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Abstract
The circular drift-diffusion model (CDDM) is a sequential sampling model designed to account for decisions and response
times in decision-making tasks with a circular set of choice alternatives. We present and demonstrate a fully Bayesian
implementation and extension of the CDDM. This development allows researchers to apply the CDDM to data from complex
experiments and draw conclusions about targeted hypotheses. The Bayesian implementation relies on a custom JAGSmodule.
We describe the module and demonstrate its adequacy through a simulation study. We then illustrate the advantages of
the implementation by revisiting data from a continuous orientation judgment task. We develop a graphical model for the
analysis that is based on the CDDM but extends it with hierarchical and latent-mixture structures. We then demonstrate how
these extensions are used to accommodate the design of the experiment and to implement psychological assumptions about
individual differences, the difficulty of different stimulus conditions, and the impact of cues on decision making. Finally, we
demonstrate how the computational Bayesian inference enabled by JAGS allows these assumptions to be tested and addresses
psychological research questions about people’s decision making.

Keywords Circular drift diffusion model · JAGS · Hierarchical model · Latent-mixture models · Bayesian inference

Introduction

The circular drift-diffusionmodel (CDDM; Smith, 2016) is a
sequential sampling decision model that extends the widely
used drift-diffusion model (DDM; Ratcliff, 1978; Ratcliff &
McKoon, 2008) to the circular domain. In the classical DDM,
it is assumed that evidence from a stimulus is repeatedly sam-
pled until a boundary is reached, at which point the decision
associatedwith that boundary ismade. Themodelmakes pre-
dictions about both the decisions people make and the time
they take to make them. The DDM is designed for tasks with
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discrete decisions and is most often applied to two-choice
tasks.

The CDDM considers situations in which the boundary
of evidence accumulation is an encompassing circle. This
extension implies that there exists a continuum of possi-
ble decisions, corresponding to points on the circle and that
there is a similarity relationship between the decision alterna-
tives. The CDDM has been applied in other decision settings
including targets presented in visual displays (Smith & Cor-
bett, 2019), the orientation of line segments (Kvam, 2019),
color identification by eye movement (Smith et al., 2020),
color-coded contexts in source-memory retrieval tasks (Zhou
et al., 2021), and spatial location coded contexts in lexical
memory tasks (Zhou et al., 2023). Figure1 provides examples
of three more possibilities: choosing a color from a wheel to
identify the color of a shirt, choosing the spatial direction of
a voice, and choosing a time in a calendar year.

In this article, we introduce a custom JAGS module
that implements the CDDM. JAGS is a high-level scripting
language for implementing probabilistic generative mod-
els and automating Bayesian inference using computational
sampling methods (Plummer, 2003). JAGS is widely used
to develop, evaluate, and apply cognitive models (Lee &
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Fig. 1 Examples of circular
decisions. The top left panel
shows a hue identification task
where the color of the shirt has
to be located along the color
wheel. The bottom left panel
illustrates a situation in which a
person must spatially locate the
source of a relevant auditory
stimulus (e.g., a voice). The
right panel presents the decision
space for questions about the
occurrence of an event of
interest during the calendar year

Wagenmakers, 2013). There are at least two reasons to
develop custom modules. The first, as demonstrated by
Wabersich & Vandekerckhove (2014) for the DDM, is that it
makes non-standard statistical distributions available. Some-
times, when a new distribution is composed of combinations
of standard distributions, this is just a matter of convenience.
Other times, when the probability density function of the
new distribution relies on procedural calculations that are not
part of the base JAGS language, a module is needed to make
it available at all. The second advantage of custom mod-
ules, as argued by Lee (2011, 2018), is that they facilitate
the development of tailored graphical models. In particular,
JAGS makes it easy to construct hierarchical, latent mixture,
and common cause models in order to capture the context in
which behavioral data are observed and to allow models to
answer specific research questions.

The structure of this article is as follows. We begin by
providing a statistical specification of the CDDM. We then
implement the CDDM in JAGS and present the results of
a parameter recovery study that demonstrates the accuracy
of our implementation. To illustrate the use of the module,
we present an application to data collected in a continuous
orientation judgment task by Kvam (2019). Our application
is based on a graphical model that extends the CDDM with
hierarchical and latent-mixture structures. These extensions
allow themodel to accommodate the designof the experiment
and to implement psychological assumptions about individ-
ual differences, the difficulty of different stimulus conditions,
and the impact of cues on decision making. We demonstrate
how the computational Bayesian inference enabled by JAGS
allows these assumptions to be tested and addresses psycho-
logical research questions about people’s decision making.
We conclude with a discussion of possible applications of
the CDDM within JAGS, including potential extensions to

decision tasks in which the circular continuum is partitioned
into a set of structured discrete choice alternatives.

