vertebrates, Ca\(^{2+}\) signaling appears to drive dorsoventral axis patterning of vertebrates, whereas such noncanonical Wnt signaling (that is, signaling not mediated by \(\beta\)-catenin) regulates focal adhesion kinase activity and cell motility in Drosophila (15). Details about substrates of PKC (16), CamKII, and calcineurin specifically involved in the downstream events of Wnt-Ca\(^{2+}\) signaling are few. The transcription factor (TF) NF-AT is both a substrate for calcineurin and a regulator of ventral cell fate (14), providing one carefully detailed example. Targets of the Wnt-Ca\(^{2+}\) pathway appear to cross-talk to the Wnt–\(\beta\)-catenin pathway at multiple points (17). The fact that PKC appears to participate not only in the Wnt-Ca\(^{2+}\) pathway but also in the Wnt–\(\beta\)-catenin (17) and perhaps in the Wnt-PCP pathways suggests that cellular context and temporal and spatial considerations must be highlighted in our quest to fully understand Wnt-Ca\(^{2+}\) signaling.

We have implicated the G protein transducer 2 (G\(_{2}\)), cGMP PDE, and intracellular cGMP in Wnt-Ca\(^{2+}\) signaling (7). Each of these signaling elements is well known in the visual excitation pathway of both invertebrates and vertebrates (18). Disruption of the G\(_{2}\) → PDE → cGMP pathway in response to Wnt activation blocks primitive endoderm formation in mouse F9 cells and normal early development in zebrafish embryos (7). There may be cross-talk among the Wnt signaling pathways mediated by cGMP. Inhibitors of cGMP PDEs are reported to inhibit the Wnt–\(\beta\)-catenin pathway by increasing intracellular concentrations of cGMP, activating cGMP-dependent protein kinase (which phosphorylates \(\beta\)-catenin), reducing \(\beta\)-catenin concentrations, and promoting apoptosis (19). The PDE inhibitor Exisulind has been proposed as a lead compound for anticancer therapies (20).

Understanding the Wnt-Ca\(^{2+}\)–cGMP pathway and its full biological role may yield rich dividends in several areas. Genes regulated by the Wnt–\(\beta\)-catenin–cGMP pathway have been described (21), whereas gene profiling for the Wnt-Ca\(^{2+}\)–cGMP pathway has not been reported. Several early lines of evidence suggest that the Wnt-Ca\(^{2+}\)–cGMP pathway may antagonize the Wnt–\(\beta\)-catenin pathway (17), which has many linkages to human cancer. Unknown is the extent to which the Wnt-Ca\(^{2+}\)–cGMP pathway may participate in the regulation of the PCP function of Wnts. Because Wnts can interact with more than one Frizzled, detailed analysis of individual Frizzleds may yield new insights into Frizzled-specific pathways of signaling and gene expression. The role of low-density lipoprotein receptor–related proteins 5 and 6 (LRP5 and LRP6) as coreceptors with Frizzled in the Wnt–\(\beta\)-catenin pathway raises the question of a possible similar role for LRP proteins in Wnt-Ca\(^{2+}\) signaling. Finally, the macromolecular complexes involved in Wnt-Frizzled signaling are tantalizing targets for analysis. Scaffolds such as Axin, as well as \(\alpha\) kinase anchor proteins (22), will likely provide explanations for the exquisite temporal and spatial responses we find for many GPCR-mediated pathways, including Wnt signaling. Given the apparent function of primary elements of the visual pathway in the regulation of embryonic development, we can also imagine other roles for Wnts and Frizzleds outside of their critical roles in early development.

References and Notes

15. E. D. Cohen et al., Cell 2, 437 (2002).
23. The authors acknowledge generous support from NIH and the March of Dimes Birth Defects Foundation.

Myocyte Adrenoceptor Signaling Pathways

**Yang Xiang and Brian K. Kobilka* **

Adrenoceptors (ARs), members of the G protein–coupled receptor superfamily, form the interface between the sympathetic nervous system and the cardiovascular system, with integral roles in the rapid regulation of myocardial function. However, in heart failure, chronic catecholamine stimulation of adrenoceptors has been linked to pathologic cardiac remodeling, including myocyte apoptosis and hypertrophy. In cardiac myocytes, activation of AR subtypes results in coupling to different G proteins and induction of specific signaling pathways, which is partly regulated by the subtype-specific distribution of receptors in plasma membrane compartments containing distinct complexes of signaling molecules. The Connections Maps of the Adrenergic and Myocyte Adrenergic Signaling Pathways bring into focus the specific signaling pathways of individual AR subtypes and their relevant functions in vivo.

