A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution

Qicong Hu, et al.

Science 329, 436 (2010);
DOI: 10.1126/science.1191054

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of August 4, 2010):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/329/5990/436

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/science.1191054/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/329/5990/436#related-content

This article cites 30 articles, 14 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/329/5990/436#otherarticles

This article appears in the following subject collections:
Cell Biology
http://www.sciencemag.org/cgi/collection/cell_biol
A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution

Qicong Hu,1 Ljiljana Milenkovic,2,3 Hua Jin,4 Matthew P. Scott,2,3,5–8 Maxence V. Nachury,4 Elias T. Spiliotis,9* W. James Nelson1,4,*

In animal cells, the primary cilium transduces extracellular signals through signaling receptors localized in the ciliary membrane, but how these ciliary membrane proteins are retained in the cilium is unknown. We found that ciliary membrane proteins were highly mobile, but their diffusion was impeded at the base of the cilium by a diffusion barrier. Septin 2 (SEPT2), a member of the septin family of guanosine triphosphatases that form a diffusion barrier in budding yeast, localized at the base of the ciliary membrane. SEPT2 depletion resulted in loss of ciliary membrane proteins. Thus, SEPT2 is part of a diffusion barrier at the base of the ciliary membrane and is essential for retaining receptor-signaling pathways in the primary cilium.

The primary cilium is an antenna-like organelle protruding from the apical surface of almost every cell in a wide variety of organisms. The ciliary membrane is contiguous with the apical plasma membrane but has a unique set of proteins that sense and transduce a variety of extracellular signals, such as Sonic hedgehog (Shh) (1). These signaling pathways regulate gene expression during development and in adult life, and mutations in ciliary proteins give rise to a range of developmental defects (2, 3).

Signal transduction by the primary cilium depends on the enrichment of specific proteins in the ciliary membrane. Protein trafficking and intraflagellar transport from the cytoplasm into the cilium establish the characteristic intracellular distributions of ciliary membrane proteins (4, 5), but it is unknown how these proteins are subsequently retained in the ciliary membrane: For example, they might be immobilized in the cilium or impeded by a diffusion barrier (6–10).

To investigate these possible mechanisms, we used fluorescence recovery after photobleaching (FRAP) (11) to measure the diffusional mobility of four ciliary membrane proteins tagged with green fluorescent protein (GFP): two G protein–coupled receptors [serotonin receptor 6 (FlHtr6SEP) and somatostatin receptor (Sstr3GFP)] (12), and the membrane-anchored and ciliary-targeted cytoplasmic tail (amino acids 1 to 193) of fibrocystin (cTSPKHD1GFP) (13) in primary kidney inner medullary collecting duct (IMCD3) cells (Fig. 1A).

Fig. 1. (A) FRAP of proteins in the whole cilium 24 hours after serum starvation. IMCD3 cells stably (a) or transiently (b) expressing Htr6SEP or IFT88YFP (d), and SmoYFP stably expressed in MEFs treated with 100 nM SAG for 24 hours (c); arrowheads mark one end of the cilium. Scale bars, 5 μm. (B) Kinetics of average (±SEM) fluorescence recovery of proteins photobleached in the whole cilium (a, b; n = 8 to 12). Summary of fluorescence recovery of ciliary membrane proteins as a percentage of the initial unbleached fluorescence level compared with IFT88YFP distribution (c; ***P < 0.0001). (C) FRAP of Htr6SEP (a), SmoYFP (b), and IFT88YFP (c) represented as heat-map images after photobleaching part of the cilium in IMCD3 cells; dotted lines mark the photobleached/unbleached boundary. Scale bars, 5 μm. (D) Representative example of kinetics of fluorescence recovery of photobleached region (orange curve), unbleached region (blue curve), and the two regions combined (red curve) of a primary cilium (n = 12 to 13).

1Department of Biology, Stanford University, Stanford, CA 94305, USA. 2Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. 3Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. 4Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. 5Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. 6Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. 7Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. 8Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. 9Department of Biology, Drexel University, Philadelphia, PA 19104, USA.