The Circular Drift DiffusionModel

The CDDM, shown in Fig. 2, assumes that evidence for a
decision begins at the origin of a circle and is accumu-
lated sequentially in time until the evidence tally reaches
the circumference. Evidence accumulation is represented as
a two-dimensional randomwalk, such that the evidence state
st at any point in time t can be described using Cartesian
coordinates st = (xt , yt ), or the corresponding polar coor-
dinates mt and dt , where mt is the radial distance from the
origin and 0 ≤ dt < 2π is the angular orientation in radians.
Once the evidence accumulation reaches the circumference,
the corresponding decision alternative is selected. The result
of this process on each trial is a two-dimensional outcome
containing the angle of the alternative selected in radians and
the associated response time.

The CDDM requires at least four parameters to describe
the response process. The non-decision time τ ≥ 0 is the
fixed amount of time that participants take to encode stimu-
lus information and execute a motor response. The boundary
radius η > 0 determines the amount of evidence required
before committing to a decision. The drift angle 0 ≤ θ ≤ 2π
represents the angular direction in radians of the decision
alternative favored by the stimulus presented. Finally, the
drift length δ > 0 indicates the speed with which the partic-
ipant accumulates information towards the decision implied
by the drift angle θ .

Together, the drift angle θ and drift length δ describe the
information provided by the stimulus and its effect on the
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Fig. 2 In the CDDM, the evidence accumulation process is a two-
dimensional random walk from the origin of a circle to its circumfer-
ence.Theboundary radiusη determines the amount of evidence required
before committing to an answer. The drift vector µ = (

μx , μy
)
speci-

fies the mean step size on the x and y coordinates. The drift vector can
also be expressed in polar coordinates, with the drift angle θ and drift
length δ indicating the average direction and speed of the random walk.
The non-decision time parameter τ is not depicted

speed and direction of the evidence accumulation process.
The drift angle θ and drift length δ correspond to the polar
coordinates of the drift vector µ = (

μx , μy
)
that specifies

the mean step size of the randomwalk process on the x and y
dimension, respectively, in Cartesian coordinates. Translat-
ing between these two coordinate systems is straightforward
using the following system of equations:

δ =
√

μ2
x + μ2

y

θ = arctan

(
μy

μx

)
(1)

(
μx , μy

) = (δ cos (θ) , δ sin (θ)) .

Much like in other sequential sampling models, the non-
decision time and boundary radius are assumed to be fixed
across trials while the drift parameters describing the infor-
mation provided by the stimuli are assumed to vary. At any
given moment in time t , the evidence accumulated along the
x and y axes st = (xt , yt ) is assumed to be independent and
identically distributed, such that xt ∼ Gaussian

(
μx , σ

2
)
and

yt ∼ Gaussian
(
μy, σ

2
)
.

The CDDM Likelihood Function

An attractive property of the CDDM is that the implied distri-
bution of data given parameters is computationally tractable.
The bivariate probability density function, which expresses
the joint probability density of decision c and reaction time
t , is given by (Qarehdaghi & Rad, 2022; Smith, 2016):

p (c, t | δ, θ, η, τ ) = σ 2

2πη2
exp

(
− 1

2σ 2

[
δ2(t − τ) − 2ηδ cos (c − θ)

])

×
+∞∑

k=1

[
j0,k

J1( j0,k )
exp

(
− 1

2η2
(t − τ) j20,kσ

2
)]

(2)

⇔ (c, t) ∼ CDDM◦ (δ, θ, η, τ ) ,

or equivalently in Cartesian coordinates:

p
(
c, t | μx , μy , η, τ

) = σ 2

2πη2
exp

(
− 1

2σ 2

[ (
μ2
x + μ2

y

)
(t − τ)

−2η(μx cos(c) + μy sin(c))
])

×
+∞∑

k=1

[
j0,k

J1( j0,k)
exp

(
− 1

2η2
(t − τ) j20,kσ

2
)]

(3)

⇔ (c, t) ∼ CDDM+
(
μx , μy , η, τ

)
.

Throughout, we will choose σ = 1 to identify the model.
In these two functions, J1() and j0,k are, respectively, a first-
order Bessel function of the first kind and the k th zero of a
zero-order Bessel function.

The left panel of Fig. 3 provides an illustration of the
CDDM. A number of evidence accumulation paths from the
origin to the circumference are shown, and the shading along
the circumference shows the resulting distribution of deci-
sions. This marginal distribution of decisions is shown again
in the top right panel and themarginal distributionof response
times is shown in the bottom right panel.

