Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling

Running Title: Early detection of lung cancer MRD by ctDNA profiling

Key Words: lung cancer, molecular residual disease, circulating tumor DNA

Authors
Aadel A. Chaudhuri1,2, Jacob J. Chabon2,3, Alexander F. Lovejoy1,2,†, Aaron M. Newman3,4, Henning Stehr2, Tej D. Azad2, Michael S. Khodadoust2,4, Mohammad Shahrokh Esfahani2, Chih Long Liu2,4, Li Zhou2,4, Florian Scherer2,4, David M. Kurtz2,4, Carmen Say1, Justin N. Carter1, David J. Merriott1, Jonathan C. Dudley2,6, Michael S. Binkley1, Leslie Modlin1, Sukhmani K. Padda4, Michael F. Gensheimer1, Robert B. West6, Joseph B. Shrager7, Joel W. Neal4, Heather A. Wakelee4, Billy W. Loo Jr.1, Ash A. Alizadeh2,3,4,* Maximilian Diehn1,2,3,*

Affiliations
1Department of Radiation Oncology, Stanford University, Stanford, California, USA.
2Stanford Cancer Institute, Stanford University, Stanford, California, USA.
3Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
4Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA.
5Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
6Department of Pathology, Stanford University, Stanford, California, USA.
7Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford School of Medicine, Stanford University, Stanford, California, USA.
†Present address: Roche Sequencing Solutions, Pleasanton, CA 94588, USA.
*Co-corresponding authors
*Correspondence should be addressed to:
Maximilian Diehn, M.D./Ph.D.
Assistant Professor
Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology & Regenerative Medicine
diehn@stanford.edu
Tel: 650-721-1550

Ash A. Alizadeh, M.D./Ph.D.
Assistant Professor
Division of Oncology, Department of Medicine, Stanford Cancer Institute, and Institute for Stem Cell Biology & Regenerative Medicine
arasha@stanford.edu
Tel: 650-725-0120

Disclosure of Potential Conflicts of Interest:
A.M.N., A.A.A., and M.D. are co-inventors on patent applications related to CAPP-Seq. A.M.N., A.A.A., and M.D. are consultants for Roche Molecular Systems, and A.F.L. is employed by Roche Molecular Systems. J.W.N. has served as a consultant for Clovis Oncology, CARET, Nektar, and Boehringer Ingelheim, and has received research funding from Genentech and Merck. A.A.A. has served as a consultant for Genentech, Gilead, and Celgene. M.D. has served as a consultant for Novartis and Quanticle Pharmaceuticals. M.D. and B.W.L. Jr. have received research funding from Varian Medical Systems. B.W.L. Jr. has received research support from RaySearch Laboratories and is a founder and board member of TibaRay, Inc.

Grant Support:
This work was supported with grants from the Radiological Society of North America (A.A.C.), the National Science Foundation (J.J.C.; DGE-114747), the Department of Defense (M.D.), the National Cancer Institute (M.D., A.A.A.; R01CA188298), the US National Institutes of Health Director’s New Innovator Award Program (M.D.; 1-DP2-CA186569), the Virginia and D.K. Ludwig Fund for Cancer Research (M.D. and A.A.A.), a Stanford Cancer Institute-Developmental Cancer Research Award (M.D. and A.A.A.), and the CRK Faculty Scholar Fund (M.D.). Funding sources played no role in the writing of this manuscript or decision to submit it for publication.
Abstract:
Identifying molecular residual disease (MRD) after treatment of localized lung cancer could facilitate early intervention and personalization of adjuvant therapies. Here we apply Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) circulating tumor DNA (ctDNA) analysis to 255 samples from 40 patients treated with curative intent for stage I-III lung cancer and 54 healthy adults. In 94% of evaluable patients experiencing recurrence, ctDNA was detectable in the first post-treatment blood sample, indicating reliable identification of MRD. Post-treatment ctDNA detection preceded radiographic progression in 72% of patients by a median of 5.2 months and 53% of patients harbored ctDNA mutation profiles associated with favorable responses to tyrosine kinase inhibitors or immune checkpoint blockade. Collectively, these results indicate that ctDNA MRD in lung cancer patients can be accurately detected using CAPP-Seq and may allow personalized adjuvant treatment while disease burden is lowest.

Significance:
This study shows that ctDNA analysis can robustly identify post-treatment MRD in localized lung cancer patients, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest.

Introduction:
Lung cancer is the leading cause of cancer and cancer-related mortality worldwide (1). In patients with non-metastatic lung cancers, a subset can be cured after primary surgical resection, radiotherapy, and/or combined treatment approaches including chemotherapy (1,2). Following curative-intent first line therapies, current routine clinical surveillance involves serial radiographic imaging (1,2). However, such surveillance can only detect macroscopic disease recurrence and is frequently inconclusive due to post-
treatment normal tissue changes (3,4). Unfortunately outcomes are especially poor after clinical disease progression (5). Therefore, a sensitive and specific biomarker that detects molecular residual disease (MRD) before macroscopic recurrence and potentially enables initiation of adjuvant treatment while disease burden is minimal is a major unmet need.

