
ARTICLE

Robust and replicable functional brain signatures of 22q11.2
deletion syndrome and associated psychosis: a deep neural
network-based multi-cohort study
Kaustubh Supekar 1,2✉, Carlo de los Angeles1, Srikanth Ryali 1, Leila Kushan 3,4, Charlie Schleifer 4, Gabriela Repetto5,
Nicolas A. Crossley6,7, Tony Simon8,9, Carrie E. Bearden 3,4 and Vinod Menon 1,2✉

© The Author(s), under exclusive licence to Springer Nature Limited 2024

A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures
of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts.
Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early
psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data
from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy
controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-
cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test
the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but
not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated
psychosis with very high accuracies (86–94%) in the primary cohort and two fully independent cohorts without additional training.
Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and
the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early
psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly
distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis
overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial
empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across
multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of
22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.
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INTRODUCTION
Chromosome 22q11.2 deletion syndrome (22q11.2DS) results
from a microdeletion on the long (q) arm of chromosome 22 [1]
and occurs in approximately 1 in 2000–4000 live births [2–5]. The
microdeletions typically range in size from 1.5 to 3 megabases
[6, 7] and include about 46 protein-coding genes, the majority of
which are expressed in the brain [8, 9]. Notably, children with
22q11.2DS have a significantly increased risk of developing
schizophrenia in adolescence and adulthood [10, 11], making
the deletion the highest genetic risk factor for schizophrenia after
having an identical twin or two parents with the disorder [12–14].
Thus, 22q11.2DS offers a unique opportunity to investigate early
brain signatures in a genetic subtype of schizophrenia that may
shed light on the neurodevelopmental mechanisms underpinning

the emergence and expression of the disorder [15–17]. Here, we
identify robust and replicable functional brain signatures of
22q11.2DS and 22q11.2DS-associated psychosis, as well as their
links with idiopathic early psychosis [18], using one of the largest
multi-cohort functional brain imaging data to date (see Fig. 1 for
study overview).
The first aim of our study was to determine whether individuals

with 22q11.2DS differ in their functional brain organization when
compared to healthy age-matched controls. Functional brain
imaging studies have attempted to identify functional brain
signatures of 22q11.2DS. Small studies involving single-site
cohorts have found evidence for both increased and decreased
functional brain connectivity in 22q11.2DS [19–26]; however, no
consistent findings have emerged. These discrepancies may have
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arisen due to small sample sizes (typically N= 20–35 per group)
and the focus on a limited set of brain regions [19–21] despite
mounting evidence of widespread structural brain abnormalities
associated with 22q11.2DS [27–35]. Moreover, most previous
22q11.2DS studies have relied on static functional connectivity

measures [19–26]. There is growing evidence that dynamic
functional connectivity measures may carry more useful distin-
guishing features because they are more sensitive to detecting
changes in time-varying brain function that often accompany
disorders [36–39]. To address these challenges and identify robust
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functional brain signatures of 22q11.2DS, we examined, to the
best of our knowledge, one of the largest functional brain imaging
data to date of individuals with 22q11.2DS, using a novel end-to-
end data-driven spatiotemporal deep neural network (DNN)-based
computational framework (Supplementary Fig. 1). Briefly, the
stDNN model takes as its input functional magnetic resonance
imaging (fMRI) time series data from brain regions of interest
spanning the whole brain and models the underlying dynamic
spatiotemporal characteristics of brain activity to distinguish
between groups with minimal assumptions [40, 41] We trained
our stDNN model on large-scale data from the primary cohort and
evaluated its performance in distinguishing 22q11.2DS using a
cross-validation procedure. Our primary cohort consisted of
clinical phenotypic and task-free fMRI data from 22q11.2DS and
healthy control participants collected at the University of
California, Los Angeles (UCLA). We hypothesized that stDNN
would accurately distinguish between individuals with 22q11.2DS
and healthy controls in the primary cohort, indicating that the
functional brain organization of individuals with 22q11.2DS is
distinct from that of healthy controls.
Our second aim was to address the replicability crisis in

