Neuromuscular Blocking Agents

Succinylcholine

- Structure = 2 adjoined ACh molecules!
- Mechanism of action is by ACh receptor activation and prolonged muscle depolarization.
- Dose: 1 to 1.5 mg/kg for intubation.
- Onset within 30-60 seconds and duration ~10 minutes depending on dose.
- Elimination by diffusion away from NMJ and metabolism by pseudocholinesterase (a.k.a. plasma cholinesterase)
 - Atypical pseudocholinesterase (genetic defect) can significantly prolong SCh block; enzyme activity measured by the "dibucaine number":
 - Normal = 80 (i.e. dibucaine inhibits 80% of activity)
 - Heterozygote (1:480) = 50; block lasts ~30 minutes
 - Homozygote (1:3200) = 20; block lasts 6-8 hours

Succinylcholine: Adverse Effects

Hyperkalemia
- Can increase K+ by 0.5-1 mEq/L
- Long list of comorbid contraindications (e.g. hyperkalemic ARF, burn injury, muscular dystrophy, spinal cord injury)

Malignant Hyperthermia
- Trismus (masseter muscle spasm) can be a heralding event

Cardiac Arrhythmias
- Bradycardia - parasympathetic and SA node stimulation; especially in children where sympathetic tone is low.
- Cardiac Arrest - successive doses 2-10 minutes apart can cause bradycardia, junctional rhythm, or arrest; always give 2nd dose with 0.4 mg atropine.

Post-operative Myalgias
- Fasiculations have been implicated in causing myalgias.
- Prevented with small defasciculating dose of NDMBs.

Increased ICP, IOP, and intragastric pressure

Non-Depolarizing NMBs

- Mechanism of action by competitive inhibition of ACh at the NMJ.
- Two structural classes:
 1. Benzylisoquinoliniums = "-uriums"
 - Atracurium, Cisatracurium, Mivacurium, Doxacurium, d-Tubocurarine
 - More likely to cause histamine release (d-Tubocurarine >> Atracurium = Mivacurium)
 2. Aminosteroids = "-oniums"
 - Pancuronium, Vecuronium, Rocuronium, Pipecuronium
 - No histamine release
 - May exhibit vagolytic effects (Pancuronium >> Rocuronium >> Vecuronium = Pipecuronium)
Non-Depolarizing NMBs

Short-Acting (onset within 90 sec, offset within 20 minutes)
- Mivacurium = 0.2 mg/kg; metabolized by pseudocholinesterase (but slower than SCh)
- Rapacuronium (off the market due to life-threatening bronchospasm)

Intermediate-Acting (onset within 3 minutes, offset within 30-45 minutes)
- Rocuronium = 0.6 mg/kg (1 mg/kg for RSI with onset similar to SCh); hepatic > renal elimination
- Vecuronium = 0.1 mg/kg; hepatic > renal elimination
- Cisatracurium = 0.2 mg/kg (0.6 mg/kg for RSI); elimination by Hofmann degradation
- Atracurium

Long-Acting (slow onset, offset ≥60 minutes)
- Pancuronium = 0.1 mg/kg; renal > hepatic elimination
- Pipecuronium, Doxacurium, d-Tubocurarine

Peripheral Nerve Stimulation

<table>
<thead>
<tr>
<th>Normal Stimulus</th>
<th>Depolarizing Block</th>
<th>Nondepolarizing Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train-of-four</td>
<td>Constant but diminished</td>
<td>Faded</td>
</tr>
<tr>
<td>Tetany</td>
<td>Constant but diminished</td>
<td>Faded</td>
</tr>
<tr>
<td>Double-burst (DIB)</td>
<td>Constant but diminished</td>
<td>Faded</td>
</tr>
<tr>
<td>Posttetanic potentiation</td>
<td>Absent</td>
<td>Present</td>
</tr>
</tbody>
</table>

Monitoring Neuromuscular Block

- Variability in muscle blockade (most resistant ➔ most sensitive): vocal cords > diaphragm > orbicularis oculi (OO) > abdominal muscles > adductor pollicis (AP) > masseter > pharyngeal muscles > extraocular muscles
- Pick one site to monitor (e.g. AP or eyebrow), but know how different muscles respond relative to that site.