Liquid biopsy approaches represent a promising strategy for disease surveillance in solid tumors (6). Circulating tumor DNA (ctDNA) has been shown to identify MRD shortly after completion of local therapy in patients with non-metastatic breast and colon cancers using assays that require personalization (7,8). These studies demonstrated ability of ctDNA to predict disease recurrence with high specificity using assays that primarily tracked a single mutation in each patient. However, ctDNA was not detected in ≥50% of patients who ultimately recurred (7,8), suggesting that increased sensitivity for ctDNA detection may be beneficial. We previously reported development of cancer personalized profiling by deep sequencing (CAPP-Seq), a next generation sequencing-based method that tracks multiple mutations per patient, can achieve lower limits of detection ~0.002%, and does not require creation of personalized assays (9,10). In this study, we set out to determine whether CAPP-Seq ctDNA analysis can reliably identify MRD in patients with localized lung cancer. We also addressed the hypothesis that integrating multiple mutations and mutation types improves sensitivity for disease detection and explored if ctDNA analysis might guide personalized interventions such as targeted therapy or immunotherapy.

Results:
We retrospectively profiled 255 blood and tissue samples from 40 patients with localized lung cancers being treated with curative-intent first line therapies and 54 healthy adults (Supplemental Figure S1, Table S1-S3). All patients had biopsy-proven non-small cell
lung cancer (NSCLC; n=37, 93%) or small cell lung cancer (SCLC; n=3, 7%), with seven patients (18%) having stage IB and 33 patients (82%) having stage II or III disease (Supplemental Table S4-S5).

Plasma samples were collected before treatment and at follow-up visits, which occurred every 2-6 months and were usually coincident with surveillance CT or PET/CT scans (Figure 1A). For ctDNA analysis, we applied a 188 kb CAPP-Seq selector targeting 128 genes recurrently mutated in lung cancer (Supplemental Table S6) (9,10).

Using an optimized ctDNA detection approach we recently described (10), we detected pre-treatment ctDNA in 37 patients (93%) with an average of 5 mutations per patient and median mutant allele fraction (AF) of 0.62%, nearly 10-fold lower than we previously observed in metastatic lung adenocarcinoma (11). Among the mutations we detected pre-treatment were nonsynonymous mutations in the candidate driver genes TP53, KRAS, KEAP1, EGFR, STK11, NF1, and CDKN2A (Figure 1B). Candidate driver genes were defined as genes that were found to be statistically significantly mutated in NSCLC or SCLC in prior studies (Supplemental Methods, Supplemental Table S6) (12-15). The majority of mutations (82%; “other mutations”) we identified were not previously classified as driver mutations and consisted of ‘private’ or ‘passenger’ mutations that have no known functional impact (Figure 1C). This matched the fraction of non-silent passenger mutations we observed in 1,178 NSCLC tumors from TCGA when considering the same genomic coordinates covered by our CAPP-Seq panel (9,671 out of 11,738; 82%) (Supplemental Table S7).

In order to assess the clinical specificity of our approach for disease monitoring, we also applied CAPP-Seq to cell-free DNA extracted from the plasma of 54 healthy adults (Supplemental Table S2, Supplemental Table S8). The median age of healthy donors
was 57 years (range 27 to 82), which was somewhat lower than for patients (median 66.5 years; range 47 to 91; \(P < 0.05 \)). ROC analysis revealed an area under curve of 0.97, with maximal sensitivity and specificity of 93% and 96%, respectively, and was superior to detection by candidate driver or other mutations alone (Figure 1D). Pre-treatment ctDNA detection rates were 89% for adenocarcinoma, 93% for squamous cell carcinoma, and 100% for other NSCLC subtypes and SCLC. Among patients with ctDNA detectable before therapy, pre-treatment ctDNA concentration was highly correlated with metabolic tumor volume (Pearson \(r = 0.55, P = 0.0004 \); Figure 1E). Concentration of ctDNA in pre-treatment plasma was significantly lower in patients with stage I compared to those with stage II-III tumors (\(P = 0.002 \); Figure 1F). Baseline characteristics did not correlate with overall survival (Supplemental Table S9).

To explore serial ctDNA analysis for disease surveillance during follow-up, we monitored post-treatment the 37 patients with detectable pre-treatment ctDNA by both cross-sectional imaging and ctDNA analysis (Supplemental Table S1). The presence of ctDNA was evaluated by searching for the presence of previously identified tumor mutations in post-treatment plasma using CAPP-Seq and a previously described Monte Carlo-based approach (see Methods). We detected ctDNA in at least one post-treatment time point in 20 patients (54%) and all 20 of these patients ultimately recurred. Both candidate driver and passenger mutations were important for ctDNA detection during surveillance, with detection of only driver mutations in 35%, only passenger mutations in 35%, and both types of mutations in 30% of patients (Figure 2A, Supplemental Table S10). The most frequently detected mutations in surveillance samples included mutations in \(TP53, KRAS, EGFR, \) and \(KEAP1 \) (Figure 2B). Patients with detectable ctDNA at any post-treatment time point had significantly lower freedom from progression and survival than those in whom we did not detect ctDNA after completion of therapy (\(P < 0.001 \); Figure 2C, Supplemental Figure 2). Results
remained highly significant when accounting for guarantee-time bias ($P < 0.001$; Supplemental Table S11) (16). Detection of ctDNA preceded radiographic progression as determined by RECIST 1.1 criteria (17) in 72% of patients and by a median of 5.2 months (Figure 2D). While RECIST criteria are frequently used to assess efficacy of treatments in clinical trials, they are not routinely used in clinical practice, where diagnostic radiology reports usually more generally classify scans as showing 1) no evidence of disease, 2) recurrent/persistent disease, or 3) equivocal findings due to an inability to distinguish tumor from post-treatment tissue changes or other processes (18). We therefore systematically analyzed all post-treatment radiology reports ($n = 227$) for patients in our cohort and classified them into these three groups (Figure 2E, Supplemental Table S1). Analysis of ctDNA served as a reliable predictor of ultimate outcomes in patients with negative or equivocal scans (Figure 2E-2F). These findings suggest that ctDNA analysis may be a useful adjunct to routine imaging studies.