22q11.2DS research, and in clinical neuroscience more broadly,
arising from small single-site cohort studies that fail to capture the
high individual variability observed in the disorder [16]. Crucially,
because of the focus on individual cohorts, the robustness and
replicability of findings across different cohorts are not known. To
address this, we leveraged large-scale data from multiple
independent cohorts. We investigated whether the stDNN trained
using primary cohort data could generalize to untrained
independent cohort data. Typically, most approaches fail at this
important step [42]. Our secondary and tertiary cohorts consisted
of clinical phenotypic and task-free fMRI data from 22q11.2DS and
healthy control participants collected at the University of
California, Davis (UCDavis) and Pontificia Universidad Católica de
Chile (PUC), respectively. We used the stDNN trained on primary
UCLA cohort data and evaluated its performance in distinguishing
22q11.2DS from the other two independent cohorts (UCDavis and
PUC). This approach enabled us to address the replicability crisis in
22q11.2DS research. We hypothesized that stDNN would general-
ize well and accurately distinguish 22q11.2DS in previously unseen
data from entirely different independent cohort data.
Our third aim was to identify functional brain features/

signatures that distinguish between 22q11.2DS and healthy
controls. Prior research on DNNs for brain imaging has primarily
focused on classification accuracy, disregarding the brain features

underlying the classification. To address this issue, we employed
the integrated gradients [43] algorithm, which provides a score
indicating the contribution of each feature to the final prediction.
Consequently, this algorithm offers a ranking of brain features that
distinguish between 22q11.2DS and healthy controls. Specifically,
we identified individual-level functional brain signatures of
22q11.2DS by estimating the integrated gradients of the stDNN
model trained to distinguish 22q11.2DS from healthy controls. We
hypothesized that stDNN, along with integrated gradients, would
enable us to identify robust and replicable functional brain
organization patterns/signatures that differ between 22q11.2DS
and healthy controls across the three independent cohorts.
The fourth aim of our study was to identify robust functional

brain signatures of 22q11.2DS with psychosis spectrum symptoms
(22q-PS+). Despite the clinical significance of investigating
functional brain signatures of 22q-PS+ [44], only a limited number
of studies have been conducted thus far. One study reported a
relationship between the functional organization of the default
mode network and psychosis symptoms in 22q11.2DS [22, 25].
However, Padula et al. did not find evidence supporting such a
relationship [19]. Other studies that directly compared
22q-PS+ and 22q11.2DS without psychosis spectrum symptoms
(22q-PS−) have also yielded inconclusive results. Some studies
have reported that default mode network and fronto-temporal
functional organization patterns can be distinguished [23, 24],
while another study found that 22q-PS+ and 22q-PS− could not
be distinguished with sufficient accuracy using functional brain
organization features [26]. To identify robust functional brain
signatures of 22q-PS+, it is critical to examine large samples and
evaluate whether the signatures are consistently observed across
cohorts. Accordingly, we leveraged our large multi-cohort dataset
and identified functional brain signatures of 22q-PS+ by
averaging the integrated gradients derived functional brain
signatures of 22q-PS+ individuals. We determined the distinctive-
ness of functional brain signatures of 22q-PS+ by contrasting
them with functional brain signatures of 22q-PS−. We recently
proposed a theoretical salience-based model of psychosis that
takes into account striatal dysfunction and sensitivity to percep-
tual and cognitive prediction errors in the insula node of the
salience network. This model posits that dysregulated dopamine
modulation of salience network–centered processes contributes
to the positive symptoms of schizophrenia [45]. Based on this
model we hypothesized that salience network nodes and striatal
regions would prominently feature in the functional brain
signatures of 22q-PS+.

