Moving monumental Miwok sculpture to new home demands skill of puzzle master

Workers take apart Mark di Suvero’s 12,500-pound sculpture and then put it back together, bolt by bolt

By Robin Wander

Moving art can get complicated very quickly. Frames aren’t always stable, wires fray, paint don’t like movement. Sculptural elements become loose or detached, doorways and halls that were adequately high and wide when moving a piece in are inexplicably smaller when moving out.

Large-scale outdoor sculpture often takes complicated to a whole other level when factoring in environmental elements, uneven ground surfaces, earthquakes, hefty height and weight, and figuring out who’s got the keys to the crane.

Despite the complications, Mark di Suvero’s monumental Miwok sculpture recently moved from a site adjacent to the Center for Clinical Sciences Research to the Dean’s Lawn at the School of Medicine without a hitch, thanks to a team of experts.

Hands-on staff members spent over a week in July and August getting every last bolt in place.

Between disassembling and reassembling, Miwok received a thorough but careful cleaning by trained conservators. You can’t just turn a hose on a di Suvero.

The move from one lawn to another was necessary because of the Stanford Medical Center renewal project. Miwok makes out nicely in its new home.

New assistant dean to oversee growth, coordination of primary care at Stanford Hospital & Clinics

By John Sanford

In a sign of how the medical landscape is changing in response to health-care reform, the medical school has appointed a noted expert in developing and managing regional primary-care systems to the job of strengthening primary care at Stanford Hospital & Clinics: Sang-ick Chang, MD, MPH, a long-time primary-care physician who has served as chief medical officer for two of the San Francisco Bay Area’s largest public medical centers, has been tapped to assume the newly created position of assistant dean for clinical affairs at the School of Medicine. His first day was Aug. 6.

“The broad field of primary care will play an increasingly important role in the future of medicine and will benefit our community and the patients we serve, as well as the students we help educate and train,” said Philip Pizzo, MD, dean of the medical school. “We are excited about the prospect for developing a wide range of clinical care services at Stanford Medicine, and I am also excited that Dr. Chang will lead this effort. He has tremendous experience, great vision and incredible commitment that will have a transformative impact on the care we provide to our patients and the opportunities that we offer to our students and trainees.”

Under Chang’s direction, Stanford plans to hire roughly 50 new physicians and new students found out.

What does carving a cantaloupe have to do with medical school? Some
Yvonne Maldonado on whooping cough

By Krista Conger

Researchers at the School of Medicine and Intel Corp. have collaborated to synthesize and study a grid-like array of short pieces of a disease-associated protein on silicon chips normally used in computer microprocessors. They used this chip, which was created through a process to make semiconductors, to identify patients with a particularly severe form of the autoimmune disease lupus.

Although the new technology is focused on research applications, it has the potential to eventually improve diagnoses of a multitude of diseases, as well as to determine more quickly what drugs may be most effective for a particular patient.

It may also speed drug development by enabling researchers to better understand how proteins interact in the body. “When I see patients in the clinic right now, I may know they have arthritis, but I don’t know which of the 20 or 30 types of disease they have,” said associate professor of medicine Paul (PJ.) Utz, MD, noting that existing methods can take days or even weeks to answer such questions.

Now we can genetically engineer thousands of protein interactions at a time, integrate this information to diagnose the disease and even determine how severe it may be. We may soon be able to do this routinely while the patient is still in the physician’s office,” Utz is a co-senior author of the research, which was published online Aug. 19 in Nature Medicine. Postdoctoral scholar Chih Long Liu, PhD, and Maiko Yamasaki, PhD, the director and head of life science research operations and business strategy for Intel’s Integrated Biosystems Laboratory, are also senior authors. The lead investigator on the chip project is Dan Price is the first author.

The research was funded in part by Intel Corp., and Intel scientists created the chip, which was synthesized using the last 21 letters of the alphabet, or identify which potential substrates and then washing them with a solution that does not fluoresce, making signal detection easier. They then confirmed that these patients who expressed high levels of antibodies were able to identify patients with lupus with our arrays.”

The researchers hope to eventually embed an integrated semiconductor technology within the silicon chip to create a sort of mini-computer that could take the guesswork and decision-making out of many clinical processes. It could perhaps spell out patient-specific diagnoses with letters of the alphabet, or identify which potential treatments are most likely to be effective.

The technology described in the study echoes that of DNA microarrays, in which thousands of minute pieces of DNA are synthesized and sequenced on a slide in a grid-like pattern to identify patterns that can be used to diagnose diseases. Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique to detect lupus. They used a slide-based detection system and then washed them with solutions of cellular or blood-based proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal which is detected through a meticulous and lengthy series of detection steps.

Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique to detect lupus. They used a slide-based detection system and then washed them with solutions of cellular or blood-based proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal which is detected through a meticulous and lengthy series of detection steps.

“Honestly, we thought it wouldn’t work,” said Utz. But it did, and it had several advantages. For one thing, silicon is much less tricky to work with than proteins. As a result, researchers developed a way to make experimental step towards random binding of peptides to the substrate. Silicon also allows the researchers to arrange the individual peptides more closely together, using the space much more efficiently. Finally, unlike glass, silicon alone does not fluoresce, making signal detection easier.

This is also the promise of devising new, faster detection methods on the more-versatile silicon chip. “If we could combine these Intel arrays with an electronic detection system, we may have real-time sensing over a period of minutes,” said Utz.

In the study, the researchers tested whether their array could help categorize patients with lupus — an autoimmune disease that causes inflammation of a variety of tissues that attack a type of protein in their cells called a histone (in addition to other proteins). “Lupus is highly variable, and in patients, it’s quite severe,” said Utz. “About half of patients are likely to require more intensive therapy. We wanted to be able to identify these patients with our arrays.”