JAGS Implementation of the CDDM

CustomModule

The steps to constructing a custom JAGSmodule are laid out
in Wabersich & Vandekerckhove (2014). The process has
become more efficient since the publication of that tutorial,
in that there nowexist a number of repositories1 with example
modules that can be used as a starting point, and in particu-
lar the jags-moduleTemplate repository https://github.com/

1 Some examples are jags-wiener (Wabersich, 2018), jags-vonmises
(Wabersich, 2016b), jags-amoroso (Wabersich, 2016a), jags-exgauss
(Selker, 2016), and jags-rescorlaWagner (Selker, 2018b).
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Fig. 3 An illustration of the
distribution of decision and
response times predicted by the
CDDM. The left panel shows
different random walks
observed over 100 trials, with
the shaded points along the
circumference indicating the
decisions registered every time.
All random walks present a
decision process with the same
boundary radius, non-decision
time, and drift vector
parameters. The top right panel
shows the observed distribution
of decisions in radians. The
bottom right panel shows the
positively-skewed observed
distribution of response times

θδ

η
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Decision

0.5 1 1.5 2 2.5
Response time

raviselker/jags-moduleTemplate/ by Selker (2018a). With
these resources, the remaining effort in creating a JAGS
module is in the writing of applicable logDensity func-
tions and a handful of housekeeping functions such as
typicalValue and checkParameterValue. Because
theCDDMlikelihood is vector-valued (i.e., themodel applies
to bivariate data), themodule definesVectorDist (vector-
valued distribution) objects with length 2.

The module2 can be obtained via https://github.com/
joachimvandekerckhove/jags-cddm/. The core code for the
density function evaluation canbe found insrc/distrib-
utions/DCDDM.cc. That file implements the logarithmof
the Cartesian formulation of the likelihood given in Eq. 3:

�
(
c, t | μx , μy , η, τ

) ≈ − log
(
2πη2

) − t − τ

2

(
μ2
x + μ2

y

)

+η(μx cos(c) + μy sin(c))

+ log

(
50∑

k=1

[
j0,k

J1( j0,k)
exp

(

− t − τ

2

j20,k
η2

)])

. (4)

The polar version of the likelihood is implemented by
transforming the input parameters using System 1 and then
calculating Eq. 4. Note that j0,k/J1

(
j0,k

)
and j20,k are only

a function of the summation counter k and not of any of
the function’s parameters or variables, so they can be pre-
computed for speed. We approximate the infinite sum by
computing only the first 50 terms, which we have found to be
sufficient – the contribution of the 50th term is less than 0.1%
of the total sum as long as the scaled time factor (t − τ)/η2

is at least 0.004. In the small-t range, Eq. 4 becomes numer-

ically unstable when
√

μ2
x + μ2

y and η are large, which can

2 For computational reproducibility, the GitHub repository also
includes instructions for setting up a virtual machine—a curated
computational environment—that includes an operating system with
appropriate compilers and software versions that support the module.

impede parameter estimation. Smith et al. (2023) demon-

strate with values of
√

μ2
x + μ2

y = 5 and η = 4 and propose

an updated solution to the density function. At the time of
writing, this update is being implemented and tested (see the
“Ongoing Work” section, below).

Usage

The README.md file of the repository provides installa-
tion instructions. Once the module is installed, it can be
loaded in JAGS with load cddm. Loading the module will
enable two new distributions with the following templates.
For CDDM◦():

X[1:2,i] ˜ dcddmpolar(driftLength,
driftAngle, bound, nondecision)
and for CDDM+():

X[1:2,i] ˜ dcddmcartn(driftx, drifty,
bound, nondecision)
In both cases, X[1,i] is the decision in radians, and
X[2,i] is the reaction time in seconds. dcddmpolar()
takes the parameters expressed in polar terms (δ, θ, η, τ ) and
dcddmcartn() takes the parameters expressed in Carte-
sian terms (μx , μy, η, τ ). All input parameters are scalars.

The θ parameter exists in a circular domain, which some-
what complicates the MCMC sampling, especially if its
posterior distribution has significant mass near the edge of
the (arbitrarily chosen) 2π -interval over which it is defined.
While these complications are not insurmountable, we gen-
erally prefer the Cartesian implementation.

Parameter Recovery Study

We tested the accuracy of the CDDM module in simula-
tion studies that examined separately the parameter recovery
of the Cartesian and polar coordinates implementations of
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the module. We selected a small number of values for every
parameter in the model and used them to simulate 200 inde-
pendent data sets for every possible parameter combination.
We then applied the JAGS module and compared the param-
eter values retrieved to those used to generate the data sets.
Parameter recovery was evaluated using the distribution of
the mean posteriors obtained across every data set generated
using every parameter value. The recovery study does not
assess the CDDMmodel itself, nor does it allow us to evalu-
ate the effectiveness of the Bayesian statistical methods used
to make inferences. Rather, the recovery study provides a
method for checking the correctness of the implementation
of the JAGS module, and for understanding the informative-
ness of experimental designs with respect to the CDDM and
its parameters.

We used three different values of boundary radius η ∈
(1.5, 2.0, 2.5) and non-decision time τ ∈ (0.1, 0.2, 0.3). For
the recovery study testing the polar coordinate implemen-
tation of the module, we used three different values of drift
angle θ ∈ (0.0, 2.0, 4.0) and drift length δ ∈ (0.01, 1.0, 2.0),
while for Cartesian coordinate implementation we used four
mean step size levels on the x and y coordinates, μx ∈
(−0.5, 0, 0.5, 1) and μy ∈ (−1,−0.5, 0, 0.5). Altogether,
this resulted in 81 different parameter combinations in the
polar implementation and 144 parameter combinations in the
Cartesian implementation.