*To whom correspondence should be addressed. E-mail: wnelson@stanford.edu (W.J.N.); ets33@drexel.edu (E.T.S.)
Fig. 2. (A) SEPT2 localization at the cilium of IMCD3 cells stably expressing Htr6^{SEP} (a), MEFs stably expressing Smo^{YFP} treated with 100 nM SAG for 24 hours (b), and IMCD3 cells stained for acetylated α-tubulin (AcTub) (c; higher magnification of boxed region shown at the bottom), and imaged with a super-resolution Optical Microscope Experimental (OMX) system using three-dimensional structured illumination (d). Scale bars, 2 μm. (B) SEPT2 and AcTub localization at the cilium of IMCD3 cells transiently expressing CEP164LAP (a), Odf2LAP (b) or PeriCTRFP (c). Scale bars, 2 μm. (Lower panels) Fluorescence intensity profiles of protein staining from the basal body to the tip of the cilium. (C) IMCD3 cells grown for 24 hours without (−) or with (+) serum and stained for SEPT2, α-tubulin (α-tub), and γ-tubulin (γ-tub). Scale bars, 2 μm. (D) Percentage of cells with SEPT2 localized at the base of primary cilia (−serum) or pericentriolar region (+serum). Error bars represent SD of three independent experiments (n = 60 to 178 each; ***p < 0.0001).

Fig. 3. (A) IMCD3 cells transfected with scrambled (scramble) or SEPT2 siRNA (siSEPT2), serum-starved to induce ciliogenesis, and stained for SEPT2 and AcTub. Scale bars, 10 μm. (B) Whole-cell lysates of scramble and siSEPT2 cells immunoblotted for SEPT2 and glyceraldehyde phosphate dehydrogenase (GAPDH); lower panel, SEPT2 band intensities normalized to GAPDH. (C) Percentage of scramble and siSEPT2 cells with a cilium >1 μm long (±SD of three independent experiments; n = 101 to 205 each; ***p = 0.0098). (D) IMCD3 cells (Parental), and IMCD3 cells stably depleted of SEPT2 using shRNA1, shRNA2, or shRNA3, stained for SEPT2, AcTub, and 4,6-diamidino-2-phenylindole (DAPI). Scale bars, 10 μm. (E) Whole-cell lysates of parental IMCD3 cells and three arbitrarily chosen clones of shRNA1, 2, or 3 cells immunoblotted for SEPT2 and GAPDH; lower panel, SEPT2 band intensities normalized to GAPDH, and percentage of parental and shRNA1, 2, and 3 IMCD3 cells with a cilium (n = 115 to 282).
triphosphatases (GTPases) that form a diffusion barrier at the mother-bud neck of budding yeast (10, 19, 20) and localize at the annulus that may form a diffusion barrier between the middle and principal piece of the mammalian sperm flagellum (21, 22). Septin 2 (SEPT2) (23) localized to the base of the cilium at the boundary between the ciliary and periciliary membrane in IMCD3 cells (Fig. 2A and fig. S3A) and in MEFs stably expressing SmoYFP (Fig. 2A). In some optical sections SEPT2 staining appeared as a ringlike structure of ~500 nm diameter (Fig. 2A), reminiscent of structures formed by recombinant septins in vitro (24), and as two fused dots (Fig. 2A and movies S14 and S15), similar to septin staining at the sperm annulus (21). In ~10% of cells, punctate SEPT2 also localized along and at the tip of the axoneme (Fig. S3B).

SEPT2 localization at the base of the axoneme is similar to basal body distal appendage proteins. SEPT2, however, clearly localized between the ciliary axoneme [marked by acetylated α-tubulin (α-Tub)] and structures marked by the distal appendage protein CEP164 (25), the subdistal/distal appendage protein outer dense fiber 2 (Odf2) (26), and the pericentriolar protein pericentrin (PeriCT) (27) (Fig. 2B and fig. S3, C to E). SEPT2, but not the ciliary axoneme or these basal body proteins, was solubilized in buffer containing 0.5% TritonX-100 (fig. S3F), indicating that SEPT2, like other septins (28, 29), is associated with membrane. In addition, SEPT2 did not localize to the centrosome in nonciliated cells (Fig. 2, C and D), further indicating that it is not a constituent centrosomal protein.

To investigate whether SEPT2 is required for cilium formation and ciliary membrane barrier function, we used transient transfection with small interfering RNA (siRNA) oligonucleotides to deplete ~69% SEPT2 from serum-starved IMCD3 cells (Fig. 3, A and B). In general, cells that were completely depleted of SEPT2 lacked a cilium (Fig. 3C and fig. S4, A and B), whereas cells that were partially depleted (~54.3% depletion at the base of primary cilia) had a cilium that was significantly shorter (3.46 ± 0.20 μm) than controls (4.78 ± 0.31 μm). We also established stable IMCD3 cell lines depleted of SEPT2 using three different short hairpin RNAs (shRNAs), which reduced SEPT2 levels by 80 to 90% (Fig. 3, D and E) and resulted in a more complete defect in ciliogenesis across the cell population (Fig. 3E and fig. S4, C and D).