We next asked whether ctDNA could be detected at a pre-specified “MRD landmark” which was defined as the first post-treatment blood draw within 4 months of treatment completion and generally corresponded to the time of the first follow-up scan (1). Landmark methodology was used in order to minimize guarantee-time bias (16). Thirty-two patients had their first post-treatment ctDNA assessment within 4 months of treatment completion and were thus included in this analysis (Supplemental Figure S1). Analyzing the mutations detected in pre-treatment plasma or tumor specimens, we detected ctDNA in 17 patients (53%) at the MRD landmark, with a median mutant allele fraction of 0.20% (Supplemental Figure S3). We detected an average of 2 mutations per patient at the MRD landmark, >50% less than pre-treatment, indicating that tracking of multiple mutations including drivers and passengers is beneficial for MRD detection.
We next sought to explore whether detection of ctDNA MRD was associated with outcome. Freedom from progression at 36 months after the MRD landmark was 0% in patients with detectable and 93% in patients with undetectable ctDNA MRD ($P < 0.001$, HR 43.4, 95% CI 5.7-341; Figure 3A). Only one patient who ultimately recurred had undetectable ctDNA at the MRD landmark, and in this patient ctDNA became detectable 8 months later, coincident with local disease recurrence (Supplemental Figure S4).

Analysis of disease-specific survival (DSS) and overall survival (OS) revealed similar results (Figure 3A-3B, Supplemental Figure S5), with patients with undetectable ctDNA at the MRD landmark experiencing significantly better long-term survival than those with detectable ctDNA ($P < 0.001$). In contrast, radiographic response assessment by computed tomography (CT) at the MRD landmark was not prognostic in this cohort (Supplemental Figure S6). Detection of ctDNA was strongly prognostic in both node-negative patients who predominantly received stereotactic ablative radiotherapy or surgery, and in node-positive patients who predominantly received chemoradiotherapy (Supplemental Figure S7), and remained significant by Cox regression with multiple covariates ($P < 0.001$; Supplemental Table S12). Results remained highly significant when considering only NSCLC patients (Supplemental Figure S8). Since some patients had already progressed clinically or radiographically by the pre-specified MRD landmark, we also performed a post hoc subset analysis in which we assessed patients at an earlier landmark of 6 weeks post-treatment. Thirteen patients had blood drawn by this time point and were thus eligible for this analysis. Kaplan-Meier analysis revealed similar results with significantly higher freedom from progression and overall survival in patients with undetectable post-treatment ctDNA compared to those with detectable ctDNA at this early post-treatment time point (Supplemental Figure S9).
To quantify the impact of tracking multiple variants on the sensitivity of MRD detection, we compared our approach to tracking a single mutation. With single mutation tracking, MRD detection rate was 58% on average, significantly lower than the 94% detection rate when using all variants ($P = 0.001$; **Figure 3C**). Therefore, tracking of multiple mutations maximizes sensitivity of lung cancer MRD detection.

The ability to detect MRD could facilitate testing if early intervention, prior to clinical recurrence, could improve outcomes. We therefore explored types of treatments that could potentially have been offered to patients in our cohort at the time of MRD detection. In three patients, we identified *EGFR* L858R mutations in ctDNA at the MRD landmark, preceding clinical progression by an average of 3 months. For example, patient LUP20 was an 81-year-old who received stereotactic ablative radiotherapy (SABR) for stage IB disease and had an excellent radiographic response (**Figure 4A**). However, this patient presented with symptomatic brain metastases 3 months later for which she refused treatment and she died shortly thereafter. Of note, she did not have pre-treatment brain MRI. A PET-CT 2 weeks after diagnosis of brain metastases demonstrated increased size and FDG avidity in the right adrenal gland, suspicious for metastasis. We detected *EGFR* L858R at the MRD landmark prior to the development of symptoms, suggesting that this patient could potentially have been offered early initiation of an *EGFR* TKI and/or brain MRI surveillance.