Using the new chips, the researchers were able to identify patients with lupus who expressed high levels of antibodies against a particular histone called 2B. “These patients were precisely the ones struggling with a more severe form of the disease,” Utz said.

“Companies developing therapies to block the corresponding protein are binding are now accepting patients with lupus for clinical trials without knowing who the other lab in Utz’s” Ush “This method could potentially be used to identify only those patients likely to benefit from the drug and in the identification of effective drugs.”

To make the discovery, the researchers made a microarray using the last 21 letters of the alphabet, or identify which potential substrates and then washing them with a solution that does not fluoresce, making signal detection easier. They then confirmed that these patients who expressed high levels of antibodies were able to identify patients with lupus with our arrays.”

The researchers hope to eventually embed an integrated semiconductor technology within the silicon chip to create a sort of mini-computer that could take the guesswork and decision-making out of many clinical processes. It could perhaps spell out patient-specific diagnoses with letters of the alphabet, or identify which potential treatments are most likely to be effective.

The technology described in the study echoes that of DNA microarrays, in which thousands of minute pieces of DNA are synthesized and sequenced on a slide in a grid-like pattern to identify patterns that can be used to diagnose diseases. Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique to detect lupus. They used a slide-based detection system and then washed them with solutions of cellular or blood-based proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal which is detected through a meticulous and lengthy series of detection steps.

“Honestly, we thought it wouldn’t work,” said Utz. But it did, and it had several advantages. For one thing, silicon is much less tricky to work with than proteins. As a result, researchers developed a way to make experimental step towards random binding of peptides to the substrate. Silicon also allows the researchers to arrange the individual peptides more closely together, using the space much more efficiently. Finally, unlike glass, silicon alone does not fluoresce, making signal detection easier.

This is also the promise of devising new, faster detection methods on the more-versatile silicon chip. “If we could combine these Intel arrays with an electronic detection system, we may have real-time sensing over a period of minutes,” said Utz.

In the study, the researchers tested whether their array could help categorize patients with lupus — an autoimmune disease that causes inflammation of a variety of tissues that attack a type of protein in their cells called a histone (in addition to other proteins). “Lupus is highly variable, and in patients, it’s quite severe,” said Utz. “About half of patients are likely to require more intensive therapy. We wanted to be able to identify these patients with our arrays.”

Using the new chips, the researchers were able to identify patients with lupus who expressed high levels of antibodies against a particular histone called 2B. “These patients were precisely the ones struggling with a more severe form of the disease,” Utz said.

“Companies developing therapies to block the corresponding protein are binding are now accepting patients with lupus for clinical trials without knowing who the other lab in Utz’s” Ush “This method could potentially be used to identify only those patients likely to benefit from the drug and in the identification of effective drugs.”

To make the discovery, the researchers made a microarray using the last 21 letters of the alphabet, or identify which potential substrates and then washing them with a solution that does not fluoresce, making signal detection easier. They then confirmed that these patients who expressed high levels of antibodies were able to identify patients with lupus with our arrays.”

The researchers hope to eventually embed an integrated semiconductor technology within the silicon chip to create a sort of mini-computer that could take the guesswork and decision-making out of many clinical processes. It could perhaps spell out patient-specific diagnoses with letters of the alphabet, or identify which potential treatments are most likely to be effective.

The technology described in the study echoes that of DNA microarrays, in which thousands of minute pieces of DNA are synthesized and sequenced on a slide in a grid-like pattern to identify patterns that can be used to diagnose diseases. Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique to detect lupus. They used a slide-based detection system and then washed them with solutions of cellular or blood-based proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal which is detected through a meticulous and lengthy series of detection steps.

“Honestly, we thought it wouldn’t work,” said Utz. But it did, and it had several advantages. For one thing, silicon is much less tricky to work with than proteins. As a result, researchers developed a way to make experimental step towards random binding of peptides to the substrate. Silicon also allows the researchers to arrange the individual peptides more closely together, using the space much more efficiently. Finally, unlike glass, silicon alone does not fluoresce, making signal detection easier.

This is also the promise of devising new, faster detection methods on the more-versatile silicon chip. “If we could combine these Intel arrays with an electronic detection system, we may have real-time sensing over a period of minutes,” said Utz.

In the study, the researchers tested whether their array could help categorize patients with lupus — an autoimmune disease that causes inflammation of a variety of tissues that attack a type of protein in their cells called a histone (in addition to other proteins). “Lupus is highly variable, and in patients, it’s quite severe,” said Utz. “About half of patients are likely to require more intensive therapy. We wanted to be able to identify these patients with our arrays.”

Using the new chips, the researchers were able to identify patients with lupus who expressed high levels of antibodies against a particular histone called 2B. “These patients were precisely the ones struggling with a more severe form of the disease,” Utz said.

“Companies developing therapies to block the corresponding protein are binding are now accepting patients with lupus for clinical trials without knowing who the other lab in Utz’s” Ush “This method could potentially be used to identify only those patients likely to benefit from the drug and in the identification of effective drugs.”

To make the discovery, the researchers made a microarray using the last 21 letters of the alphabet, or identify which potential substrates and then washing them with a solution that does not fluoresce, making signal detection easier. They then confirmed that these patients who expressed high levels of antibodies were able to identify patients with lupus with our arrays.”

The researchers hope to eventually embed an integrated semiconductor technology within the silicon chip to create a sort of mini-computer that could take the guesswork and decision-making out of many clinical processes. It could perhaps spell out patient-specific diagnoses with letters of the alphabet, or identify which potential treatments are most likely to be effective.