To investigate whether SEPT2 is part of a diffusion barrier at the base of the ciliary membrane, we measured ciliary membrane protein mobility in the 10 to 15% of the stable SEPT2-depleted IMCD3 cells (shRNA1) that had a short cilium but did not have significant SEPT2 staining near the basal body (fig. S4C). We detected a significant increase in the diffusional mobility of four ciliary membrane proteins when the whole cilium was photobleached in SEPT2-depleted cells, compared with controls (Fig. 4, A to C; fig. S5, A and B; table S3; and movies S16 to S23). Furthermore, the barrier index, defined as the ratio of mean fluorescence intensity of these proteins in the ciliary membrane to surrounding periciliary membrane, was reduced significantly in SEPT2-depleted cells compared with controls (Fig. 4D and fig. S5C). Thus, SEPT2 depletion removed the ciliary membrane diffusion barrier in cells that could still assemble a cilium. Because the cilium was shorter in these cells, and absent in most SEPT2-depleted cells, it is possible that loss of the diffusion barrier contributed to the overall defect in ciliogenesis.

We investigated whether loss of the ciliary membrane diffusion barrier after SEPT2 depletion affected cilium-dependent receptor signal transduction. Shh signaling requires enrichment of Smo in the ciliary membrane, and signal transduction results in increased Gli1 and Patched1 (Ptc1) mRNA levels (14, 30). In SEPT2-depleted cells, Smo accumulation in cilia was reduced, although total cellular levels were unaffected (Fig. 4, D and F, and fig. S5C). After induction with Shh or Smo agonist (SAG), Gli1 and Ptc1 mRNA levels were reduced significantly in SEPT2-depleted cells compared with controls (Fig. 4E). Thus, the SEPT2 diffusion barrier is required for cilium-dependent Shh signal transduction.

Here, we have identified a septin-containing diffusion barrier at the base of the ciliary membrane that is required to retain receptor-signaling pathways in the primary cilium. This diffusion barrier restricts the diffusion of ciliary membrane proteins between the ciliary and periciliary membrane but permits the diffusion of ciliary transport proteins (IFT88). This implies that newly synthesized ciliary membrane proteins are most likely inserted by IFT and Bardet-Biedl Syndrome proteins into the ciliary membrane above the diffusion barrier (7). Thus, septins appear to have evolutionarily conserved roles from fungi to animals in the functional compartmentalization of membrane domains.

Fig. 4. (A and B) FRAP of the whole cilium of parental IMCD3 (Parental) and shRNA1 IMCD3 cells transiently expressing Htr6SEP or SmoYFP and treated with 100 nM SAG for 24 hours. Scale bars, 5 μm. (B) Kinetics of average (+SEM) fluorescence recovery of photo bleached proteins (n = 9 to 12). (C) Summary of percentage of fluorescence recovery of photo bleached ciliary membrane proteins in parental and shRNA1 cells (**P < 0.002; ***P < 0.0005). (D) Summary of barrier index in parental and shRNA1 cells (n = 31 to 59; ***P < 0.0001). (E) Gli1 (left) and Ptc1 (right) mRNA induction in parental and shRNA1 cells after 100 nM SAG or Shh treatment for 24 hours (average of three independent experiments ± SD; **P = 0.005; ***P < 0.0007). (F) Whole-cell lysates of parental and shRNA1 cells immunoblotted for Smo, SEPT2, and GAPDH; normalized Smo levels in parental and shRNA1 cells (right).
Integrative Modeling Defines the Nova Splicing-Regulatory Network and Its Combinatorial Controls

Chaolin Zhang,* Maria A. Frias, Aldo Mele, Matteo Ruggiu, Taesun Eom, Christina B. Marney, Huidong Wang, Donny D. Licatalosi, John J. Fak, Robert B. Darnell*

The control of RNA alternative splicing is critical for generating biological diversity. Despite emerging genome-wide technologies to study RNA complexity, reliable and comprehensive RNA-regulatory networks have not been defined. Here, we used Bayesian networks to probabilistically model diverse data sets and predict the target networks of specific regulators. We applied this strategy to identify ~700 alternative splicing events directly regulated by the neuron-specific factor Nova in the mouse brain, integrating RNA-binding data, splicing microarray data, Nova-binding motifs, and evolutionary signatures. The resulting integrative network revealed combinatorial regulation by Nova and the neuronal splicing factor Fox, interplay between phosphorylation and splicing, and potential links to neurologic disease. Thus, we have developed a general approach to understanding mammalian RNA regulation at the systems level.