Fig. 1 Study overview. The study identified functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, as well as their
links with idiopathic early psychosis, using six independent cohorts and a three-part analysis. In the first part, the functional brain signatures
of 22q11.2DS were identified through a discovery/validation analysis in the UCLA cohort and replication analysis in the UCDavis and PUC
cohorts. A stDNN model was trained using fMRI timeseries data from brain regions across the entire brain to distinguish between groups,
specifically from the UCLA cohort. The performance of the stDNN in distinguishing individuals with 22q11.2DS from healthy controls was
evaluated using a cross-validation procedure. The generalization/replicability of the stDNN model trained on the UCLA cohort data to the
independent cohort data (UCDavis and PUC) was also examined. The integrated gradients (IG) procedure was then applied to the trained
stDNN model to identify functional brain features/signatures that distinguish between 22q11.2DS and healthy controls at individual and
group levels in each of the three independent cohorts separately. The second part focused on identifying the functional brain signatures of
22q11.2DS with psychosis spectrum symptoms (22q-PS+). This was accomplished by averaging the IG derived functional brain signatures of
22q-PS+ individuals in each of the three independent cohorts. The third part investigated the overlap between the functional brain
signatures of 22q-PS+ and those of idiopathic early psychosis (IEP). A stDNN model was trained de novo, combining data from the UCLA and
PUC cohorts, to distinguish between 22q-PS+ and 22q11.2DS without psychosis spectrum symptoms (22q-PS−). Additionally, the stDNN
model trained to distinguish between 22q-PS+ and 22q-PS− was tested on the HCP-EP cohort to identify individuals with idiopathic early
psychosis. To assess the distinctiveness of functional brain signatures of 22q11.2DS-associated psychosis, Stanford and NYU cohort data were
utilized. The stDNN model that differentiated between 22q-PS+ and 22q-PS- was examined to determine its ability to identify individuals with
idiopathic autism spectrum disorder and individuals with idiopathic attention-deficit/hyperactivity disorder. 22q Chromosome 22 long arm (q)
deletion syndrome, HC healthy controls, 22q-PS+ 22q11.2DS with psychosis spectrum symptoms, 22q-PS- 22q11.2DS without psychosis
spectrum symptoms, IEP idiopathic early psychosis, ASD autism spectrum disorder, ADHD attention-deficit hyperactivity disorder, MRI
magnetic resonance imaging, fMRI functional MRI, stDNN spatiotemporal deep neural network model, IG integrated gradients, Brainnetome
Brainnetome whole brain atlas, UCLA University of California Los Angeles, UCDavis University of California Davis, PUC Pontificia Universidad
Católica de Chile, HCP-EP Human Connectome Project-Early Psychosis, NYU New York University.
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The final aim of our study was to investigate whether the
functional brain signatures of 22q-PS+ overlap with those of
idiopathic early psychosis [18]. While there is clinical evidence that
the presentation of psychosis symptoms in 22q11.2DS is similar to
that in idiopathic psychosis [46, 47], little is known about the
common functional brain signatures between 22q-PS+ and
idiopathic psychosis. This knowledge is critical not only for
elucidating the convergent and divergent elements of brain
aberrancies underlying 22q11.2DS-associated psychosis and idio-
pathic psychosis but also for advancing our understanding of the
brain mechanisms involved in the development of psychotic
disorders in the broader population [16]. We leveraged our DNN-
based framework in conjunction with clinical phenotypic and task-
free fMRI data from individuals with idiopathic early psychosis
obtained from the Human Connectome Project-Early Psychosis
(HCP-EP). We investigated whether our stDNN model trained de
novo to distinguish between 22q-PS+ and 22q-PS− could also
identify individuals with idiopathic early psychosis from the HCP-
EP cohort. Lastly, to determine the distinctiveness of functional
brain signatures of 22q11.2DS-associated psychosis, we used
clinical phenotypic and task-free fMRI data collected at Stanford
and New York University (NYU), and investigated whether the
stDNN model that distinguished between 22q-PS+ and 22q-PS−
could identify individuals with idiopathic autism and individuals
with idiopathic attention-deficit/hyperactivity disorder (ADHD)—
two sets of neuropsychiatric symptoms that are highly prevalent
in the 22q11.2DS population [14, 48, 49].

RESULTS
Classification of 22q11.2DS versus control subjects in the
UCLA cohort
We first sought to determine whether there are differences in
functional brain organization between individuals with 22q11.2DS
and healthy controls. We found that our stDNN model, which
models the underlying dynamic spatiotemporal characteristics of
brain activity to distinguish between groups using fMRI timeseries,
accurately (>94%) distinguishes individuals with 22q11.2DS from
healthy controls in the UCLA cohort, outperforming conventional
approaches (see Supplementary Materials for details).

Generalization of 22q11.2DS classification in the UCLA cohort
to the independent UCDavis and PUC cohorts
Next, we aimed to determine whether differences in the functional
brain organization between individuals with 22q11.2DS and
healthy controls observed in the UCLA cohort generalize to
independent cohorts. We found that stDNN accurately (=84–90%)
distinguishes individuals with 22q11.2DS from healthy controls in
a robust and consistent manner across two independent cohorts
(UCDavis and PUC cohorts) without additional training, out-
performing conventional approaches (see Supplementary Materi-
als for details).

Identification of discriminating brain features underlying
22q11.2DS classification in the UCLA cohort
We then sought to identify brain features that distinguish
individuals with 22q11.2DS from healthy controls in the UCLA
cohort. To accomplish this, we used the stDNN 22q11.2DS
classification model and the integrated gradients procedure,
which yields a measure of feature strength associated with
22q11.2DS vs. healthy controls classification in each brain region
and at each time point for each individual. To identify brain areas
that contributed the most to classification, we computed the
median of feature scores across the five folds and thresholded
them - top 5% of features - based on the distribution of feature
scores across all time points and regions. This resulted in the
identification of a distributed set of brain areas, including the
anterior insula, striatum (nucleus accumbens, ventromedial

putamen and caudate), and inferior temporal gyrus as brain areas
that contributed most significantly to predicting the 22q11.2DS
class label (Fig. 2, Supplementary Table S19).