The technology described in the study echoes that of DNA microarrays, in which thousands of minute pieces of DNA are synthesized and sequenced on a slide in a grid-like pattern to identify patterns that can be used to diagnose diseases. Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique to detect lupus. They used a slide-based detection system and then washed them with solutions of cellular or blood-based proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal which is detected through a meticulous and lengthy series of detection steps.
A documentary about rare diseases features Ashley Appel Jetti, who has Hermansky-Pudlak Syndrome, shown here as she begins a romance with a young man who also has HPS.

We were touched by just how dedicated Donna and Ashley are, by their experiences advocating on behalf of other people with these rare diseases,” Grainger-Monsen said. “We wanted to show what it’s like to ‘sit at the table’ and go through these complex experiences.”

Grainger-Monsen added that those who have seen the film said it deepened their understanding of what’s involved in the search for disease cures — both from the perspective of the scientists and of the patients who enroll in clinical trials. “I think it shows why research effort on patient-advocacy groups really matter,” the filmmaker said.

One of the twerst sides of the film is the burgeoning already publicly funded advocacy groups involved in her research.

“Understand the binding at such levels of detail will a low probability to seek drugs that work to disrupt, enhance or mimic biological reactions within our cells to create better therapies, or to understand how and why natural processes sometimes go awry,” says the researcher.

A link to Stanford’s new self-paced course, which is mandatory for all newly hired faculty and investigators undertaking new NIH-funded research, can also be found on this website.

KQED to air two showings in September of documentary on living with rare diseases

At a glance: NIH conflict-of-interest revisions

<table>
<thead>
<tr>
<th>Revisions for 2012</th>
<th>1995 “Objectivity in Research” regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum financial interest threshold that requires disclosure</td>
<td>$10,000 in payments and/or equity interests.</td>
</tr>
<tr>
<td>What to disclose to an institution</td>
<td>Only interests deemed relevant by the investigator.</td>
</tr>
<tr>
<td>Disclosures of sponsored travel</td>
<td>Not mentioned.</td>
</tr>
<tr>
<td>Financial interests of the institution that must report to NIH</td>
<td>None, but must specify whether the interest is managed, reduced or limited.</td>
</tr>
<tr>
<td>Public accessibility of financial interests</td>
<td>Significant financial conflicts of interest must be posted to an institution’s website at the time of grant application, prior to expenditure of NIH funds, on an annual basis and if new financial conflicts of interest are acquired.</td>
</tr>
<tr>
<td>Conflict-of-interest training</td>
<td>Must report the value of financial conflicts of interest in preset dollar ranges at the time of grant application. Must disclose all reimbursed travel or sponsored travel related to institutional responsibilities, except travel sponsored by academic or government institutions.</td>
</tr>
<tr>
<td>Institutional reviews and conflict mitigation</td>
<td>University must conduct reviews of suspected non-compliance with rules, but is only required to notify NIH of cases where bias is found, including a list of financial conflicts and a management plan.</td>
</tr>
</tbody>
</table>

The new rules are the latest revisions to NIH’s “Objectivity in Research” rules that date back to 1995. While the medical school has had its own extensive conflict-of-interest policy in place for some time, these new rules are significantly different, and Stanford researchers are encouraged to familiarize themselves with these changes. To help faculty and investigators comply, Stanford has launched a new conflict of interest website at http://isbstanford.edu/coi/. A link to Stanford’s new self-paced training course, which is mandatory for all newly hired faculty and investigators undertaking new NIH-funded research, can also be found on this website.

As of Aug. 24, new regulations on financial conflicts of interest require researchers who receive grants from the National Institutes of Health and other federal agencies to disclose payments and equity interests related to patients, pharmaceutical companies to work to develop cures. The regulations also require medical ethics, and Nicole Newnham, a filmmaker and writer on the project, will explore the three-dimensional folding involved in most protein structure, as well as ways to incorporate the structure of antibodies in each case delineated specific binding requirements. Analyzing the binding of solutions of other antibodies required at least four amino acids, one of them modified, would recognize and bind to a sequence composed of two amino acids of the original 21. A nother revealed the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.

We discussed with Jetti and Grainger-Monsen, who are their experiences advocating on behalf of other people with rare diseases, the global importance of autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it binding the sequence.
Regenerative campus: Faculty and staff see benefits of new exercise center

By Margarita Gallardo

It’s not every day you come across a man doing pushups in full suit and tie on TRX equipment in the middle of a medical school campus, but that’s precisely what Jeremy Benjamin was doing on a recent sunny afternoon.

“I’m really excited to see this,” said Benjamin, associate director of major gifts at Medical Center Development, who had stopped by the Aug. 16 opening ceremony for the new outdoor workout facility at the School of Medicine. “We always have meetings on campus, and now I can catch a few quick reps on my way through.”

Random pushup breaks between meetings or during lunch might just become the norm thanks to the new School of Medicine Sports Complex, nestled between the Lokey I. Lokey Stem Cell Research Building and the Medical School Office Building and directly on top of the school’s new loading dock.

Just a few months ago, the complex was nothing but a dirt lot that served as the staging area for the Lokey Building. Now the area, the first of its kind at the medical school, is equipped with a full basketball court with a Nike Grind surface, Kompan outdoor exercise equipment, a TRX frame, benches and a water fountain. For those who want to play volleyball, the court is lined so that players can bring their own portable net and ball.

About 200 people attended the opening event where they got a chance to shoot a few hoops on the court and get demos of the exercise equipment from members of Stanford’s Health Improvement Program. Starting in the fall, HIP will offer a 10-week session of group fitness classes including TRX, boot camp and other types of activities suited for outdoors.