While expression of PD-L1 is the best established predictive biomarker for immune checkpoint inhibitors (19), NSCLC patients whose tumors harbor >200 nonsynonymous mutations per exome also appear to be enriched for responders (20). Tumor genotyping using smaller gene panels can be used to infer tumor mutation burden (TMB) in tumor biopsies (21), but this approach has not been applied to ctDNA. We therefore derived an equation relating CAPP-Seq mutation burden to whole exome mutation burden using...
data from The Cancer Genome Atlas (Figure 4B). We validated this equation by performing both CAPP-Seq and whole exome sequencing on DNA from 5 NSCLC tumor samples (Supplemental Figure S10). Using this equation, we identified NSCLC patients in our cohort whose predicted TMB exceeded 200 variants. One such patient (LUP238) with stage IIIA lung squamous cell carcinoma whose tumor was predicted to harbor 331 exome mutations by CAPP-Seq achieved a complete metabolic response by PET/CT to curative-intent first line concurrent chemoradiotherapy (Figure 4C). Nevertheless, we detected ctDNA at 0.27 hGE/mL at the MRD landmark, and the patient developed a symptomatic brain metastasis 5 months later that had not been present on pre-treatment brain MRI and which was treated with radiosurgery. The patient developed biopsy-proven widespread metastases 4 months later, which were refractory to chemotherapy.

Similarly, another patient with stage III disease (LUP241) was predicted to harbor 207 non-synonymous mutations and developed brain metastases 6 months after treatment that resulted in death and were not present on the pre-treatment brain MRI. It is possible that these patients may have benefitted from early initiation of immunotherapy.

Extending this analysis to all patients with detectable ctDNA MRD, we found that 20% could have been potential candidates for early administration of EGFR TKIs, 33% for immune checkpoint inhibitors, and the remaining 47% for chemotherapy (Figure 4D). Importantly, these analyses are exploratory and hypothesis-generating and will need to be tested in prospective clinical trials before any consideration of routine clinical application.

Discussion:

Our findings suggest that ctDNA analysis is a promising approach for MRD detection in patients with localized lung cancers and that it can identify recurrence significantly earlier than routine CT imaging. Within our cohort, all patients with detectable ctDNA during post-treatment surveillance developed progressive disease, while all patients whose
ctDNA remained undetectable remained disease-free. The sensitivity of our approach for detecting MRD in patients who ultimately recurred was higher than seen in recent ctDNA studies for other cancer types, likely due to a combination of technical and biological differences (7,8).

We found that analysis of ctDNA detected disease recurrence earlier than imaging in 72% of patients with a median lead time of 5.2 months, opening a window of opportunity in which to treat patients while tumor burden and heterogeneity are at their lowest. Given the poor outcomes we observed in patients with detectable post-treatment ctDNA MRD, it is likely that this subgroup could benefit from adjuvant treatment. Previous trials of adjuvant chemotherapy in non-metastatic NSCLC demonstrated a ~5% absolute survival benefit at 5 years (22), meaning that ~20 patients need to be treated per patient who benefits. This relatively large number is in part because a significant subset of patients enrolled in these trials were cured by local therapy and thus received no benefit from the additional treatment. We anticipate that selection of patients for adjuvant therapy based on detection of MRD, rather than based on nodal status or clinical risk factors such as primary tumor size and nuclear grade, will better enrich for patients who need adjuvant treatment while sparing those unlikely to benefit from toxicity.

In our cohort, ctDNA MRD detection was highly prognostic for both node-negative and node-positive lung cancer patients. We thus envision that detection of MRD will be useful for patients in both groups, with an important caveat being that our analysis included only 9 evaluable patients with node-negative disease. For patients with node-negative disease, adjuvant systemic therapy is currently usually not given, since the majority of these patients are cured by surgery and/or radiotherapy and since adjuvant chemotherapy may be detrimental in some of these patients (1,22). Administration of adjuvant chemotherapy in these patients remains controversial and is currently based on
clinical risk factors such as tumor size (1). Thus, there is an opportunity for testing the utility of adjuvant systemic treatment based on detection of MRD. For patients with node-positive disease, consolidation systemic therapy is currently part of the standard of care in most patients receiving chemoradiotherapy (1). However, it is likely that a subset of these patients is cured by chemoradiotherapy alone, with multiple randomized trials showing no survival benefit of consolidation chemotherapy (23,24). Thus, personalization of adjuvant/consolidation treatment decisions could potentially be beneficial for patients with both node-positive and node-negative stage I-III NSCLC. Importantly, the utility of chemotherapy treatment based ctDNA MRD analysis will need to be tested in prospective clinical trials.

Targeted therapeutics are currently not administered first-line in patients with localized non-small cell lung cancer and instead are reserved for treatment of recurrence. It is tempting to speculate that patients with detectable MRD who are candidates for such targeted agents might benefit from early initiation of treatment. Selection of agents could be based on analysis of pre-treatment tissue samples, including mutation testing and PD-L1 expression (19,20). Our exploratory analysis suggests that assessment of actionable mutations and mutational load in ctDNA could serve as an additional approach for identifying patients who may benefit from early administration of tyrosine kinase or immune checkpoint inhibitors, particularly when diagnostic tissue specimens have been consumed or cannot be obtained. Notably it remains unclear if early targeted intervention based on MRD detection will improve lung cancer patient outcomes and prospective trials will be required to test this concept.