Generalization of discriminating brain features underlying
22q11.2DS classification in the UCLA cohort to the
independent UCDavis and PUC cohorts
To determine the generalizability of the discriminating features
underlying 22q11.2DS classification identified in the UCLA cohort,
we applied the same procedures described in the previous section
to the independent UCDavis and PUC cohort data. These cohort-
wise analyses identified the anterior insula, striatum, and inferior
temporal gyrus as the brain areas that contributed most
significantly to predicting the 22q11.2DS class label (Fig. 2,
Supplementary Tables S20–S21) in both cohorts. Cross-cohort
comparison analyses confirmed the consistency of 22q11.2DS
discriminating features across the three cohorts (p < 0.001, Fig. 2).
These results demonstrate that stDNN, together with integrated
gradients procedures, automatically identifies similar discriminat-
ing features as in the UCLA cohort, again without the need for ad
hoc feature engineering.

Distinctiveness of brain features underlying 22q11.2DS
classification in the UCLA cohort
We then determined the distinctiveness of brain features under-
lying 22q11.2DS classification in the UCLA cohort by computing
the distance between brain signatures in individuals with
22q11.2DS in contrast to controls. The integrated gradients
procedure identifies an individual “signature” of predictive
features in each participant. Briefly, a “signature” of an individual
refers to the unique whole brain pattern of integrated gradients-
derived stDNN model feature importance that classifies that
individual as having 22q11.2DS or as a healthy control. We
examined whether these “signatures” cluster differently in
individuals with 22q11.2DS from healthy controls. Specifically,
we computed a distance metric across brain features between
individuals and compared the distances between individuals in
the 22q11.2DS and healthy control groups. We found that
the intra-22q11.2DS group distance metrics were significantly
shorter compared to distances with the healthy control group
(p < 0.0001, Fig. 3). These results demonstrate that individualized
brain “signatures” mirrored the broader diagnostic discrimination
of 22q11.2DS and that they are distinct.

Distinctiveness of brain features underlying 22q11.2DS
classification in the UCDavis and PUC cohorts
We then used the same procedures described in the previous
section to determine the distinctiveness of brain features under-
lying 22q11.2DS classification in the UCDavis and PUC cohorts.
These cohort-wise analyses revealed individualized brain “signa-
tures” which mirrored the broader diagnostic discrimination of
22q11.2DS (p < 0.0001, Fig. 3), in both cohorts. These results
demonstrate the distinctiveness of brain features underlying
22q11.2DS classification in the independent UCDavis and PUC
cohorts, as in the UCLA cohort.

Identification of brain features predictive of 22q11.2DS-
associated psychosis in the UCLA cohort
We next determined brain features predictive of 22q-PS+ in the
UCLA cohort using the output of the integrated gradients
procedure – individualized brain signature – described in the
previous section. To identify brain areas that were most predictive
of 22q-PS+, we computed the mean of brain signatures of all 22q-
PS+ and contrasted them against the mean of brain signatures of
22q-PS−. This resulted in the identification of a distributed set of
brain areas including the anterior insula and the ventral striatum
as brain areas that contributed most significantly to predicting
22q-PS+ (Fig. 4, Supplementary Table S22).
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Generalization of brain features predictive of 22q11.2DS-
associated psychosis in the UCLA cohort to the independent
PUC cohort
To determine the generalizability of discriminating features
predictive of 22q-PS+ identified in UCLA data, we applied the
same procedures as described in the previous section to
the independent PUC cohort data. Herein we focused our
analysis on the PUC cohort since none of the 22q11.2DS
participants in the UCDavis cohort endorsed psychosis spectrum
symptoms. This analysis identified the anterior insula and
the ventral striatum as the brain areas that contributed most
significantly to predicting 22q-PS+ (Fig. 4, Supplementary
Table S23). Cross-cohort comparison analyses confirmed the
consistency of features predictive of 22q-PS+ across the
two cohorts (p < 0.001, Fig. 4). These results demonstrate that
stDNN, together with integrated gradients procedures, auto-
matically identifies similar features predictive of 22q-PS+ as in
the UCLA cohort, again without the need for ad hoc feature
engineering.