Niraj Dangoria, associate dean for facilities planning and management, said the sports complex epitomizes all that the School of Medicine is about. “We talk so much about striking the balance between work and life, and promoting health and fitness. What better way to show that, even with the limited real estate on campus, we can create a space with so much value that brings people together.”

Instead of a ribbon-cutting ceremony, Dangoria joined Chris Shay, director of projects in the Office of Facilities Planning & Management, and Vivian Jones, project manager for the sports complex, in a ceremonial cutting of two of the basketball nets.

“This was the best project I ever have dreamed of — it was my baby,” said Jones, who looked like a proud new mother at the opening event. “I’ve always been into fitness, and to be able to help others get and stay healthy through exercise was pure joy.”

The activities available at the facility give new meaning to the phrase “regenerative medicine,” said Dean Philip Pizzo, MD, noting that it is part of Stanford University’s commitment to academics and athletics as a way of promoting intellectual and physical success. “I am very pleased our medical school campus interconnects education, research, patient care and the health and well-being of our community,” he added.

Benjamin, the medical school development officer, said he too shared in the university’s commitment to promoting healthy lifestyles, flashing his pedometer as evidence of his involvement in the university’s BeWell program promoting health and wellness among employees. “I usually work out over at Sand Hill,” he said, adding that this new site would make it easier for him to integrate exercise into his day.

Others were having the same thought. Christopher Gardner, PhD, associate professor of medicine at the Stanford Prevention Research Center, had come over to the celebration to scrutinize some of the equipment. “What a fabulous idea for what was once a useless space,” he said. “I’ve been waiting for it to open forever, and I already envision myself doing some pullups.” And apparently, he wasn’t kidding. He did 10 of them on the spot.

The sports complex is open to all members of the School of Medicine community.

Sept. 29 bicycle ride to raise money for Stanford Cancer Institute

Free classes

Bicyclists can choose from four routes — 50 km, 75 km, 100 km and 100 miles — offering the perfect “challenge” for everyone from novices to professional riders. All rides start and finish at VMware headquarters in Palo Alto, where an event-day village will be set up for ride support and spectator entertainment. There will be food, live music and activities for youngsters.

The event is produced by the Canary Foundation, a non-profit organization dedicated to discovering and developing tests for early cancer detection. All proceeds benefit cancer research and care programs at the SCI.

“The Canary Challenge is a fun and healthy way for our local community to play a part in the effort to eradicate cancer,” said SCI director, Beverly Mitchell, MD.

Organizers have set their sights on exceeding last year’s totals of more than 340 participants and $450,000 raised.

For more information on participation and volunteer opportunities, please visit http://www.canarychallenge.com.

Free demonstrations and TRX mini classes will be held during the remainder of August at the new sports complex. Please wear athletic clothing and shoes, and bring a towel and water bottle. The dates are:

• Aug. 27, 12:10-12:50 p.m.
• Aug. 30, 8:10-8:50 a.m.
• Aug. 31, 12:10-12:50 p.m.
• Aug. 29, 12:10-12:50 p.m.

Bicyclists can choose from four routes, ranging from 50 km to 100 miles, in the second annual Canary Challenge ride to benefit cancer research.
the deal, as the Dean’s Lawn is highly visible from busy Campus Drive.

Move it

Miwok (1981-82), weighing in at 12,500 pounds and standing almost 30 feet tall, was a gift from Rita and Toby Schreiber in 2003. This is its first move since being sited on campus.

Hilarie Faberman, curator of modern and contemporary art at Stanford’s Cantor Arts Center, says of the multi-element Miwok, “With its broad shoulders and totemic form, it has resonance with Native American imagery.”

It took all of July 24 for Artthowe Fine Art Services, a contractor specializing in art handling and moving, to disassemble Miwok. The crew of four used a boom-lift, or cherry picker, to reach the highest bolts, which were removed with a pneumatic drill. Each steel element was carefully wrapped in moving blankets and plastic, fastened with heavy-duty nylon straps, and lifted by a crane before being placed safely on the ground.

A sturdy new concrete foundation was custom-designed by Artthowe not only to support the full weight of the sculptures, but with another relocation in mind.

Although Miwok is not scheduled to move again in the near future, the Cantor staff had Artthowe modify the original foundation and base design, with the artist’s permission, so that the steel elements previously welded to the foundation are instead bolted, making another move less invasive and less complicated.

It took three days to put Miwok back together again. As carefully as it came apart is as carefully as it had to be reassembled. The job was completed Aug. 6.

Clean up

Birds love a high perch in the middle of a lawn, so cleaning that perch becomes necessary after a while. The conservators took advantage of the sculpture’s disassembled state to clean the hard-to-reach places.

Elizabeth Saetta, the lead outdoor art conservator, said of the project, “Having spent many years in New York’s Central Park battling the birds, cleaning Miwok was familiar, but I have never worked on a single object that is so large before. It has been interesting.”

Saetta’s conservative conservations approach to the steel surface was to clean just enough to avoid damaging the protective patina. The color, or patina, of Miwok has developed organically over time — the artist did not chemically apply it. The challenge for Saetta and her team was to remove the bird droppings from the surface without completely exposing the underlying metal.

“In order to make sure the piece looks its best, we didn’t take the cleaning too far, practicing the ethics of art conservation not to remove original material,” said Saetta. “How do you clean a giant steel sculpture that’s been sitting in the ceaseless Stanford sun for nine years? Soap and water — but not your garden variety.