RNA-binding proteins (RBPs) regulate alternative splicing (AS) and processing of RNA to generate biological complexity (1). Inferring RNA target networks regulated by these splicing factors may provide general insights into the mechanisms of regulation and their role in disease (2–5). Several global approaches have recently been applied toward this aim (2), including bioinformatic predictions driven by analysis of RBP motifs (6–8), profiling of RNA isoforms based on splicing microarrays (9–11) or RNA-Seq (12–14), and biochemical footprints derived from high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) (9, 15). These methods have been applied to identify and genetically validate ~90 alternative exons regulated by Nova1/2 (9, 10), a family of neuron-specific splicing factors. Nova regulates a biologically coherent set of transcripts encoding synaptic proteins (10), and an RNA-regulatory map predicts that Nova-regulated splicing is position dependent, such that alternative exons are included when Nova binds to downstream introns and are excluded via binding within the exons or to upstream introns (9, 16).

Each of these methods is limited in its signal-to-noise ratio and scope: RBP motifs generally have very low sequence specificity [e.g., YCAY for Nova, ~1 site per 64 nucleotides (nt)]; microarray or RNA-Seq data are noisy at the exon level beyond a small set of top candidates and are correlative in nature; and biochemical protein-RNA interactions do not necessarily imply functional regulation. Consequently, only a small set of targets have been confidently identified for most splicing factors (4, 17). An alternative strategy is to integrate multiple sources of information, so that individually weak bits of evidence can be combined to generate confident predictions, as demonstrated in studies of protein-protein interactions (18) and transcription factor networks (19). Here, we set out to develop such an integrative approach to probabilistically model a diverse set of genomic, experimental, and evolutionary data, using Bayesian networks to define and understand the function of RNA networks.

We studied the Nova splicing-regulatory network as an exemplar and compiled four types of data important for inferring direct Nova-RNA interactions coupled with defined Nova-dependent AS events: (i) 279,631 CLIP tag clusters, ranked by peak height, derived from 20 independent HITS-CLIP experiments (figs. S1 and S2, table S1, and datasets S1 and S2); (ii) 841,501 Nova-binding sites (YCAY clusters) bioinformatically predicted and scored from the clustering, accessibility, and conservation of YCAY elements (fig. S3); (iii) four splicing-microarray data sets comparing wild-type and Nova knockout (KO) brains, which detected 1331 exons showing significant Nova-dependent splicing, in addition to many exons with moderate but potentially functional changes (fig. S4 and table S2); and (iv) evolutionary signatures of regulated splicing, including conservation of AS in humans or rats, and preservation of reading frame (20). Each individual data set suggested

References and Notes
31. We thank M. Kinoshita, S. Munro, G. J. Pazour, K. Mykytn, D. R. Beier, C. Janke, J. Christhanson, R. Kopito, and J. Stearns for reagents, and J. Atkins (Applied Precision, Inc.) for technical support. Supported by NIH grant GM55527 (W.L.N.), Department of Defense Breast Cancer Research Program Predoctoral Fellowship BC083077 (Q.H.), and Drexel CURE award from the State of Pennsylvania Tobacco Settlement Funds (E.T.S.). Supported in part by grants (M.V.N.) from the American Heart Association, the March of Dimes, NIH (GM089933), and the Sloan, Klingenst and Searle Foundations. L.M. is a Research Specialist, and M.P.S. an Investigator of the Howard Hughes Medical Institute.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1191054/DC1 Materials and Methods
Figs. S1 to S5
Tables S1 to S3
References
Movies S1 to S23
19 April 2010; accepted 8 June 2010
Published online 17 June 2010; 10.1126/science.1191054
Include this information when citing this paper.

www.sciencemag.org www.sciencemag.org
Downloaded from www.sciencemag.org on August 4, 2010

R