Distinctiveness of brain features predictive of 22q11.2DS-
associated psychosis in the UCLA cohort
We then determined the distinctiveness of brain features
predictive of 22q11.2DS-associated psychosis in the UCLA cohort
by computing a distance metric across brain features between
individuals and comparing the distances between individuals in
the 22q-PS+ and 22q-PS− groups. We found that intra-22q-PS+
group distance metrics were significantly shorter compared to
distances with the 22q-PS−group (p < 0.01, Fig. 5). These results
demonstrate the distinctiveness of brain features predictive of
22q-PS+ .

Distinctiveness of brain features predictive of 22q11.2DS-
associated psychosis in the PUC cohort
We then used the same procedures described in the previous
section to determine the distinctiveness of brain features
predictive of 22q-PS+ in the PUC cohort. This analysis revealed
that the intra-22q-PS+ group distance metrics were significantly
shorter compared to distances with the 22q-PS− group (p < 0.01,
Fig. 5). These results demonstrate the distinctiveness of brain
features predictive of 22q-PS+ in the independent PUC cohort, as
in the UCLA cohort.

Examination of the relationship between the brain features
predictive of 22q11.2DS-associated psychosis and brain
features predictive of idiopathic early psychosis
To determine the overlap between 22q-PS+ and idiopathic early
psychosis, we computed a distance metric across brain features
between individuals and compared the distances between
individuals in the 22q-PS+, 22q-PS−, and idiopathic early
psychosis groups. We found that distances between the 22q-PS
+ group and the idiopathic early psychosis group were
significantly shorter than distances between the 22q-PS− and
the idiopathic early psychosis group (p < 0.01) in the combined
UCLA and PUC cohort, indicating overlap between brain features
of 22q-PS+ and idiopathic early psychosis.
To further examine the overlap between 22q-PS+ and idiopathic

early psychosis, we trained a de novo model to distinguish between
22q-PS+ and 22q-PS− by combining 22q11.2DS data from the
UCLA and PUC cohorts and then investigated whether the stDNN

Fig. 2 Group-level functional brain signatures (feature attribution
maps) of 22q11.2DS. A Feature attribution map showing the top
5% features that underlie 22q11.2DS vs healthy controls classifica-
tion in the UCLA cohort. stDNN with integrated gradients identified
brain features that distinguish individuals with 22q11.2DS from
healthy controls. The algorithm automatically identified distinguish-
ing features in the anterior insula, striatum, and inferior temporal
gyrus, which anchor the salience network, dopaminergic reward
pathway and ventral visual stream, respectively (see Supplementary
Table S19 for a detailed listing of brain areas). B Visualization of
(unthresholded) feature weights across the whole brain in the UCLA
cohort. C Feature attribution maps showing the top 5% features
showing replication of the predictive the insula, striatum, and
inferior temporal gyrus features in the UCDavis cohort (see
Supplementary Table S20 for a detailed listing of brain areas).
D Visualization of (unthresholded) feature weights across the whole
brain in the UCDavis cohort. E Feature attribution maps showing the
top 5% features showing replication of the predictive insula,
striatum, and inferior temporal gyrus features in the PUC cohort
(see Supplementary Table S21 for a detailed listing of brain areas).
F Visualization of (unthresholded) feature weights across the whole
brain in the PUC cohort. G Feature attribution maps showing the top
5% features showing consistency of the predictive insula, striatum,
and inferior temporal gyrus features across the three cohorts (UCLA,
UCDavis, and PUC). H Visualization of (unthresholded) feature
weights across the whole brain overlap across the three cohorts.
Feature weights scaled for visualization.
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model trained to distinguish between 22q-PS+ and 22q-PS− can
identify individuals with idiopathic early psychosis from the HCP-EP
cohort (Supplementary Table S24). In this analysis, we combined
22q11.2DS data from the UCLA and PUC cohorts to increase the

sample size. Importantly, we de novo trained our stDNNmodel here
using a novel label-distribution-aware margin (LDAM) loss as our
combined dataset has a small number of 22q-PS+ participants
compared to 22q-PS− participants. We have previously shown