Saetta said that every sculpture on campus is washed with an anionic soap, which is gentle enough for a variety of surfaces and is non-corrrosive. She uses soft bristle brushes and, because steel is a heartier material than some other works of art, Saetta was able to use a power washer at low pressure on Miwok.

Areas of compacted, difficult-to-remove bird droppings were poulticed with the same anionic soap and water, which entails soaking cotton rags with the soap/surface tant solution and leaving them on these areas, allowing a longer surface acting time to further soften the resilient bird droppings.

The panel

Stanford’s Presidential Panel on Outdoor Art provided guidance on the relocation. The panel is a group made up of faculty, students, community members and Cantor Arts Center staff. The panel was established about 30 years ago.

Ralph Greco, MD, a professor of surgery and a sculptor in his own right, is the current chair of the panel, a responsibility he relishes: “I will be stepping down and off the committee in the fall. I will miss it terribly.”

As with all outdoor art sitings, the new location for Miwok was chosen by the panel, guided by Faberman. Two overriding factors that the panel must consider when siting a sculpture are maintenance and preservation. With maintenance and preservation in mind, irrigation of the surrounding landscape, which can result is unsightly mineral deposits and encourage corrosion, must be considered. The landscape itself can also pose a problem, so the panel tries to site sculptures without trees directly overhead that could deposit sap or pollen on the artwork. And again, the birds are an overhead factor.

Existing underground plumbing and electrical piping must be noted. The physical placement of the sculpture is crucial, given that California is seismically active. Each sculpture’s mount is engineered to make the piece as earthquake-stable as possible.

“In looking for a site, we needed a location that was open and airy and a place that wouldn’t swallow or dwarf the work, or where the sculpture would overpower the surroundings,” said Faberman. “I think the Dean’s Lawn is a particularly good site as Miwok fits in well with the landscape and architecture and the sculpture’s color harmonizes with both. Silhouetted against the sky, the sculpture seems to take on strong anthropomorphic qualities.”

Robin Wander is director of arts communications at Stanford University.

1. In preparation to move Mark di Suvero’s sculpture Miwok, workers begin disassembling it on July 24 at the site off Pasteur Drive, across from the Center for Clinical Sciences Research, where it had stood since 2003. 2. The last vertical piece of the sculpture, which stands almost 30 feet tall, is brought to the ground. 3. Miwok’s different parts are laid out for cleaning by art conservators. 4. Outdoor sculpture technician Elizabeth Saetta cleans off bird droppings, taking care not to mark or remove the patina from the metal. 5. A crane moves a beam of the sculpture onto the new site for reassembly, which was completed on Aug. 6 after several days of work. 6. Miwok is a kinetic sculpture with a crosspiece suspended by steel cables. The monumental sculpture can now be seen on the Dean’s Lawn, off Campus Drive and adjacent to the Clark Center. Rita and Toby Schreiber gave Miwok to Stanford.
neurosurgey, urology, gastroenterology and complex care teams, all of whom have united around the goal of helping Angel lead an active life.

At the center of that effort is pediatric surgeon Dorothy Pearson in the complex primary care clinic, who monitors Angel's overall well-being and ensures coordination of Angel's care. Seeing Angel try cheerleading pleased Pearson immensely. "I was thrilled about the whole idea," Pearson said. "Sometimes you can't cure a patient, but looking at the wholesome aspects of one's life, not what's wrong, but what's right — is what keeps me working with these children."

Angel's biggest medical challenge came last summer. Orthopedic surgeon Larry Rinsky, MD, performed a seven-hour surgery to straighten a 75-degree curve that had developed in Angel's spine from scoliosis, a common complication of spina bifida. The curve had forced Angel to sit awkwardly, always leaning sharply to the left.

Because the back side of Angel's spine has less bone than normal, Rinsky could not attach metal bracing rods to the back of her newly strengthened spine in the usual way. Instead, he inserted a tendon in Angel's heart and lungs out of the way to affix the rods from the front. "It really is an ex- cessively complicated and difficult proce- dure from the front," he said, adding that Angel spent two weeks recovering in the hospital. But it was worthwhile. Now Angel can look forward to "an easier life" and easily stop worrying about a prob- lem no teenage girl would want: tearing my clothes," she said with a rueful grin. "Before, I would just basically ruin all my clothes," she said with a rueful grin. and therefore no longer functional pro- teins. (in the drug-free neuron, SnaP-25 accumulates in the cell, more of it gets repaired, with beneficial down- stream implications for molecular-clamp signaling causes the neurons to die off, and jump back into the fray. as faulty signaling causes the neurons to die off, and jump back into the fray. as faulty

Cheer continued from page 1

nerves surface becomes part of the neuron's outer surface (just as would happen if a small bubble merged with a larger one surrounding it), and its stored contents spill out into the synapse.

"Structure equals function" is a watch- word of biochemistry. Proteins — the molecular creatures that do the bulk of the work in every living cell — are ini- tially produced as long linear sequences of small chemical subunits that progres- sively get strung together like beads on a string. But the string is just a string until it assumes a specific structure, typically with help from one or more "chaperone" molecules that misfolded into its correct conformation. Like a mail carrier's feet, overworked proteins get out of shape and go flat, and therefore no longer functional pro- teins may, alternatively, be quickly recon- structed on the job by proteins chemically "barcoded" for demolition at the hands of proteasomes.

Proteasomes are cell components that destroy damaged proteins. Not just nerve cells but virtually all cells in creatures range from yeast to humans contain multitudes of these tiny tube-shaped machines, which suck the defective pro- teins into their holes and chop them into smithereens.