Posterior estimateswere computed across four chainswith
2500 recorded samples each after 500 discarded burn-in sam-
ples. All chains converged, using R̂ < 1.05 as a criterion
(Gelman et al., 2013). Note that chain convergence for the
drift angle θ parameter in the polar implementation was eval-
uated after having transformed the posterior samples into the
constrained interval 0 ≤ θ < 2π . This transformation was
conducted using modular algebra.

The results of the parameter recovery studies are shown
in Figs. 4 and 5 for the Cartesian and the polar coordinate
implementations of themodule, respectively. In these figures,
each panel presents the distribution of the posterior means
obtained across all data sets that shared the same true value
of that parameter (regardless of the values of the other param-
eters).3 Overall, parameters are recovered well: there are no
systematic errors from the “true” parameter values used to
generate the data, and the variability around these values is
acceptably small with sample size 200. These results provide
confirmation that the CDDMprobability density functions in
our JAGS module are correctly implemented.

3 The bottom right panel of Fig. 5 excludes caseswhere the drift length δ

true valuewas close to 0 (i.e., δ = 0.01), as the drift angle is unidentified
in that case.

OngoingWork

The jags-cddm module continues to be developed. New
additions will be made publicly available via the GitHub
repository. The planned additions include (1) updating the
likelihood function for computational stability for extreme
parameter values (Smith et al., 2023), (2) adding one or
more additional distribution functions for integrated cross-
trial variability (Zhou et al., 2021, 2023), and (3) including
an efficient and robust random number generator.

Application toModeling Orientation
Judgments

Kvam (2019) Experiment

Kvam (2019) considered a task in which participants esti-
mated themeanorientation of a sequence of rapidly presented
Gabor patches. The design of the task is summarized in
Fig. 6. Trials were divided into four main blocks with two
independent factors: speed versus accuracy instructions and
cued versus uncued conditions. For speed trials, participants
gainedmore points for responsesmadewithin 800ms of stim-
ulus onset, while for accuracy trials participants earned more
points the closer their estimates were to the true mean. Par-
ticipants were told at the beginning of each block whether
they were a part of the speed or accuracy condition, and they
were also reminded of the condition with the words “speed”
or “accuracy” at the beginning of each trial.

Once a trial started, participants were shown either a green
line with a fixed orientation (cued condition) or a green circle
at the center of the screen (uncued condition). Following the
presentation of the line or circle, participants were shown
a rapid sequence of Gabor patches, drawn every 16.7 ms
at 60 hz, with orientations varying according to a Gaus-
sian distribution centered at the true mean orientation with
a fixed standard deviation. The standard deviations of the
distribution of the samples were used to set three difficulty
conditions—low, medium, and high—with standard devia-
tions of 15, 30, and 45°, respectively. A cue could have a
deflection of 0, 20, 50, or 70° in a clockwise or counter-
clockwise direction from the true mean orientation of the
Gabor patches.

Participants could respond at any point during the presen-
tation of the sequence of patches by moving their mouse to
the edge of a response circle on the screen. The point at which
they reached the edge defined their decision for the trial.

To simplify the presentation of modeling results, we
consider only six of the twelve participants, chosen to be
representative of the overall range of individual differences.
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Fig. 4 Results of the parameter
recovery study conducted using
our Cartesian coordinate
implementation of the CDDM.
Every panel shows the
distributions of posterior means
obtained across data sets
generated using each parameter
value. All panels present the
results obtained across three
simulation studies that
considered a sample size of
n = 80, n = 200, and n = 500,
respectively. The black dashed
lines indicate the true values
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We also only use the cued condition, since modeling the
potential influence of a cue allows us to highlight some of
the features of implementing the CDDM within JAGS.

Research Questions

We address four research questions related to the Kvam
(2019) experiment. These research questions were not cho-
sen because they are the most important ones in terms of
understanding human perceptual decision making. Instead,
they were chosen to demonstrate the flexibility of graphical
models to formalize assumptions about psychological pro-
cesses, and the usefulness of Bayesian methods to answer
research questions.

The first research question is whether participants are
more cautious when they are instructed to prioritize accu-
racy over speed. Statistically, this involves testing whether
the boundary radius for a participant is the same or dif-
ferent in the speed versus accuracy conditions. The second
research question is whether the speed of information pro-
cessing decreases as the variability of the Gabor stimuli

increases and the task becomes more difficult. Statistically,
this involves testing whether the drift length satisfies an order
constraint by decreasing monotonically with task difficulty.
The third research question is whether participants sample
information less consistently as the task becomes more diffi-
cult. This involves testing whether the variability of the drift
angle satisfies an order constraint by increasing monotoni-
cally with task difficulty.