Fig. 3 Individual functional brain signatures (feature attribution maps) of 22q11.2DS and their distinctiveness. A Box plot of similarity
between individual 22q11.2DS signatures and group-level 22q11.2DS signatures, and between individual 22q11.2DS signatures and group-
level healthy controls signatures in the UCLA cohort, demonstrating that 22q11.2DS signatures are distinct from healthy control signatures.
B stDNN-derived individual feature attribution maps/signatures in three 22q11.2DS individuals randomly selected from the UCLA cohort.
C Box plot of similarity between individual 22q11.2DS signatures and group-level 22q11.2DS signatures, and between individual 22q11.2DS
signatures and group-level healthy controls signatures in the UCDavis cohort, demonstrating that 22q11.2DS signatures are distinct from
healthy control signatures. D stDNN-derived individual feature attribution maps/signatures in three 22q11.2DS individuals randomly selected
from the UCDavis cohort. E Box plot of similarity between individual 22q11.2DS signatures and group-level 22q11.2DS signatures, and
between individual 22q11.2DS signatures and group-level healthy controls signatures in the PUC cohort, demonstrating that 22q11.2DS
signatures are distinct from healthy control signatures. F stDNN-derived individual feature attribution maps/signatures in three 22q11.2DS
individuals randomly selected from the PUC cohort. ***: p < 0.001. A10m medial area 10, A6vl ventrolateral area 6, A45c caudal area 45, A37vl
ventrolateral area 37, A20cl caudolateral of area 20, A35/36r rostral area 35/36, rpSTS rostroposterior superior temporal sulcus, cpSTS
caudoposterior superior temporal sulcus, A7ip intraparietal area 7(hIP3), A40rv rostroventral area 40(PFop), A1/2/3tru area1/2/3(trunk region),
vIa ventral anterior insular, dIg dorsal granular insular, A24rv rostroventral area 24, lsOccG lateral superior occipital gyrus, GP globus pallidus,
NAC nucleus accumbens, vmPu ventromedial putamen, dCa dorsal caudate, cTtha caudal Temporal thalamus, L left, R right.
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LDAM loss to outperform conventional cross-entropy loss under
such class-imbalance conditions. For 22q-PS+ vs. 22q-PS− classi-
fication, the stDNNmodel de novo trained with LDAM loss using the
combined UCLA PUC cohort data achieved an accuracy of
84.0 ± 4.2% across the 5 folds, and an average precision of
0.87 ± 0.02, recall of 0.84 ± 0.03 and F1 score of 0.81 ± 0.04
(Supplementary Table S25).
Furthermore, the stDNN model that most accurately distin-

guished between 22q-PS+ and 22q-PS− could identify individuals
with idiopathic early psychosis with an accuracy of 77.5% in the
HCP-EP cohort. To determine the model’s specificity, we
investigated whether the stDNN model trained to distinguish
between 22q-PS+ and 22q-PS− could identify individuals with
idiopathic autism and individuals with idiopathic ADHD – two sets

of neuropsychiatric symptoms that are highly prevalent in the
22q11.2DS population – using autism and ADHD data from
Stanford (Supplementary Table S26) and NYU (Supplementary
Table S27) cohorts respectively. We found that the stDNN model
trained to most accurately distinguish between 22q-PS+ and 22q-
PS− could identify individuals with idiopathic autism with chance-
level accuracy (=48.5%) and identify individuals with idiopathic
ADHD with chance-level accuracy (=43.9%), highlighting the
uniqueness of the brain features associated with 22q11.2DS-
associated psychosis vis-à-vis those associated with idiopathic
autism and idiopathic ADHD.
Taken together, these results establish the distinctness of brain

features associated with psychosis spectrum symptoms in
22q11.2DS and provide evidence that they specifically overlap
with idiopathic early psychosis and not with idiopathic autism and
idiopathic ADHD.

DISCUSSION
In this study, one of the most extensive multi-cohort functional
brain imaging investigations of 22q11.2DS to date, we identified
robust and replicable functional brain signatures of 22q11.2DS
and associated psychosis using a novel stDNN-based approach.
Specifically, stDNN-derived functional brain features associated
with the salience network, striatal dopaminergic pathway, and
ventral visual stream accurately differentiated individuals with
22q11.2DS from healthy controls. Furthermore, stDNN-derived
brain features associated with the anterior insula and the ventral
striatum accurately distinguished 22q11.2DS-associated psychosis,
achieving high classification rates between the 22q-PS+ and 22q-
PS− subgroups. Notably, the brain features that distinguished
22q-PS+ significantly overlapped with those of idiopathic early
psychosis, but not with those of idiopathic autism or ADHD.
Crucially, these results were observed in the primary UCLA cohort
and replicated in two fully independent cohorts (UCDavis and
PUC). Taken together, our robust and reproducible findings
provide novel insights into the neurobiology of 22q11.2DS and
demonstrate the similarity of functional brain signatures between
22q-PS+ and idiopathic early psychosis. These findings are critical
for improving the accuracy of psychosis risk prediction in
individuals with 22q11.2DS and identifying brain-circuit targets
for clinical interventions to mitigate the risk of developing
psychosis.
The first aim of our study was to determine whether individuals