One attractive feature of ctDNA-based assays is their high specificity compared to existing clinical approaches for determining risk of recurrence. Our approach had a specificity of 96% in healthy controls and 100% in lung cancer patients who did not
develop recurrence. This is similar to specificities observed in recent studies on breast and colorectal cancer ctDNA MRD using other assays (7,8). Of note, these specificities are significantly higher than those for clinical risk factors that are currently used for informing adjuvant chemotherapy recommendations in stage I NSCLC. For example, the most commonly applied risk factor of primary tumor size ≥ 4cm only has a specificity of ~50% for predicting recurrence (25) and therefore future trials basing adjuvant treatment decisions on the presence ctDNA MRD may lead to less overtreatment. That said, applications of ctDNA MRD detection to patients with very low risks of recurrence, such as patients with very small stage IA tumors, could lead to higher false positive rates. If necessary, specificity of ctDNA-based MRD approaches could likely be further increased by increasing stringency of detection thresholds or repeat assaying.

Many of the patients in our cohort were treated with radiotherapy, which causes pulmonary tissue inflammation and fibrosis that can be difficult to distinguish from residual/recurrent disease on cross-sectional imaging (3). Accordingly, in our cohort the majority of surveillance scans were clinically interpreted as being equivocal, even though nearly half of these scans were subsequently followed by recurrence. Measurement of ctDNA served as an arbiter of equivocal imaging, with high sensitivity and specificity for predicting recurrence. Thus, ctDNA has the potential to supplement analysis of surveillance imaging by aiding the interpretation of equivocal scans.

Despite biologic differences between SCLC and NSCLC, we included both histologies in this study. Our rationale was based on the premise that MRD detection and correlation with outcomes was relevant and broadly applicable to diverse lung cancer histologies including NSCLC and SCLC. Additionally, the employed CAPP-Seq panel covered mutations present in both histologic subtypes. Notably, when we considered NSCLC alone, correlation of ctDNA MRD detection and clinical outcomes remained highly
significant. Our results suggest that future studies focused specifically on MRD detection in SCLC are warranted.

Using an NGS-based approach that involves creation of personalized assays for each patient, the TracerX consortium recently also found that detection of ctDNA during surveillance of early stage NSCLC patients precedes imaging-based recurrence (26). Unlike the current study, the TracerX study did not specifically assess the prognostic value of early ctDNA MRD detection (26). Additionally, in the TracerX cohort pre-treatment ctDNA was only detected in 19% of lung adenocarcinomas (26), compared to 89% in our study. Reasons for the lower detection rates in the TracerX study compared to our study are likely due at least in part to differences in patient cohorts such as the higher percentage of stage I patients in the TracerX study and the higher analytical sensitivity of the ctDNA detection method we employed (10,26).

The somatic mutation burden in lung cancers correlates with the duration of tobacco exposure (27), but a minority of such mutations involve genes known to drive lung cancers (12,13,27,28). In a separate study, the TracerX consortium recently reported a comprehensive analysis of mutational heterogeneity using deep multi-region exome sequencing of 327 tumor regions from 100 patients (28). While the vast majority of all detected mutations were classified as non-drivers, such variants were only slightly less likely to be clonal than driver mutations (57% vs. 64%) and most fit a mutational signature associated with smoking that dominates during early tumorigenesis (28). Consistent with this observation that passenger mutations are often clonal, we found that inclusion of non-driver mutations improved noninvasive disease detection using ctDNA without compromising specificity or predictive value for residual disease after definitive therapy. Therefore, as in tumor specimens, most somatic variants we detected in plasma of lung cancer patients were in non-driver genes. However, these non-driver mutations
appear to faithfully reflect the clonal burden of disease and are useful for post-treatment MRD detection and surveillance.

Limitations of our study include a relatively long accrual period which could have introduced unknown selection biases but conversely resulted in a relatively long median follow-up time. Additionally, although all patients were treated with definitive local therapy, the types of treatment were heterogeneous and included mostly patients treated with radiotherapy. Thus, in addition to validation of our findings in similar cohorts, future studies focused on surgically-treated patients are warranted. Finally, it is important to note that our approach is unique compared to other ctDNA detection methods because of the dedicated bioinformatic approach for tracking groups of previously identified mutations post-treatment and the high analytical sensitivity. It is unclear whether other techniques for ctDNA detection would yield similar results.

In conclusion, we found that ctDNA is a promising biomarker for early detection of MRD in localized lung cancer patients and can reliably identify patients at high risk for recurrence. Tracking multiple mutations improves the sensitivity of MRD detection and both driver and passenger mutations are useful for tracking and monitoring disease. Validation of our findings and prospective clinical trials testing therapeutic strategies based on ctDNA MRD assessment will be required to establish clinical utility.

Methods:

Study design and patients. The samples analyzed in this manuscript were collected as part of two observational registry studies focused on molecular analysis of thoracic malignancies and other tumors (NCT01385722 and NCT00349830). For our study, we identified a subset of patients from these registries treated between June 2010 and March 2016, to analyze retrospectively with the primary goal of analyzing the association
of ctDNA MRD with FFP after definitive therapy of localized lung cancers. Eligible patients included in this study were age >18 years with untreated primary lung cancers, had AJCC v7 stage IB, II, or III disease with WHO non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) histology, and received curative-intent treatment with radiotherapy, chemotherapy and/or surgery (Supplemental Figure S1). The study statistical plan used the assumption that 50% of enrolled patients would have detectable post-treatment ctDNA (based on 1-year progression free survival data from the RTOG 0617 standard-dose arm (29)), such that an accrual of 35 patients would be expected to yield 86% power to detect a difference of 75% versus 25% risk of progression for patients with positive or negative post-treatment ctDNA, with a two sided alpha of 0.05. A goal of 45 patients was targeted to account for attrition. Blood samples from five patients were included in a prior publication (9).