The final research question is less standard than the first
three and requires the most elaborate modeling. It asks
whether positive and negative deflections of cues have differ-
ent impacts on participants’ decision making. In particular,
it considers the possibility that, on each trial, a participant
could use either the cue or the Gabor stimuli as the basis for
their orientation judgment. Addressing this question involves
testingwhether the base rate with which each source of infor-
mation is used is the same or different for cue deflections of
the same magnitude but in different directions. Our main
motivation with this research question is that it seems likely
the base rates will be the same. This allows us to consider the
ability of Bayesian inference to find evidence for sameness,
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Fig. 5 Results of the parameter
recovery study conducted using
our polar coordinate
implementation of the CDDM.
Every panel shows the
distributions of posterior means
obtained across data sets
generated using each parameter
value. All panels present the
results obtained across three
simulation studies that
considered a sample size of
n = 80, n = 200, and n = 500,
respectively. The black dashed
lines indicate the true values.
Note that the drift angle
parameter becomes undefined as
the drift length approaches 0, so
the lower right panel excludes
all results from the δ = 0.01
condition
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indicating equivalence or invariance, rather than just the abil-
ity to find evidence for differences, indicating the presence
of effects.

Graphical Model

Figure7 shows the graphical model we developed for this
analysis. The decision and RT data are represented by the
yisdct node at the center of the model. This node is shaded
and circular because the data are observed and continuous. It
is at the intersection of encompassing plates for trial t of par-

ticipant i with cue deflection c in speed-accuracy condition
s and difficulty condition d.

yiscdt ∼ CDDM◦ (δid ,mod(θisdct , 2π), ηid , τi ) (5)

The four CDDM parameters—drift angle, drift length,
boundary radius, and nondecision time—are represented by
the four nodes that are the parents of the yisdct node. These
nodes have different colors, and other nodes in the graph-
ical model associated with each parameter share the same
color. This helps visually parse the graphical model into the
assumptions it makes about drift angle, drift length, bound-

uncued
condition

cued
condition

stimulus response

Fig. 6 The design of a trial in the orientation judgment task considered by Kvam (2019). After either being cued by a line or not being cued, a
sequence of Gabor patches with a mean orientation was presented. Participants could respond at any time to indicate the mean orientation. Based
on Kvam, (2019 Fig. 2)
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Fig. 7 Graphical model for the reanalysis of cued orientation judgments from Kvam (2019)

ary radius, and nondecision time. One way to interpret these
assumptions is as models of cross-trial variability in the
CDDM parameters, illustrating that graphical models can
provide a flexible and practical alternative to integrating vari-
ability assumptions directly into the likelihood function itself
(Zhou et al., 2021, 2023).

Drift Angle

The drift angle θisdct is represented by an unshaded node
because it is latent.We assume that there are two qualitatively
different possibilities for the drift angle on each trial.4 It
can either be based on the mean orientation of the presented
stimuli, or on the cue. These two possibilities are φisdct and
qisdct , which are known properties of the trial, and hence
represented by shaded nodes.

Which value θiscdt takes is determined by a latent binary
indicator zisdct , represented by a square node because it is

4 Other assumptions are possible, such as drift angle being some
weighted combination of cue and stimulus information. While these
more complicated possibilities could certainly be implemented, we con-
sider just the simplest case in which the drift angle is determined by
one or the other.

discrete. Formally,

θisdct ∼
{
Gaussian

(
φisdct , τ

θ
id

)
if zisdct = 0

Gaussian
(
qisdct , βiτ θ

id

)
if zisdct = 1.

(6)

The binary indicator follows a Bernoulli distribution with a
base rate that depends on the participant and the cue deflec-
tion

ziscdt ∼ Bernoulli
(
ωic

)
. (7)

The base rate with which participant i uses cues with deflec-
tion c is assumed to be ωic.

Since our research goals include testing whether ωic

changes for positive versus negative cue deflections with the
same magnitude, we define

ωic

1 − ωic
=

⎧
⎨

⎩

exp
(
μω
ia + γ ω

ia/2
)
if c > 0

exp
(
μω
ia − γ ω

ia/2
)
if c < 0

exp
(
μω
ia

)
if c = 0.

(8)

These definitions mean that μω
ia controls the bias on the

logit scale towards using the cue or stimulus information
for deflection magnitude a, while γ ω

ia is an effect size on the
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logit scale between positive and negative deflections of the
samemagnitude. This part of the graphicalmodel provides an
example of creating a structure to test research hypotheses. In
particular, comparing the prior and posterior on the log effect
size γ ω

ia provides a principled way to estimate Bayes factors
testing whether or not participants have different base rates
for positive versus negative cue deflections with the same
magnitude.

Depending on whether the stimulus or the cue is used,
different precisions apply to how accurately the drift angle
follows this information. These precisions are represented by
the parameters τ θ

id andβi .We assume that there are individual
differences in stimulus information precision that depend on
the stimulus difficulty. For person i in difficulty condition d,

τ θ
id ∼ log-Gaussian

(

μτθ

d ,
1

(
σ τθ

)2

)

(9)

with priors on the mean and standard deviation that define
the Gaussian distribution of individual differences:

μτθ

d ∼Gaussian
(
0, 1

)
(10)

σ τθ ∼ uniform
(
0, 4

)
. (11)

Note that the assumption is that the mean changes with stim-
ulus difficulty, but the variability of individual differences is
the same for all of the different levels of stimulus difficulty.