Adrenoceptors (ARs) belong to the G protein–coupled receptor (GPCR) superfamily. ARs connect the sympathetic nervous system and the cardiovascular system, playing an integral role in the rapid regulation of myocardial function (J). However, in heart failure, chronic catecholamine stimulation of ARs may contribute to pathologic cardiac remodeling, including myocyte apoptosis and hypertrophy (2–5) (Fig. 1).

1AR and 2AR signaling is species-specific and dependent on age and developmental stage. Both \(\beta_1\) and \(\beta_2\)-ARs couple to the stimulatory \(\alpha\) protein, which leads to activation of adenylyl cyclase and production of adenosine 3',5' monophosphate (cAMP). The cAMP-dependent protein kinase A (PKA) phosphorylates various substrates, including the L-type Ca\(^{2+}\) channel, which increases Ca\(^{2+}\) entry into cells; phospholamban, which accelerates Ca\(^{2+}\) sequestration into the sarcoplasmic reticulum resulting in accelerated cardiac relaxation (6); and troponin I and C proteins, which reduce myofilament sensitivity to Ca\(^{2+}\) (6). The ryadonide receptor is

Department of Molecular and Cellular Physiology, Stanford Medical Center, Palo Alto, CA 94305, USA.

*To whom correspondence should be addressed: kobilka@stanford.edu
also a substrate for PKA, and ryanodine receptor phosphorylation has been observed in the failing human heart and in animal models of heart failure (7, 8). In vivo and in vitro assays show that the β2 AR plays the predominant role in modulating the heart rate and the force of contraction in the mouse (9, 10).

In contrast, activated β1 AR can couple to both G1 and Gq (G protein subunits that can inhibit adenyl cyclase) in cardiac myocytes. In adult mouse cardiac myocytes, stimulation of the β2 AR selectively modulates the activity of adjacent L-type Ca2+ channels (6). However, in myocytes treated with pertussis toxin to disrupt Gj function, stimulation of β2 ARs leads to a more generalized activation of L-type Ca2+ channels, producing a robust increase in phospholamban phosphorylation, similar to that observed after stimulation of the β2 AR, which accelerates cardiac relaxation rate (6). In mouse neonatal cardiac myocytes, activated β2ARs couple to both G1 and Gq, which induces a small increase followed by a sustained decrease in myocyte contraction rate (10). Stimulation of β2 ARs leads to a small cAMP accumulation; however, inhibition of PKA does not affect the magnitude of the myocyte contraction rate increase or decrease (10).

β2 ARs have been detected in both human and murine hearts, although at lower levels than β1 and β2 ARs, and the physiologic role of β2 AR in regulating cardiac function is poorly understood. Stimulation of β2 ARs in human ventricular muscle reduces the strength of myocyte contraction by a Gq-dependent mechanism (11). Similarly, stimulation of β2 ARs results in a Gq-dependent decrease in the spontaneous contraction rate of cultured neonatal cardiac myocytes from β1/β2 AR knockout (KO) mice (10). However, stimulation of human β2 AR overexpressed in hearts of transgenic mice leads to an increase in the strength of contraction (12).