with 22q11.2DS differ in their functional brain organization
compared to healthy age-matched controls. We developed an
stDNN model that takes as input fMRI timeseries from regions of
interest spanning the entire brain and determined distinguishing
functional brain signatures by modeling latent dynamic time-
varying functional interactions among the brain regions. Our
model uncovered robust differences between 22q11.2DS and
healthy controls, achieving a cross-validation classification accu-
racy of 93.5 ± 4.04%, and high precision and recall in the primary
cohort, outperforming previous studies. Importantly, we observed
tight standard deviation bounds on cross-validation classification
accuracy across folds, indicating, robust classification. Together,
these findings reveal robust differences in functional brain
organization between 22q11.2DS and healthy controls, and
demonstrate the strengths of our DNN-based approach.
The second aim of our study was to address the replicability

crisis in clinical neuroscience [50], and determine if the identified
differences between 22q11.2DS and healthy controls could be
generalized to independent participant cohorts. To date, reported
functional brain organization abnormalities in 22q11.2DS have
been inconsistent, and to the best of our knowledge, no studies
have attempted model-based validation and replication across
multiple independent cohorts. stDNN achieved high classification
accuracy in the independent UCDavis and PUC cohorts. Notably,

Fig. 4 Group-level functional brain signatures (feature attribution
maps) of 22q11.2DS with psychosis. A Feature attribution map
showing the top 5% features that underlie prediction of 22q11.2DS
with psychosis in the UCLA cohort. Our approach automatically
identified features in the anterior insula and the ventral striatum, as
those associated with 22q11.2DS with psychosis (see Supplementary
Table S22 for a detailed listing of brain areas). B Visualization of
(unthresholded) feature weights across the whole brain in the UCLA
cohort. C Feature attribution maps showing the top 5% features
showing replication of the anterior insula and ventral striatum
features in the PUC cohort (see Supplementary Table S23 for a
detailed listing of brain areas). D Visualization of (unthresholded)
feature weights across the whole brain in the PUC cohort. E Feature
attribution maps showing the top 5% features showing consistency
of the predictive anterior insula and striatum features across the two
cohorts (UCLA and PUC). F Visualization of (unthresholded) feature
weights across the whole brain overlap across the two cohorts.
Feature weights scaled for visualization.
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the UCDavis and PUC cohort data were not used for training the
stDNN model, and therefore served as fully independent datasets
for demonstrating the generalizability of our stDNN 22q11.2DS
model. Furthermore, stDNN significantly outperformed conven-
tional approaches that employed static functional connectivity
features and regional time series features for 22q11.2DS
classification. These results suggest that the abnormal intrinsic
spatiotemporal brain dynamics, captured by our stDNN model,
represent a robust and replicable functional brain signature of
22q11.2DS [51].
The third aim of our study was to identify functional brain

features that distinguish between individuals with 22q11.2DS and
healthy controls. Our stDNN-based integrated gradients analysis
identified the anterior insula, which anchors the salience network
[52], as a brain area whose intrinsic spatiotemporal dynamics most
clearly distinguished between 22q11.2DS and healthy controls.
Additionally, the striatum, a crucial node of the reward pathway
[53–60], and the inferior temporal gyrus, encompassing the
ventral visual stream pathway [61], also emerged as brain areas
with distinctive intrinsic spatiotemporal dynamics. Crucially, these
features were observed in the UCLA cohort and independently
replicated in the independent UCDavis and PUC cohorts, attesting
to the robustness and generalizability of our findings. These

findings provide evidence of functional circuit alterations asso-
ciated with previously reported gray matter abnormalities in the
insula [33] and striatum [34] as well as structural connectivity
between brain regions involved in visuo-spatial processing
[62–65]. The evidence from functional brain imaging studies has
been mixed: one study found that abnormal time-averaged
intrinsic connectivity of the salience network distinguished
22q11.2DS, albeit with poor accuracy in an independent cohort
[24], while another study found no abnormalities in intrinsic
functional connectivity of the salience network [66]. Our findings
offer replicable evidence for abnormal intrinsic functional
dynamics of the salience network and provide novel evidence
for abnormalities in intrinsic functional dynamics of the meso-
limbic reward and ventral visual stream pathways in 22q11.2DS
across three independent cohorts.
The fourth major goal of our study was to identify functional

brain signatures of 22q11.2DS-associated psychosis. Despite
22q11.2DS being one of the most prominent genetic risk factors
for psychosis, the functional brain mechanisms underlying these
symptoms remain unclear. To address this knowledge gap, we
analyzed the functional brain fingerprints of 22q11.2DS individuals
with and without psychosis spectrum symptoms (22q-PS+ and
22q-PS-). Notably, the anterior insula node of the salience network