The cue information has a precision that is proportional
to that of the stimulus information for the trial depending
on each participant. This requires defining the constant of
proportionality βi for person i as

βi ∼ uniform
(
0, 1

)
. (12)

Thismeans that the variability of the information provided by
the cue distribution is always equal or greater to the stimulus
one.

Drift Length

Weassume there are individual differences in the drift lengths
δid that depend on stimulus difficulty. For person i in diffi-
culty level d

δid ∼ log-Gaussian

(

μδ
d ,

1
(
σ δ

)2

)

. (13)

with priors

μδ
d ∼Gaussian

(
0, 1

)
(14)

σ δ ∼ uniform
(
0, 1

)
. (15)

As was the case for the base rate of cue versus stimulus
use, we assume that only the mean changes with stimulus
difficulty, but the variability of individual differences is the
same.

Boundary Radius

The boundary radius ηis is assumed to be independent across
both participants and speed-accuracy conditions. In order
to test whether speed-accuracy instructions affect a partic-
ipant’s boundary radius, ηis is defined in the model in terms
of the mean boundary radius on the log scale μ

η
i for partici-

pant i over both conditions and the effect size difference on
the log scale γ

η
i . This leads to the following definitions:

ηis =
{
exp

(
μ

η
i + γ

η
i /2

)
if s = accuracy

exp
(
μ

η
i − γ

η
i /2

)
if s = speed .

(16)

This part of the graphical model provides a second exam-
ple of creating a structure to test research hypotheses. In
particular, comparing the prior and posterior on the log effect
size γ

η
i provides a principled way to estimate Bayes factors

testing whether or not participants use different boundaries
in speed versus accuracy conditions.

Nondecision Time

Finally, nondecision time does not have any additional model
structure, and each participant is independently given the
prior

τi ∼ uniform
(
0,min yi1

)
, (17)

wheremin yi1 represents theminimum response time for par-
ticipant i over all trials.

Results

The results of analyses addressing the four research questions
are presented in the four panels of Fig. 8. They are based on
the computational approximation to the joint posterior distri-
bution of themodel provided by JAGS. This approximation is
based on four chains with 5000 recorded samples after 45000
discarded burn-in samples. Once again, we only considered
convergent chains with R̂ < 1.05.

To evaluate the descriptive adequacy of our model, we
conducted a posterior predictive check (Baribault & Collins,
2023; Lee, 2018).We compared the joint posterior predictive
distribution of error in the decision angle and response time
to the observed data. We did these comparisons separately
for each of the six participants for both speed and accuracy
instructions for each level of stimulus difficulty and each type
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Fig. 8 Posterior distributions of
the parameters of interest, with
parameter values on the y-axis
and participants on the x-axis. A
shows the boundary radius
parameter η for the accuracy
(blue) and speed (purple)
conditions. B shows the drift
length parameter δ for each
difficulty condition, 15 (blue) 30
(green), and 45° (orange). C
shows the standard deviation of
the drift angle 1/

√
τ θ for each

difficulty condition. D shows the
mixing probability φ for the 20°
(blue), 50 (green), and 70
(orange) cue deflection
conditions. Filled histograms
indicate negative (negative)
deflection trials
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of cue. All of these analyses are available in the supplemen-
tary information. The vast majority of the observed decisions
and response times were in high-density regions of the pos-
terior predictive distribution. The only potential systematic
failures of descriptive adequacy occurred in relation to dif-
ficult stimuli, which sometimes led to responses that were
well described in terms of the decision angle, but with longer
response times than the model expects. This weakness of the
model could likely be addressed by allowing for contaminant
response strategies, such as the delayed startup sometimes
used in standard drift-diffusion model (Vandekerckhove &
Tuerlinckx, 2007; Vandekerckhove et al., 2011). Because the
poorly described data were very rare, we did not implement

additional response strategies, and regard the current model
as descriptively adequate for the research questions it was
designed to answer.

The first research question about differences in caution is
addressed by Fig. 8A. The panel shows the posterior samples
of the boundary radius parameters ηis for each participant in
both speed and accuracy conditions. For most of the partici-
pants, it is clear that the posterior distribution of the parameter
for the accuracy conditions is higher. The η column of Table 1
confirms this result in terms of Bayes factors comparing
the order-restricted alternative hypothesis that the accuracy
condition boundary radius is greater to the null hypothe-
sis that the boundaries are the same. These Bayes factors
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are approximated using the Savage-Dickey method (Wetzels
et al., 2010). For every participant except participant 3 the
Bayes factor is greater than 1000 in favor of the hypothesis
that the boundary radius is higher for accuracy trials.