Sudhof continued from page 1

Although Sudhof cautions that more research is needed, the findings pose a challenge to prevailing beliefs about the pathology of certain neurodegenerative disorders. "The current consensus in neurosci- ence favors a therapeutic strategy of try- ing to remove the bad molecules from the brain to slow the disease," Sudhof said. "We're getting closer to a better understanding of how the disease progresses at the molecular level."

"Structure equals function" is a watch- word of biochemistry. Proteins — the molecular creatures that do the bulk of the work in every living cell — are ini- tially produced as long linear sequences of small chemical subunits that progres- sively get strung together like beads on a string. But the string is just a string until it assumes a specific structure, typically with help from one or more "chaperone" molecules that misfolded into its correct conformation. Like a mail carrier's feet, overworked proteins get out of shape and go flat, and therefore no longer functional pro- teins may, alternatively, be quickly recon- structed on the job by proteins chemically "barcoded" for demolition at the hands of proteasomes.

Proteasomes are cell components that destroy damaged proteins. Not just nerve cells but virtually all cells in creatures range from yeast to humans contain multitudes of these tiny tube-shaped machines, which suck the defective pro- teins into their holes and chop them into smithereens.

Sudhof continued from page 1

Although Sudhof cautions that more research is needed, the findings pose a challenge to prevailing beliefs about the pathology of certain neurodegenerative disorders. "The current consensus in neurosci- ence favors a therapeutic strategy of try- ing to remove the bad molecules from the brain to slow the disease," Sudhof said. "We're getting closer to a better understanding of how the disease progresses at the molecular level."

"Structure equals function" is a watch- word of biochemistry. Proteins — the molecular creatures that do the bulk of the work in every living cell — are ini- tially produced as long linear sequences of small chemical subunits that progres- sively get strung together like beads on a string. But the string is just a string until it assumes a specific structure, typically with help from one or more "chaperone" molecules that misfolded into its correct conformation. Like a mail carrier's feet, overworked proteins get out of shape and go flat, and therefore no longer functional pro- teins may, alternatively, be quickly recon- structed on the job by proteins chemically "barcoded" for demolition at the hands of proteasomes.

Proteasomes are cell components that destroy damaged proteins. Not just nerve cells but virtually all cells in creatures range from yeast to humans contain multitudes of these tiny tube-shaped machines, which suck the defective pro- teins into their holes and chop them into smithereens.

Sudhof continued from page 1

Although Sudhof cautions that more research is needed, the findings pose a challenge to prevailing beliefs about the pathology of certain neurodegenerative disorders. "The current consensus in neurosci- ence favors a therapeutic strategy of try- ing to remove the bad molecules from the brain to slow the disease," Sudhof said. "We're getting closer to a better understanding of how the disease progresses at the molecular level."

"Structure equals function" is a watch- word of biochemistry. Proteins — the molecular creatures that do the bulk of the work in every living cell — are ini- tially produced as long linear sequences of small chemical subunits that progres- sively get strung together like beads on a string. But the string is just a string until it assumes a specific structure, typically with help from one or more "chaperone" molecules that misfolded into its correct conformation. Like a mail carrier's feet, overworked proteins get out of shape and go flat, and therefore no longer functional pro- teins may, alternatively, be quickly recon- structed on the job by proteins chemically "barcoded" for demolition at the hands of proteasomes.

Proteasomes are cell components that destroy damaged proteins. Not just nerve cells but virtually all cells in creatures range from yeast to humans contain multitudes of these tiny tube-shaped machines, which suck the defective pro- teins into their holes and chop them into smithereens.
Med student ‘Iron Chef’? Orientation offers cooking and counsel

By Mandy Erickson

Benson George and Alexander Fogel, entering students at the School of Medicine, were trying to figure out how they could best show the brain they carved from a cantaloupe. “What we need under the brain is a contrast of color so you can see it,” Fogel said, pondering a bowl of blueberries. The presentation matters: George, Fogel and their teammates were in competition with another student group to create the best fruit salad.

And for all, it was a way to get to know one another. They exchanged names, shook guacamole-covered hands, and listed their hometowns and undergraduates to learn from one another as well as form lifelong friendships. “Sit back, relax and enjoy the ride.”

Together, the students introduced to this one community, which is a central tenet of the health-care reform effort, requires that patient information and preferences are shared seamlessly among all care givers, as well as with patients and their families, as patients move from one health-care setting to another — say, from the cardiology clinic to the radiology lab. “What we’ve learned is that you can smash all the old silos,” said Cullen, “in people’s care and their attention to the suffering and health costs by adhering to evidence-based treatment guidelines for all patients,” said Cullen, who is also a clinical professor of medicine at Stanford.

This sounds simple, but in reality it takes a highly coordinated system that involves information systems, performance monitoring, education and communication, and a team approach to caring for patients.

Chang’s 22-year career in primary care and health systems has been devoted to trying to redesign them to better serve both patients and society. He previously served as chief medical officer of the Alameda County Medical Center, the safety-net health system for Oakland and the county. It is a major teaching hospital with complex care issues and oversees the development of a complex-care clinic. Earlier, he was CEO of the San Mateo Medical Center, a county-owned health-care system, a position he held for about 1,400 employees at the time.

“Attracted me to this position at Stanford was the vision of the leaders both at the hospital and medical school, and the chance to work with a world-class institution,” Chang said, “to help solve some of the most pressing problems of health care today: bending the cost curve and improving quality and the patient experience by evidence-based and patient-centered primary care.”