Time to peak effect for commonly used muscle relaxants

Time course after Rocuronium (0.6 mg/kg) at different muscles

Phase I block is typical for SCh.
Phase II block is typical for NDMBs

SCh can develop a Phase II block at high doses (>6 mg/kg) or with prolonged infusions
Monitoring Neuromuscular Block

Onset of Blockade
- The AP poorly predicts intubating conditions because the diaphragm and laryngeal muscles are MORE resistant to blockade.
- The corrugator supercilii (eyebrow) best predicts laryngeal conditions.

Surgical Relaxation
- The AP is adequate, but is more resistant to recovery than the abdominal muscles.
- Surgeons may complain of “tightness” even though you have no AP twitches.

Recovery from Blockade
- The diaphragm and laryngeal muscles recover first.
- The AP recovers last, so if twitches are present, then the diaphragm can be safely reversed.

Anticholinesterases
- Mechanism of action is by inhibiting acetylcholinesterase thereby increasing the amount of ACh in the NMJ.
- Used as “reversal agents” to counteract NDMBs.
 - Neostigmine, Pyridostigmine, and Edrophonium do not cross the BBB.
 - Physostigmine crosses the BBB (can be used to treat central anticholinergic syndrome/atropine toxicity)
- Anticholinesterases cause vagal side effects (e.g. bradycardia, salivation) by increasing ACh activity at parasympathetic muscarinic receptors; always administer with anticholinergics:
 - We typically use Neostigmine 0.07 mg/kg (~2.5-5 mg) with Glycopyrrolate (0.2 mg per 1 mg Neostigmine)
- Other side effects include nausea and bronchospasm.

Reversal of Neuromuscular Blockade
- NDMB activity is terminated by redistribution away from the NMJ and end-organ metabolism.
- Anticholinesterase “reversal agents” speed up redistribution by increasing ACh levels in the NMJ.
- Assess adequacy for reversal with nerve stimulation:
 - TOF ratio = amplitude of 4th twitch divided by 1st twitch
 - When TOF ratio is 0.7, the single twitch height appears normal, but as many as 70% of receptors are still blocked!
 - Patients can be reversed when ≥1 out of 4 twitches is present.
- The gold standard for assessing adequacy of reversal for extubation is 5 seconds of sustained tetany (no fade); other measures include TOF ratio = 0.9 (imperceptible to the eye) or 5 seconds of sustained head lift.

Pearls
- Use Rocuronium for RSI in situations where SCh is contraindicated.
- Consider using Cisatracurium in renal and liver patients (Hofmann degradation).
- Atracurium yields the metabolite “laudanosine”, which can cause CNS stimulation/seizures (but only at high, nonclinical doses)
- Pancuronium is the most renally excreted; causes ↑HR, BP, and CO.
- It is important to pair anticholinesterases and anticholinergics based on speeds of onset:
 - Edrophonium (rapid) w/ Atropine
 - Neostigmine (intermediate) w/ Glycopyrrolate
 - Pyridostigmine (slow) w/ Glycopyrrolate
Pearls

- Diseases more RESISTANT to NDMBs:
 - Guillen-Barré (AChR upregulation)
 - Burns (more extrajunctional nAChR)
 - Spinal cord injury
 - CVA
 - Prolonged immobility
 - Multiple sclerosis

- Diseases more SENSITIVE to NDMBs:
 - Myesthenia gravis (fewer AChR)
 - Lambert-Eaton Syndrome (less ACh release)

- Factors ENHANCING block by NDMBs:
 - Volatile anesthetics, aminoglycosides, Mg, IV local anesthetics, CCBs, Lasix, Dantrolene, Lithium, anticonvulsants, SCh, hypokalemia, hypothermia

References