The second research question about the speed of informa-
tion processing and task difficulty is addressed by Fig. 8B.
The panel shows the posterior distribution of the drift length
δid for each participant and task difficulty. It is clear that
the order constraints are followed by all of the participants
except for participant 1. The δ columns of Table 1 confirm
this result in terms of the posterior probability that the drift
lengths satisfy the order constraint. For participant 1, the
posterior probability of the order constraints is close to 0,
however, for the rest of the participants it is higher than 0.8.

The third research question about the consistency of infor-
mation and task difficulty is addressed by Fig. 8C. The panel
shows the posterior distributions of the standard deviation
of stimulus information 1/

√
τ θ for each participant and task

difficulty. It is clear the order constraint is followed by all six
participants. The σ column of Table 1 confirms this result in
terms of the posterior probability that the standard deviations
satisfy the order constraint. The posterior probability of the
order constraints is close to 1 for all participants.

The final research question about whether positive and
negative deflections have different impacts on cue use is
addressed by Fig. 8D. The panel shows the posterior distri-
bution of the base rate of stimulus used for each participant
and the deflection angle. The values of the base rate show
that participants generally used the stimulus information in
the majority of trials. Comparing the positive (unfilled) and
negative (filled) deflections of the same magnitude suggests
the base rates are often similar. The Bayes factors testing for
the sameness or difference of the base rates are presented in
the ω columns of Table 1, expressed in terms of evidence for
a difference. Most of the Bayes factors are close to one, indi-
cating there is not clear evidence in favor of either hypothesis.
This provides an example of the ability to use Bayes factors
with the CDDM not only to find evidence for sameness (the
null) or a difference (the alternative), but also to fail to find

clear evidence for either. The obvious conclusion is that more
data are needed to address this research question.

Discussion

Our application to modeling orientation judgments high-
lights the usefulness of the JAGS implementation of the
CDDM. Graphical models provide a high-level language for
probabilistic psychological models for constructing tailored
CDDMmodels that deal with circular decisions and response
times. The graphical model we developed has the CDDM at
its core, predicting behavior on each trial, but makes assump-
tions about howmodel parameters change over trials, stimuli,
and people that are specific to the experimental design that
generated the data and the motivating research questions.

As argued byLee (2011, 2018), there are two complemen-
tary features of this approach. One feature is that graphical
models afford significant freedom and flexibility in model
development. A wide range of theoretical assumptions can
be implemented, tested, and used. The model of orientation
judgments we developed made extensive use of hierarchi-
cal and latent-mixture structures, which allowed for more
theory to be incorporated. For example, instead of treat-
ing the drift angle as a free parameter to be estimated, our
model formalized the idea that people could use either cue
or stimulus information, that this choice could depend on the
deflection between the cue and stimulus, and that direction
information was perceived differently by different partici-
pants. Existing applications of the CDDM have proposed
other sorts of mixture accounts of people’s decision making,
such as responses in a lexical decision task being based on
the target word, intrusions, or guessing (Zhou et al., 2023).
These have been modeled in terms of the proportions of each
response time at an aggregate level. The graphical model-
ing approach to latent mixtures we have demonstrated would
allow inferences about response types to be made at the level
of individual trials. This additional level of modeling detail
would be especially important if modeling goals extended

Table 1 Bayes factors and
posterior probabilities of order
constraints addressing the four
research questions

Bayes factors Posterior probabilities
Participant η ω±20 ω±50 ω±70 δ15 > δ30 > δ45 σ15 < σ30 < σ45

1 > 1000 1.083 2.083 2.225 0.054 0.992

2 > 1000 1.107 19.175 1.711 0.997 0.999

3 13 1.046 1.178 2.291 0.952 0.999

4 > 1000 1.063 1.067 2.100 0.917 0.999

5 > 1000 0.975 1.713 1.668 0.994 0.999

6 > 1000 3.027 1.164 2.096 0.965 0.999

123



Computational Brain & Behavior

beyond treating trials as independently and identically dis-
tributed and considered the possibility of sequential effects,
adaptation, or any other sort of non-stationarity. Overall, the
goal of psychological modeling is to develop accounts that
are as general and complete as possible, and graphicalmodels
provide the ability to propose ambitious accounts of people’s
behavior.

The second noteworthy feature of graphical modeling is
that theoretical freedom is complemented by methodologi-
cal rigor. Whatever model is proposed, its contact with data
is governed by Bayesian inference, which by virtue of fol-
lowing the laws of probability is complete, consistent, and
coherent (Cox, 1961; Jaynes, 2003). We think that the use of
posterior distributions and Bayes factors improves on the use
of maximum likelihood estimates and the Akaike Informa-
tion Criterion and Bayesian Information Criterion in existing
applications of the CDDM (e.g., Smith et al., 2020; Zhou et
al., 2021). Most generally, the rigor of Bayesian inference
means that CDDM modeling can be evaluated against data
in a way that acknowledges uncertainty and provides a safe-
guard against overly ambitious models that overfit the data
(Pitt et al., 2002).