To this end, the hospital and medical school are collaborating to boost the number of staff, clinical and research efforts in family medicine, internal medicine, geriatrics, palliative care and occupational health, among other primary-care services, said Mark Cullen, MD, chief of the Division of General Medical Disciplines at the medical school. The aim is to make Stanford a research leader in the new approaches to primary care and a recognized destination for comprehensive care — a place where people routinely go for a physical exam in addition to the specialty care for which the hospital is famous.

While Stanford already has a number of primary-care clinics and services, Chang’s job will be to integrate additional primary-care practices and the care that they provide. “Dr. Chang will inherit a small empire with lots of small, fragmented clinical entities,” Cullen said, adding that Chang has the know-how and experience to weave together more fully the care delivery system that complements the hospital’s more advanced services.

My responsibilities will be to help lead both the hospital and the medical school in creating an innovative and leading-edge primary-care system to parallel and team with Stanford’s renowned specialty-care system,” Chang said, “initially, the focus will be on expanding the system with new, non-primary-care practices, but an equally critical part of the job will be to support and integrate the existing primary-care teaching clinics into a seamless system of care.”

One of the first steps will be to establish a group of clinics in Ladera, a community adjacent to Portola Valley, for internal and family medicine. Those clinics are scheduled to open in October at $320 and $340 Alpine Road. Another clinical building will open at the site in February. They are the first of several clinics planned for the Peninsula, with the aim of developing a broader geographical base of Stanford general practitioners.

Chang’s role is part of a larger effort by the medical center to advance primary care at Stanford and beyond through both practice and research. In addition to Chang, the medical center has hired several senior faculty members over the past couple of years who are at the forefront of rethinking how health care should be delivered:

- Arnold Milstein, MD, MPH, Alan Glaseroff, MD; Ann Lindsay, MD; and Steve Asch MD, MPH.

Along with these new faculty members, the hospital has been building over the last few years a Stanford-sponsored physician network — the University Healthcare Alliance — which seeks to partner with community physicians throughout the region. The primary-care network that Chang is developing will work in tandem with this.

Chang said he wants Stanford to become the place where “everyone, both the sick and the not yet sick, will want to go for health care.”

“Stanford has always stood for excellence in highly specialized care, such as organ transplants.”

Chang added, “But the senior leadership of both the hospital and the medical school realized that society needs more than just excellent specialty care. In order for payers, employers and ultimately all of us to be able to afford the amazing pipeline of medical advances, many of which are only available in large specialty centers, we in part, as faculty members over the past couple of years who are at the forefront of rethinking how health care should be delivered: Arnold Milstein, MD, MPH, Alan Glaseroff, MD; Ann Lindsay, MD; and Steve Asch MD, MPH. Along with these new faculty members, the hospital has been building over the last few years a Stanford-sponsored physician network — the University Healthcare Alliance — which seeks to partner with community physicians throughout the region. The primary-care network that Chang is developing will work in tandem with this.

Chang said he wants Stanford to become the place where “everyone, both the sick and the not yet sick, will want to go for health care.”

“Stanford has always stood for excellence in highly specialized care, such as organ transplants.”

Chang added, “But the senior leadership of both the hospital and the medical school realized that society needs more than just excellent specialty care. In order for payers, employers and ultimately all of us to be able to afford the amazing pipeline of medical advances, many of which are only available in large specialty centers, we...
Jones continued from page 6

Peggy, hosted countless parties for holidays, birthdays, anniversaries and special events. Medical students were welcome to stop in unannounced to join Jones, his wife and three children for dinner, and Thanksgiving celebrations usually included a half-dozen or more guests. Visiting faculty sometimes lived with the family. Their Stanford home also served as the rehearsal space for a local jazz band in which Henry played drums.

"The glue that held us together" is how William Marshall, MD, emeritus professor of radiology, described Jones’ role in the department. “Early on, in a group that included people who might now be considered by any other feels as something I’m not very good at trumpet his own self-importance,” Marshall said. “People were much more deliberate about how they used their voice.”

In addition to his Stanford work, Jones was a founding member of Physicians for Social Responsibility and a leader in the movement to eliminate the threat of nuclear war and weapons of mass destruction. In 1994, he received the group’s Broad Street Pump Award, with a specialty in radioactive and weapons of mass destruction. His work in this area was noted in his nomination for the Nobel Peace Prize in 2005.

A third-generation physician, Jones was born on June 9, 1917, in Altoona, Penn. His father was a urologist, and he grew up in the Air Force. Jones joined the Army during World War II and also served as a captain in the Air Force, where he trained physicians to be radiologists or “90-day wonders,” as they were commonly called. He also served as head of radiology in Bad Nauheim, Germany, the orthopedic center for the army of occupation.

In 1948, Jones was hired by the former Yale professor, Kaplan, who had become chair of Stanford’s young radiology department. Upon arriving on the West Coast, Jones joined with other faculty in radiology to expand the department and helped to move the medical school from its San Francisco location to its current spot on the Stanford campus, which was completed in 1959.

In 1952 Jones married Margaret (“Peggy”) Crusius, MD, whose long career as a pediatrician with the Santa Clara County Well-Baby and Immunization Clinics paralleled his career at Stanford. Across many decades, the couple were enthusiastic fans of the Stanford basketball, football and Livestock Arts programs. They also enjoyed the Stanford Sierra Camp for many years when their children were young. Jones is survived by his wife, Peggy, of Stanford; daughter Virginia Jones of Castro Valley, Calif.; son Henry C. Jones of Eugene, Ore.; son Keasley Jones of Berkeley, Calif., and daughter-in-law Autumn Stephens; and two grandchildren. He also leaves many friends, colleagues and former students who retain warm memories of his exuberant spirit, which informed his customary way of ending a conversation: “Happy Day!”