Eligible patients underwent pre-treatment imaging by chest CT and whole body PET-CT, and genotyping with CAPP-Seq on tumor tissue or plasma using matched germline DNA. All patients with stage II or higher disease underwent pre-treatment brain MRI, as did the majority of patients with stage I disease. This was followed by treatment with surgery or radiotherapy (with or without chemotherapy). After first line therapy, patients were followed every 3-6 months with cross-sectional imaging and blood collections (Figure 1A). For all but two patients the second blood sample was collected after completion of all treatment (LUP127 collected during and LUP235 collected before consolidation chemotherapy). The median time between the end of all treatment and the first post-treatment blood sample was 56 days. Healthy adult blood donors (n = 54) were recruited through the Stanford Blood Center (Supplemental Figure S1). All samples were collected with informed consent and institutional review board approval in accordance with the Declaration of Helsinki. All plasma samples were analyzed by CAPP-Seq as previously described (9,10).
Criteria for ctDNA MRD detection and post-treatment monitoring. ctDNA MRD and serial post-treatment plasma samples were analyzed for presence of mutations identified pre-treatment using CAPP-Seq on plasma and plasma-depleted whole blood as previously described with an additional clonal hematopoiesis filter (9,10). Briefly, ctDNA MRD analysis was performed at a pre-specified landmark that occurred within 4 months after treatment completion and typically coincided with the first post-treatment CT scan. For MRD and serial post-treatment time points, the set of mutations identified pre-treatment were assessed as a group in the post-treatment blood sample, and a Monte Carlo-based ctDNA detection index was measured to determine significance. Given concern for clonal hematopoiesis, variants with reads in PBMCs had to also be called by the CAPP-Seq variant-caller (9,10) for detection. At each time point, ctDNA detection status was determined by CAPP-Seq using a Monte Carlo-based ctDNA detection index cut-point of ≤0.05, as previously established (9,10). If ctDNA detection index was >0.05, ctDNA was classified as not detected at that time point, while if it was ≤0.05 it was classified as detected, in accordance with our prior publications (9,10). The ctDNA mutant allele fraction (AF) at each time point was calculated by averaging the mutant AFs for all mutations used for detection calling. ctDNA concentration was calculated by multiplying the mutant AF by the cell-free DNA concentration determined by Qubit (ThermoFisher Scientific, Waltham, MA) and using the assumption that each haploid genomic equivalent weighs 3.3 pg.

Landmark analyses and definition of MRD. To protect against guarantee-time bias, we used landmark analysis and time-dependent Cox models (16,30,31). The ‘MRD landmark’ for ctDNA response was pre-specified as the first phlebotomy collection following completion of curative-intent first line therapy, and occurring no more than 4
months from end of therapy. MRD was defined as Monte Carlo-based ctDNA detection at the MRD landmark using mutations identified pre-treatment (ctDNA index ≤ 0.05). ctDNA detection at the MRD landmark was used to categorize patients as post-treatment MRD positive or negative.

Statistical analyses. Our primary aim was to test the hypothesis that detection of residual ctDNA at the first blood draw after definitive local therapy is associated with high risk of recurrence. Our secondary aim was to test the hypothesis that patients who ever have ctDNA detected after local therapy have worse outcomes. We considered the following survival endpoints – freedom from progression (FFP; event defined as RECIST 1.1 based radiographic (17) or clinical progression, with non-progressors censored at last radiographic follow-up), event-free survival (EFS; event defined as post-treatment ctDNA detection or RECIST 1.1 based radiographic progression (17)), disease-specific survival (DSS; event defined as death from cancer), and overall survival (OS; event defined as death from any cause). Categorical time-to-event analyses of clinical endpoints including FFP, EFS, DSS and OS were conducted using the Kaplan-Meier method with log-rank test to estimate P-values and the Cox $\text{exp}(\beta)$ method to estimate hazard ratios. The relationship of ctDNA concentration as a continuous variable with outcome was assessed using Cox proportional hazards regression. The Wald test was used to assess the significance of covariates and hazard ratios were calculated by the $\text{exp}(\beta)$ method. Time-dependent Cox regression was performed as previously described (16). See Supplemental Methods for details.

Author Contributions:

Conception and design: A.A. Chaudhuri, J.J. Chabon, A.F. Lovejoy, A.A. Alizadeh, M. Diehn

Analysis and interpretation of data: A.A. Chaudhuri, J.J. Chabon, A.F. Lovejoy, A.A. Alizadeh, M. Diehn

Study supervision: A.A. Alizadeh, M. Diehn

Acknowledgments:

We are grateful to the patients and families involved in this study.

References:

Figure Legends

Figure 1: Pre-treatment assessment of ctDNA in localized lung cancer patients.