Recent studies have revealed an additional role of β2 AR stimulation in animal hearts. Chronic stimulation of the β2 AR induces myocyte apoptosis, although the signaling pathway is controversial. In vitro studies suggest that this process requires a PKA-independent activation of intracellular Ca2+ through L-type Ca2+ channels, which leads to activation of calmodulin kinase II in adult cardiac myocytes (13). However, this β2 AR-stimulated pro-apoptotic effect appears to be blocked by PKA inhibition in adult rat myocytes (14). In contrast, activation of β2 ARs has an anti-apoptotic effect, which is mediated by the β2 subunits of Gq in both rat and mouse adult cardiac myocytes (2, 15). The role of specific downstream effectors in Gq signaling remains less clear. Studies suggest that phosphodiesterase 3 kinase (P3K) can be activated by the β2 subunits of Gq, which leads to activation of the protein kinase B (Akt) pathway that confers the Gq-mediated protection against apoptosis in adult mouse cardiac myocytes (15). Stimulation of β2 AR also leads to activation of the p38 mitogen-activated protein kinase (MAPK), although the role of p38 in mediating the anti-apoptotic effect of β2 AR stimulation is not clear (2). Interestingly, inhibiting the Gq pathway turns β2 AR signaling from anti-apoptotic into pro-apoptotic in mouse adult myocytes, suggesting that β2 AR to Gq signaling can cause myocyte apoptosis when coupling of β2 AR to Gq is inhibited (15).

Messenger RNA (mRNA) for all three α1 AR subtypes have been detected in mammalian cardiac myocytes; however, α1a AR and α1d AR appear to play the major roles in regulating myocyte function (16–20). α1 ARs couple to a broad spectrum of signaling pathways [including phospholipases C, D, and A2; protein kinase C (PKC); Ca2+ channels; and MAPK] by activating G proteins in the Gq family, as well as pertussis toxin-sensitive G proteins (17). The specific signaling pathways activated are influenced by receptor subtype and cell type. The acute effects of α1 AR stimulation on the contractile properties of the heart are complex and dependent on the species being studied (18). Activation of cardiac α1 AR subtypes protects myocytes against ischemic and other injuries through activation of PKC (19). All three α1 AR subtypes have been disrupted in mice (20). Cardiac hypertrophy normally observed with chronic administration of norepinephrine is absent in α1AR KO mice (21). Moreover, mice lacking both α1a and α1b AR have been reported to have abnormal postnatal cardiac development (22).

Chronic activation of α1 AR and β2 AR stimulates cardiac myocyte hypertrophy in animals. Neonatal rat ventricular myocytes have been the model system of choice to study signaling pathways leading from α1 AR and β2 AR stimulation to hypertrophy (3, 23). The proposed signaling pathways leading from α1 AR activation to hypertrophy are complex and may involve activation of extracellular signal-regulated protein kinase (ERK) and PI3K through G1, PKC, and Ras, and activation of calcineurin through Ca2+ and calmodulin. Both pathways lead to changes in gene expression through activation of transcription factors (4, 5). RhoA and Rac1 may also be involved in myocyte hypertrophy by affecting gene expression, the cytoskeleton, or both (5). The mechanism of β2 AR contribution to myocyte hypertrophy is less well understood. Activation of Gq by β1- and β2 ARs and Gq by β2 ARs may both be involved (3).

There is a growing body of evidence that subtype-specific signaling of ARs in cardiac myocytes involves the association of receptors and downstream signaling molecules in plasma membrane signaling compartments, where signaling molecules are held together by multidomain scaffolding proteins (24). A PDZ domain-binding motif on the C-terminus of the β2 AR selectively binds two families of PDZ domain-containing proteins, including PSD-95 and MAGI-2 (25, 26). A similar interaction is necessary to maintain the integrity of β2 AR to Gq coupling in myocytes, because disruption of the β2 AR PDZ motif leads to promiscuous coupling to both Gq and G1 in neonatal mouse cardiac myocytes (27). On the contrary, data from HEK293 cells suggest that a PDZ motif on the C-terminus of the β2 AR may be involved in recycling internalized β2 ARs and for the receptor-mediated activation of Na+–H+ exchanger (28, 29). In vitro studies show that the β2 AR also associates with the scaffold protein AKAP (A kinase anchoring protein), which may link β2 ARs with other signaling and regulatory proteins in cardiac myocytes (30, 31). Moreover, β2 AR associates with caveolin-3 in neonatal mouse cardiac myocytes, and disruption of caveolar structures enhances the coupling β2 AR to Gq (32–34). Together, these observations support the notion that receptor-associated proteins and the location of receptors in specific plasma membrane microdomains are important for the AR subtype-specific signaling in cardiac myocytes.