A memorial service, open to all, will be held at Memorial Church on Sept. 20 at 4 p.m., with a reception to follow on campus at Paul Brest Hall and the Reinhquist Courtyard. For information about parking, or shuttle bus service between parking, church and the reception site, call the Memorial Church office at 723-1762.

In lieu of flowers, contributions in memory of Jones may be made to the Cancer Research Center on the Virginia & D.K. Ludwig Professor, will be focusing on characterizing the role of anti-CD47 therapy on antigen presentation in solid tumors. Burg, who is being sponsored by CHRISTOPHER GARCÍA, PhD, professor of molecular and cellular physiology and of structural biology, will be working on structural studies of the calcium release activated calcium.

DEAN SELFRIE, MD, PhD, has been promoted to professor of medicine and of pathology as of Aug. 1. His laboratory has shown that tumors are addicted to oncogenes and exploits this to develop novel therapies for cancer.

JOANNA KELLEY, PhD, postdoctoral scholar in genetics, is the recipient of the 2012 L’Oreal USA Fellowships For Women in Science. Recipients receive up to $60,000 to further their postdoctoral research. Kelley will explore the genomic basis of autism, a complex multi-problem group including the homeless, the unemployed and people with serious mental illness, alcohol and drug problems, and heart disease.

ADAM DE LA ZERDA, PhD, has been appointed assistant professor of structural biology at Aug. 1. His lab focuses on developing new optical imaging instrumentation and chemistry tools to study the complex spatiotemporal behavior of bio-molecules in living subjects. The lab uses animal models for cancer and epithelial diseases such as age-related macular degeneration.

Jones is survived by his wife, Peggy, of Stanford; daughter Virginia Jones of Castro Valley, Calif.; son Henry C. Jones of Eugene, Ore.; son Keasley Jones of Berkeley, Calif., and daughter-in-law Autumn Stephens; and two grandchildren. He also leaves many friends, colleagues and former students who retain warm memories of his exuberant spirit, which informed his customary way of ending a conversation: “Happy Day!”

A memorial service, open to all, will be held at Memorial Church on Sept. 20 at 4 p.m., with a reception to follow on campus at Paul Brest Hall and the Reinhquist Courtyard. For information about parking, or shuttle bus service between parking, church and the reception site, call the Memorial Church office at 723-1762.

In lieu of flowers, contributions in memory of Jones may be made to the Cancer Research Center.

This article was written by Judith Prochaska.

Mountain View man reaches milestone 600th blood donation

August 27, 2012

After more than two decades’ worth of visits, blood donor David “Mitch” Mitchell hit a unique milestone on Aug. 20 when he became the first person to make more than 600 donations at the Stanford Blood Center. Since donating through a specialized two-process that allows the center to collect specific blood components, such as platelets. This donation type allows him to donate as many as 24 times a year.

Whole-blood donors are limited to a maximum of about six donations per year.

Mitchell first began donating blood at age 17 when he sold his Air Force horse, and it quickly became a habit. “It only takes a couple of hours, and once you build it into your life, it just happens,” said the resident of Mountain View, Calif.

He recalled attending a survivors’ dinner about 10 years ago where one blood recipient got up and thanked the staff for their assistance by saying, “I’m here, you’re here and that’s good.” That’s his bottom line.

Mitchell said. Donating is a small inconvenience, but it means the world to someone in need.

“Someone with a loved one who needs blood would offer every vein in their body,” he said. “Well, there are a lot of people out there who need blood and don’t have anyone to help, so I do what I can.

Cancer and leukemia patients often depend upon platelet transfusions. For example, a leukemia patient might have a dangerously low platelet count that could be caused by the disease itself or its treatment, which can damage bone marrow and result in hemorrhage. Platelets cannot be obtained from platelet patients while allowing enough time for their therapy to work.

Although Mitchell started as a whole-blood donor, Stanford quickly identified him as an ideal platelet donor. He has been donating regularly at the blood center ever since. “The nurses and medical assistants here are just a delight,” he said.

With donors Eric Buhr, Linda Johnson and Dick Tagg, Mitchell is among an elite group who have given blood more than 500 times to the Stanford Blood Center.

The blood center currently has a need for all blood types, but there is a particular need for Rh-negative blood. Donors should be in good health with no cold or flu symptoms. They must eat well prior to donation, drink fluids and present photo identification at the time of donation. The process takes about an hour.

For more information, please visit bloodcenter.stanford.edu.

The Virginia & D.K. Ludwig Professor, will be focusing on characterizing the role of anti-CD47 therapy on antigen presentation in solid tumors. Burg, who is being sponsored by CHRISTOPHER GARCÍA, PhD, professor of molecular and cellular physiology and of structural biology, will be working on structural studies of the calcium release activated calcium.

DEAN SELFRIE, MD, PhD, has been promoted to professor of medicine and of pathology as of Aug. 1. His laboratory has shown that tumors are addicted to oncogenes and exploits this to develop novel therapies for cancer.

JOANNA KELLEY, PhD, postdoctoral scholar in genetics, is the recipient of the 2012 L’Oreal USA Fellowships For Women in Science. Recipients receive up to $60,000 to further their postdoctoral research. Kelley will explore the genomic basis of autism, a complex multi-problem group including the homeless, the unemployed and people with serious mental illness, alcohol and drug problems, and heart disease.

ADAM DE LA ZERDA, PhD, has been appointed assistant professor of structural biology as of Aug. 1. His lab focuses on developing new optical imaging instrumentation and chemistry tools to study the complex spatiotemporal behavior of bio-molecules in living subjects. The lab uses animal models for cancer and epithelial diseases such as age-related macular degeneration.

This article was written by Judith Prochaska.