(A) Study schematic. Patients with biopsy- and imaging-proven non-metastatic lung cancer were enrolled pre-treatment. Plasma samples were collected before treatment and at follow-up visits, which occurred every 3-6 months and were usually coincident with surveillance scans (CT or PET/CT). (B) Co-mutation plot based on pre-treatment ctDNA analysis of patients with localized lung cancer. Each column represents pre-treatment data from a single patient. Mutant allele fraction is shown in the upper bar graph. Upper heat maps indicate key patient characteristics. Mutation recurrence rate is depicted by bar graph to the right. Nonsynonymous mutations in candidate driver genes are shown in descending order of prevalence in the middle heat map. The number of other (i.e. likely passenger) mutations detected is indicated in the bottom heat map. (C) Pie chart showing number of candidate driver and other mutations detected in pre-treatment plasma. (D) ROC analysis of pre-treatment \((n = 40) \) and healthy control \((n = 54) \) plasma samples using candidate driver, other, or both types of mutations. (E) Scatter plot correlating ctDNA concentration (haploid genome equivalents per mL, hGE/mL) with pre-treatment metabolic tumor volume (MTV) measured by PET-CT in patients with detectable ctDNA \((n = 37) \). \(P \)-value and \(r \) were calculated by Pearson correlation. (F) Pre-treatment ctDNA concentration in stage I \((n = 7) \) and stage II-III \((n = 30) \) lung cancer patients. Data represent mean + s.e.m. \(P \)-value was calculated by student's t-test with Welch's correction. mo, months; tx, treatment; NOS, not otherwise specified; Sn, sensitivity; Sp, specificity; AUC, area under the curve; PET, positron emission tomography; CT, computed tomography.

Figure 2: Application of ctDNA analysis for post-treatment surveillance in patients with localized lung cancer. (A) Both driver and other (i.e. likely passenger) mutations are useful for detection of post-treatment ctDNA. Detection of mutation types pre-
treatment and at first detectable post-treatment time point is shown. (B) Most recurrently mutated driver genes detected pre-treatment and at first post-treatment time point. (C) Kaplan-Meier analysis for freedom from progression (left) and disease-specific survival (right) stratified by ctDNA detection status during post-treatment surveillance; ever positive \(n = 20 \) versus never positive \(n = 17 \). Landmark analysis was performed from the first post-treatment blood draw. (D) Kaplan-Meier analysis of time to ctDNA detection and time to imaging progression from end of treatment for all patients who experienced post-treatment disease progression by RECIST 1.1 criteria \(n = 18 \); HR = 2.4. \(P \)-value was calculated by log-rank test and HR by Cox \(\exp(b) \) method. (E) Analysis of ctDNA could aid interpretation of equivocal CT and PET-CT scans during post-treatment surveillance \(n = 227 \) scans from 37 patients). Scans were interpreted as negative, equivocal or positive by board-certified radiologists, and compared to post-treatment ctDNA results and patient recurrence. (F) Example of patient with stage IIIIB NSCLC with equivocal surveillance imaging and undetectable post-treatment ctDNA who achieves long-term survival. mo, months; tx, treatment; CT, computed tomography; PET, positron emission tomography; squam, squamous cell carcinoma; hGE, haploid genome equivalents; chemoRT, chemoradiotherapy.

Figure 3: Detection of molecular residual disease (MRD) in localized lung cancer patients. Kaplan-Meier analysis of (A) freedom from progression (left) and disease-specific survival (right) stratified by detection of ctDNA at the MRD landmark (first post-treatment blood draw within 4 months of treatment completion); ctDNA MRD detected \(n = 17 \), not detected \(n = 15 \). \(P \)-value was calculated by log-rank test and HR by Cox \(\exp(b) \) method. (B) Event chart showing progression by RECIST 1.1 criteria and survival of patients with ctDNA detected at the MRD landmark (red) and patients with no ctDNA detected at the MRD landmark (black). (C) Likelihood of detecting ctDNA at the MRD landmark (mean + s.e.m.) by simultaneously tracking all known mutations \(n =
65; CAPP-Seq), or tracking each mutation separately \((n = 65;\) single reporter). Data represent mean + s.e.m. \(P\)-values were calculated by student’s t-test. mo, months; tx, treatment.

Figure 4: Analysis of ctDNA for assessment of potential treatment options following ctDNA MRD detection. (A) Example of patient with stage IB EGFR mutant lung adenocarcinoma with detectable ctDNA MRD. (B) Mutation load comparison between NSCLC whole exome sequencing and CAPP-Seq. Non-small cell lung cancer mutations from 1,178 tumors determined by whole exome sequencing by TCGA were intersected with the CAPP-Seq lung selector to determine number of mutations that would have been called by CAPP-Seq. Linear correlation (Pearson \(r = 0.93\)) with equation as shown with \(\geq5\) CAPP-Seq nonsynonymous mutations corresponding to \(>200\) whole exome non-synonymous mutations. (C) Example of patient with stage IIIA NSCLC with detectable ctDNA MRD. (D) Analysis of treatment strategies that could potentially have been offered to patients with detectable MRD based on mutation type (i.e. presence of EGFR activating mutation) and mutation load (for selection of patients for immunotherapy). mo, months; tx, treatment; adeno, adenocarcinoma; squam, squamous cell carcinoma; hGE, haploid genome equivalents; SABR, stereotactic ablative radiotherapy; chemoRT, chemoradiotherapy; TKI, tyrosine kinase inhibitor.
Figure 1

A. Diagram showing the workflow of ctDNA quantification and patient assessment.

B. Bar chart showing the distribution of ctDNA fractions across different stages, histologies, and smoking statuses.

C. Circle chart indicating the number of mutations detected pre-treatment, with candidate driver mutations and other mutations.

