Research in the Nakauchi Lab

In the Nakauchi Lab, we are working on uncovering new diseases, elucidating the causes of disease, and developing therapeutic modalities by connecting the knowledge and methodology of basic science including immunology, molecular biology, cell biology, and developmental engineering with clinical medicine.  Our ultimate goal is to contribute to establishing new frontiers of stem cell therapy and to make clinical applications of stem cells a reality.

Professor of Genetics (Stem Cell)

Publications

  • Interspecies organogenesis generates autologous functional islets. Nature Yamaguchi, T., Sato, H., Kato-Itoh, M., Goto, T., Hara, H., Sanbo, M., Mizuno, N., Kobayashi, T., Yanagida, A., Umino, A., Ota, Y., Hamanaka, S., Masaki, H., Rashid, S. T., Hirabayashi, M., Nakauchi, H. 2017; 542 (7640): 191-196

    Abstract

    Islet transplantation is an established therapy for diabetes. We have previously shown that rat pancreata can be created from rat pluripotent stem cells (PSCs) in mice through interspecies blastocyst complementation. Although they were functional and composed of rat-derived cells, the resulting pancreata were of mouse size, rendering them insufficient for isolating the numbers of islets required to treat diabetes in a rat model. Here, by performing the reverse experiment, injecting mouse PSCs into Pdx-1-deficient rat blastocysts, we generated rat-sized pancreata composed of mouse-PSC-derived cells. Islets subsequently prepared from these mouse-rat chimaeric pancreata were transplanted into mice with streptozotocin-induced diabetes. The transplanted islets successfully normalized and maintained host blood glucose levels for over 370 days in the absence of immunosuppression (excluding the first 5 days after transplant). These data provide proof-of-principle evidence for the therapeutic potential of PSC-derived islets generated by blastocyst complementation in a xenogeneic host.

    View details for DOI 10.1038/nature21070

    View details for PubMedID 28117444

  • Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation SCIENCE Taya, Y., Ota, Y., Wilkinson, A. C., Kanazawa, A., Watarai, H., Kasai, M., Nakauchi, H., Yamazaki, S. 2016; 354 (6316): 1152-1155

    Abstract

    A specialized bone marrow microenvironment (niche) regulates hematopoietic stem cell (HSC) self-renewal and commitment. For successful donor-HSC engraftment, the niche must be emptied via myeloablative irradiation or chemotherapy. However, myeloablation can cause severe complications and even mortality. Here we report that the essential amino acid valine is indispensable for the proliferation and maintenance of HSCs. Both mouse and human HSCs failed to proliferate when cultured in valine-depleted conditions. In mice fed a valine-restricted diet, HSC frequency fell dramatically within 1 week. Furthermore, dietary valine restriction emptied the mouse bone marrow niche and afforded donor-HSC engraftment without chemoirradiative myeloablation. These findings indicate a critical role for valine in HSC maintenance and suggest that dietary valine restriction may reduce iatrogenic complications in HSC transplantation.

    View details for DOI 10.1126/science.aag3145

    View details for Web of Science ID 000388916400043

    View details for PubMedID 27934766

  • Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. Cell stem cell Masaki, H., Kato-Itoh, M., Takahashi, Y., Umino, A., Sato, H., Ito, K., Yanagida, A., Nishimura, T., Yamaguchi, T., Hirabayashi, M., Era, T., Loh, K. M., Wu, S. M., Weissman, I. L., Nakauchi, H. 2016; 19 (5): 587-592

    Abstract

    Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17(+) endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17(+) endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine.

    View details for DOI 10.1016/j.stem.2016.10.013

    View details for PubMedID 27814480

  • Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche NATURE Chen, J. Y., Miyanishi, M., Wang, S. K., Yamazaki, S., Sinha, R., Kao, K. S., Seita, J., Sahoo, D., Nakauchi, H., Weissman, I. L. 2016; 530 (7589): 223-?

    Abstract

    Haematopoietic stem cells (HSCs) are arguably the most extensively characterized tissue stem cells. Since the identification of HSCs by prospective isolation, complex multi-parameter flow cytometric isolation of phenotypic subsets has facilitated studies on many aspects of HSC biology, including self-renewal, differentiation, ageing, niche, and diversity. Here we demonstrate by unbiased multi-step screening, identification of a single gene, homeobox B5 (Hoxb5, also known as Hox-2.1), with expression in the bone marrow that is limited to long-term (LT)-HSCs in mice. Using a mouse single-colour tri-mCherry reporter driven by endogenous Hoxb5 regulation, we show that only the Hoxb5(+) HSCs exhibit long-term reconstitution capacity after transplantation in primary transplant recipients and, notably, in secondary recipients. Only 7-35% of various previously defined immunophenotypic HSCs are LT-HSCs. Finally, by in situ imaging of mouse bone marrow, we show that >94% of LT-HSCs (Hoxb5(+)) are directly attached to VE-cadherin(+) cells, implicating the perivascular space as a near-homogenous location of LT-HSCs.

    View details for DOI 10.1038/nature16943

    View details for Web of Science ID 000369916700040

    View details for PubMedID 26863982

    View details for PubMedCentralID PMC4854608

  • Clonal Analysis Unveils Self-Renewing Lineage-Restricted Progenitors Generated Directly from Hematopoietic Stem Cells CELL Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H., Nakauchi, H. 2013; 154 (5): 1112-1126

    Abstract

    Consensus holds that hematopoietic stem cells (HSCs) give rise to multipotent progenitors (MPPs) of reduced self-renewal potential and that MPPs eventually produce lineage-committed progenitor cells in a stepwise manner. Using a single-cell transplantation system and marker mice, we unexpectedly found myeloid-restricted progenitors with long-term repopulating activity (MyRPs), which are lineage-committed to megakaryocytes, megakaryocyte-erythroid cells, or common myeloid cells (MkRPs, MERPs, or CMRPs, respectively) in the phenotypically defined HSC compartment together with HSCs. Paired daughter cell assays combined with transplantation revealed that HSCs can give rise to HSCs via symmetric division or directly differentiate into MyRPs via asymmetric division (yielding HSC-MkRP or HSC-CMRP pairs). These myeloid bypass pathways could be essential for fast responses to ablation stress. Our results show that loss of self-renewal and stepwise progression through specific differentiation stages are not essential for lineage commitment of HSCs and suggest a revised model of hematopoietic differentiation.

    View details for DOI 10.1016/j.cell.2013.08.007

    View details for Web of Science ID 000323767300023

    View details for PubMedID 23993099