Our application to orientation judgments used Bayes fac-
tors to find evidence for a null hypothesis regarding the
direction of deflections,which is an example of howBayesian
evaluation can lead to a proposed model being rejected and
a psychologically simpler model being preferred. Our appli-
cation also provided examples in which model assumptions
were justified using quantified evidence provided by the data.
One example was the Bayes factor for the difference between
boundaries for speed and accuracy conditions. Another was
the probability of order constraints relating drift rates to dif-
ferent types of stimuli.

Beyond hierarchical and latent-mixture structures, graph-
ical modeling in JAGS offers a number of other possibilities
not demonstrated in our application. One possibility, dis-
cussed by Smith et al. (2020), is to use informative prior
distributions to model categorical perception. Implement-
ing this sort of model, in which theoretical assumptions are

naturally represented in parameter priors rather than likeli-
hood functions (Vanpaemel & Lee, 2012), requires a fully
Bayesian formulation of a CDDM model.

A second possibility is what Lee (2011, 2018) calls
common-cause modeling, in which the same psychologi-
cal variable is assumed to influence behavior observed in
multiple contexts. This idea is the basis for well-developed
joint models of behavioral and neural data, which are often
implemented in JAGS (Turner et al., 2019). The common
cause idea, however, applies equally well for linking multi-
ple sources of behavioral data. For example, the individual
differences in how participants use the cue or stimulus for
direction information in the current orientation judgment task
may be related to their behavior in other perceptual attention
tasks. Constructing a graphical model that formalizes this
possibility is straightforward, requiring a graph structure in
which the same parameter or parameters play a role in gen-
erating both sets of data (e.g., Guan & Lee 2018; Guan et al.,
2020; Vandekerckhove, 2014; Oravecz & Vandekerckhove,
2020).

A final possibility for future applications involves the
extension to categorical decision boundaries discussed by
Smith (2016).Within JAGS this could be achieved by censor-
ing using the dinterval distribution, which implements
situations in which continuous quantities are only observed
in terms of discrete outcomes. Two examples are shown in
Fig. 9, highlighting how two of our motivating circular deci-
sions in Fig. 1 involve discrete decisions. In the left panel,
the choice options for choosing the color of a shirt are a set
of color words. In the right panel, the direction of the voice
is indicated by naming the person speaking. To model these
sorts of discrete decisions, the continuous location on the
circular boundary of the CDDMmust be censored according
to choice boundaries. JAGS provides a censoring capability
directly through its dinterval distribution.

A third possibility is the application of CDDMs to deci-
sions that are semi-circular in nature. That is, where there is a
continuum of possible decisions corresponding to points on a
semi-circle, along with a similarity relationship between the

Fig. 9 Categorical-choice
extensions of the CDDM. The
left panel considers the color
identification situation in Fig. 1
for a task in which the choice
options are color words. The
right panel considers the voice
direction situation for a task in
which the choice options are the
names of the possible speakers
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Fig. 10 A categorical-choice
extension of the CDDM to
mathematical problems with
answers that are naturally
represented on a semi-circle

decision alternatives. The difference from a classical circular
decision structure is that the end points of the decisions have
the lowest degree of similarity. One concrete example, shown
in Fig. 10 involves mathematical problem solving where the
answers lie on a number line thatmaybe represented as points
on a semi-circle (e.g., Mistry et al., 2023).

Conclusion

Sequential sampling models, and especially the drift-diffusion
model, are the most successful and widely used models of
the time course of human decisionmaking. These models are
capable of making predictions about both the choices people
make and the time it takes them to make these choices. Most
applications have considered forced-choice two-alternative
decision tasks, consistent with a model architecture in which
an evidence tally accumulates over time towards one of
two boundaries. More recently, the development of model
architectures that allow many evidence tallies to accumulate
towards many boundaries has led to applications to tasks
involving multi-alternative choice. These models assume,
however, that there is a finite set of nominally-scaled choice
alternatives. TheCDDMextends the scopeof sequential sam-
pling models to allow for choice and response timemodeling
in situations where there is a continuum of choices that can
be represented on a circle. In this way, the CDDM opens
up many new possibilities for modeling the time course of
human decision making.

An important part of realizing the promise of theCDDM is
to allow it to be used as the key component of models tailored
to specific tasks and data, and designed to answer specific
research questions. Embedding the CDDM within a graphi-
cal modeling framework is one way to achieve this, because
it allows the development of very general probabilistic gener-
ative models of psychological processes, and facilitates fully
Bayesian inference via computational methods. We imple-
mented the CDDM as a module within the JAGS graphical
modeling language and demonstrated the accuracy of our
implementation. We then demonstrated, in an application

to orientation judgments, how the CDDM can be used to
develop an account of task behavior that captures assump-
tions about individual differences across stimulus and task
conditions and can provide parameter inferences and model
comparisons that address research questions. We hope this
application serves as an example of how the CDDM can be
used tomodel and understand new research questions involv-
ing the time course of human decision making.
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