The differences in data or interpretation among some studies on AR signaling in cardiac myocytes may in part be due to the many differences between neonatal and adult cardiac myocytes. Thus, characterization of adrenergic signaling in both neonatal and adult cardiac myocytes will be needed to generate a more comprehensive picture of adrenergic signaling pathways in animal hearts. Moreover, differences between receptor homologs and variations in receptor subtype compositions among species may also contribute to the signaling differences observed in different animal model systems.
The proper development of the central nervous system depends upon a finely tuned balance between cell proliferation and programmed cell death (PCD). Although PCD was initially believed to depend solely on the inability of certain neurons to obtain access to a limited supply of trophic factors, it has become apparent that the local production of death signals is also critical. In this Viewpoint, we discuss several pathways implicated in the survival of cerebellar granule cells—both pathways that protect from apoptosis and pathways that promote apoptosis—and describe how these disparate pathways converge on the final common mediators of PCD. Information on other important pathways implicated in granule cell survival may be found in the Connections Maps.

A delicate balance between cell proliferation and PCD is necessary for the harmonious development of the central nervous system (CNS). In both neuronal and glial populations, as many as 70% of the generated cells die during the developmental period (1). In the adult, dysregulated PCD is thought to be responsible for various neurological diseases including epilepsy, Alzheimer’s disease, and Parkinson’s disease (2). It was initially proposed that neuronal apoptosis resulted from growth factor deprivation, and it was generally assumed that only neurons that establish correct synaptic connections were able to obtain the trophic support required for survival. But there is increasing evidence that local production of death signals is essential for the removal of surplus neurons that occurs during morphogenesis of the nervous system (3). Characterizing the signaling pathways involved in the actions of neurotrophic factors and death molecules is therefore critical for understanding the mechanisms underlying normal brain development and neurodegenerative diseases.

The cerebellar cortex of newborn rat, one of the best-studied regions of the developing brain (4), is a model well suited to identifying factors that control neuronal differentiation and apoptosis. In particular, cerebellar granule cells, which constitute the most abundant neuronal population in the mammalian CNS, have the advantages of a cell line without the drawbacks of transformed tumor cells. Granule cells have thus been widely used to investigate the neurotrophic or neurotoxic effects of various factors and have provided crucial information regarding the basic molecular interplay of the cell death machinery. This Viewpoint is not meant to be comprehensive, but rather to cover a few of the most important granule cell survival pathways.

Regulators of Cerebellar Granule Cell Development Act Through Specific Signaling Pathways

David Vaudry,* Anthony Falluel-Morel, Sébastien Leuillet, Hubert Vaudry, Bruno J. Gonzalez

Neurotrophic Factors

Many factors that inhibit cerebellar granule cell apoptosis have now been identified; these include growth factors, neurotransmitters, and neuropeptides (Fig. 1, top left). One of the first granule cell neuroprotectors characterized was insulin-like growth factor–1 (IGF-1) (5). IGF-1 is synthesized and released by Purkinje cells, which settle in the cerebellum earlier than granule cells. It is assumed that, in vivo, IGF-1 secreted by Purkinje cells exerts a neurotrophic effect on cerebellar granule cells during their migration from the proliferative zone (the external granule cell layer) to their final destination (the internal granule cell layer). Several neurotrophins prevent cerebellar granule cell death in a temporally distinct manner. For example, brain-derived neurotrophic factor (BDNF) and neurotrophins 4 and 5 (NT-4 and NT-5) exert neuroprotective activities on immature neurons, whereas only NT-3 prevents the death of differentiated neurons (6). Some neuromediators have more ambiguous effects. For instance, release of the excitatory neurotransmitter glutamate at newly established synapses is critical for cell survival after initial assembly of the neuronal network, whereas, in differentiated granule cells, concentrations of glutamate that were neuroprotective earlier in development provoke a sustained and toxic increase of intracellular calcium (7).

The two predominant signaling pathways activated by growth factors in cerebellar granule cells are the phosphoinositide 3-kinase

References

21. C. Vecchione et al., Circulation 105, 1700 (2002).
35. Y. Xiang, B. Kobilka, Myocyte Adrenergic Signaling Pathways, Science’s STKE (Connections Map, as seen June 2003), http://stke.sciencemag.org/cgi/cm/cmstkecm;CMP_9043.