0.79).
- Cutoff values for 90% spec. RVSW = 8593, PVRI = 19, Rp:Rs = 1.1
Receiver operating characteristic (ROC)

1 year following MRI/RHC

<table>
<thead>
<tr>
<th>RV SW<sub>EF</sub></th>
<th>PVRI</th>
<th>Rp:Rs</th>
<th>EF</th>
<th>EDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.93</td>
<td>0.78</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Cutoff values</td>
<td>10027</td>
<td>22</td>
<td>1.29</td>
<td>37%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.67</td>
<td>0.2</td>
<td>0.17</td>
<td>0.67</td>
</tr>
</tbody>
</table>

2 years following MRI/RHC

<table>
<thead>
<tr>
<th>RV SW<sub>EF</sub></th>
<th>PVRI</th>
<th>Rp:Rs</th>
<th>EF</th>
<th>EDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.86</td>
<td>0.74</td>
<td>0.79</td>
<td>0.74</td>
</tr>
<tr>
<td>Cutoff values</td>
<td>8593</td>
<td>19</td>
<td>1.1</td>
<td>37%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.62</td>
<td>0.39</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>

5 years following MRI/RHC

<table>
<thead>
<tr>
<th>RV SW<sub>EF</sub></th>
<th>PVRI</th>
<th>Rp:Rs</th>
<th>EF</th>
<th>EDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.85</td>
<td>0.78</td>
<td>0.83</td>
<td>0.69</td>
</tr>
<tr>
<td>Cutoff values</td>
<td>8160</td>
<td>19</td>
<td>1.1</td>
<td>34%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.6</td>
<td>0.32</td>
<td>0.36</td>
<td>0.24</td>
</tr>
</tbody>
</table>
RV stroke work in children with pulmonary arterial hypertension: estimation based on invasive haemodynamic assessment and correlation with outcomes

Michael V Di Maria,1 Adel K Younoszai,1 Luc Mertens,2 Bruce F LandeckII,1
D Dunbar Ivy,1 Kendall S Hunter,3 Mark K Friedberg2

RVSW=mPAPxSV
Cath derived mPAP
Echo derived SV

- RVSW is associated with WHO classification.
- RVSW is reduced in class IV.
- RVSW was not found be superior to PVRI.
- RVSW by mPAPxSV might underestimate RVSW by up to 35%.

Figure 1 Indexed RV stroke work (RVSW) by WHO class. When grouped by WHO heart failure class, there was a significant difference in indexed RVSW (p=0.04). RVSW appeared to trend upward in WHO classes 1, 2, and 3, but showed a decline in WHO class 4. Box plots presented here feature the median as a horizontal line within the box, while the box itself represents the IQR (25–75th); the ‘whiskers’ represent the bounds of the extreme values in which Q3+1.5(Q3-Q1) and Q1–1.5*(Q3-Q1), respectively, and single points are, therefore, outliers.

Di Maria et al., Heart, 2014
▶ Patient specific RVSW and P-V loops can be modeled easily.
▶ RVSW correlates with symptomatic/disease worsening in pediatric PAH.
▶ RVSW outperforms PVRI and Rp:Rs for predicting clinical worsening in pediatric patients with PAH.
▶ Future studies will include validation and a larger cohort of patients.
▶ Translate computational modeling into clinical practice: a website/mobile app based risk calculator for PAH patients.