D. ROC curve showing the sensitivity (Sn), specificity (Sp), and AUC for candidate driver mutations, other mutations, and both.

E. Scatter plot showing the correlation between MTV (mL) and ctDNA (hGE/mL) across different stages.

F. Box plot comparing ctDNA levels between Stage I and Stage II-III patients.

Table 1

<table>
<thead>
<tr>
<th>Candidate Driver Mutations</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>49%</td>
</tr>
<tr>
<td>KRAS</td>
<td>16%</td>
</tr>
<tr>
<td>KEAP1</td>
<td>11%</td>
</tr>
<tr>
<td>EGFR</td>
<td>8%</td>
</tr>
<tr>
<td>STK11</td>
<td>5%</td>
</tr>
<tr>
<td>NF1</td>
<td>5%</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>3%</td>
</tr>
<tr>
<td>Other drivers</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histology</th>
<th>Smoking</th>
<th>Local Therapy</th>
<th>Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeno</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Squam</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostics</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate drivers</td>
<td>69</td>
<td>98</td>
<td>0.84</td>
</tr>
<tr>
<td>Other mutations</td>
<td>71</td>
<td>96</td>
<td>0.85</td>
</tr>
<tr>
<td>Both</td>
<td>93</td>
<td>96</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Statistics

- Correlation coefficient between ctDNA and MTV: $r = 0.55$, $P = 0.0004$

- $P = 0.002$ for ctDNA levels comparing Stage I and Stage II-III patients.

Notes

- ctDNA quantification and surveillance assessment within 4 mo of end of tx.
- Landmark MRD analysis within 4 mo of end of tx.

Source

Diagnosis: Localized Lung Cancer

Research. on October 11, 2017. © 2017 American Association for Cancer Research.
Figure 2

A) Cases detected by mutation type (%)

B) Cases detected by most recurrently mutated driver genes (%)

C) ctDNA never detected post-tx vs. ctDNA ever detected post-tx

D) Event-Free Survival (%)

E) Surveillance imaging (37 patients, 227 scans)

F) ctDNA concentration (hGE/mL)

- Candidate drivers only
- Other mutations only
- Both

- Pre-treatment
- Post-treatment

- TP53
- KRAS
- EGFR
- KEAP1

- ctDNA never detected post-tx
- ctDNA ever detected post-tx

- No evidence of disease
- Equivocal
- Positive

- Diagnostic
- Equivocal
- Equivocal
- No evidence of disease

- Stage IIIB Squam
- Cancer vs. Pneumonitis
- Cancer vs. Fibrosis
- Fibrosis

- Scan 1
- Scan 2
- Scan 3
- Scan 4
- Alive

- hGE/mL

- Patients recurred (%)

- Time from pre-tx phlebotomy (mo)

P < 0.001

P < 0.001

P = 0.01
Figure 3

A. ctDNA detected at MRD landmark

- No ctDNA detected at MRD landmark
- ctDNA detected at MRD landmark

P < 0.001

B. Time from MRD landmark (mo)

- LUP236
- LUP280
- LUP397
- LUP284
- LUP248
- LUP117
- LUP235
- LUP020
- LUP241
- LUP014
- LUP283
- LUP123
- LUP238
- LUP279
- LUP239
- LUP002
- LUP347
- LUP332
- LUP342
- LUP234
- LUP141
- LUP130
- LUP127
- LUP026
- LUP237
- LUP013
- LUP243
- LUP221
- LUP001
- LUP275
- LUP016

C. Likelihood of detecting ctDNA at MRD landmark

- CAPP-Seq
- Single Reporter

P = 0.001

- ctDNA MRD detected
- ctDNA MRD undetected
- Death
- Alive at last follow-up
- Progression
- No progression
Potential tx for MRD based on ctDNA mutation type & number

47% +ctDNA

20% EGFR TKI

33% Immunotherapy

47% Chemotherapy

Stage IIIA Squam Metabolic CR

Brain met

Stage IB Adeno Equivocal

Brain met

LUP20: EGFR L858R mutation in ctDNA

Radiology interpretation

Scan 1 Scan 2 Scan 3

0.17 hGE/mL

0.27 hGE/mL

CAPP-Seq (#mutations) Exome = 41 × CAPP-Seq

r = 0.93 P < 0.0001

≥5 CAPP-Seq coding mutations corresponds to >200 NSCLC exome coding mutations

Mutation load comparison

NSCLC Whole Exome Sequencing (#mutations)

Figure 4

Downloaded from cancerdiscovery.aacrjournals.org on October 11, 2017. © 2017 American Association for Cancer Research.
Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling

Cancer Discov Published OnlineFirst September 24, 2017.