Fig. 5 Individual functional brain signatures (feature attribution maps) of 22q11.2DS with psychosis spectrum symptoms (22q-PS+) and
their distinctiveness. A Box plot of similarity between individual 22q-PS+ signatures and group-level 22q-PS+ signatures, and between
individual 22q-PS+ signatures and group-level 22q-PS− signatures in the UCLA cohort, demonstrating that 22q-PS+ are distinct from 22q-PS−
signatures. B stDNN-derived individual feature attribution maps/signatures in three 22q-PS+ individuals randomly selected from the UCLA
cohort. C Box plot of similarity between individual 22q-PS+ signatures and group-level 22q-PS+ signatures, and between individual 22q-PS+
signatures and group-level 22q-PS− signatures in the PUC cohort, demonstrating that 22q-PS+ signatures are distinct from 22q-PS− signatures.
D stDNN-derived individual feature attributionmaps/signatures in three 22q-PS+ individuals randomly selected from the PUC cohort. **: p < 0.01.
A9mmedial area 9, A10mmedial area 10, A37vm ventromedial area37, A37vl ventrolateral area 37, A37vl ventrolateral area 37, A20cl caudolateral
of area 20, A35/36r rostral area 35/36, rpSTS rostroposterior superior temporal sulcus, A7ip intraparietal area 7(hIP3), A1/2/3tru area1/2/3(trunk
region), G hypergranular insular, vIa ventral anterior insular, dIg dorsal granular insular, rCunG rostral cuneus gyrus, lsOccG lateral superior
occipital gyrus, GP globus pallidus, NAC nucleus accumbens, vmPu ventromedial putamen, dCa dorsal caudate, cTtha caudal Temporal thalamus,
L left, R right.
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and the ventral striatum node of the mesolimbic reward pathway
distinguished individuals with 22q-PS+.
The anterior insula is involved in attributing salience to both

external stimuli and internal events, modulating context-
dependent interactions between the frontoparietal network and
default mode networks [67]. A proposed key mechanism under-
lying psychosis is the misattribution of salience, where irrelevant
events are assigned undue significance, leading to a cascade of
aberrant switching processes and salience network-centered brain
dynamics [68, 69]. Recent findings have strongly supported the
contribution of these aberrant salience network dynamics to
positive psychosis symptoms in individuals with idiopathic
schizophrenia [70]. Our current results align with these findings,
and highlight the pivotal role of aberrant salience network
dynamics in psychosis in 22q11.2DS.
Dysregulation of the dopaminergic system is another leading

theoretical model for understanding schizophrenia [71]. Central to
this theory is the idea that impaired prediction errors, arising from
aberrancies in dopamine tone, are fundamental mechanisms
underlying the misattribution of salience to irrelevant stimuli
[72–76]. This can result in the formation of erroneous associations
about irrelevant or neutral information, potentially leading to
psychosis. Research has shown that both individuals with schizo-
phrenia and those at high risk for developing the disorder exhibit
elevated dopamine synthesis capacities and availability in the
striatum [77, 78]. Furthermore, recent PET studies have indicated
dopamine dysregulation within the striatum in 22q11.2DS and
observed that the degree of dysregulation correlates with the
severity of psychosis-risk symptoms and predicts the onset of
psychosis in individuals with 22q11.2DS [79]. There is growing
evidence for the modulatory influence of striatal dopamine on the
functional brain network organization of the salience network [80].
Our findings contribute to this body of work by providing novel
evidence that aberrant intrinsic dynamics of the striatum and
salience network, stemming from dysregulated striatal dopamine
modulation, is a robust brain phenotype of psychosis in 22q11.2DS.
The final goal of our study was to determine the extent of

overlap between the functional brain signatures of 22q11.2DS-
associated psychosis and idiopathic early psychosis. Despite the
similar clinical manifestations of psychosis symptoms in
22q11.2DS and idiopathic psychosis [46, 47], the commonalities
in their functional brain signatures remain unknown. stDNN
enabled us to seamlessly determine whether the functional brain
patterns that distinguished the 22q-PS+ and 22q-PS- groups also
distinguished individuals with idiopathic early psychosis. Analyz-
ing the similarities between 22q11.2DS and idiopathic early
psychosis offers several advantages over earlier investigations
that focused on comparing 22q11.2DS with established schizo-
phrenia in older adults [33, 81], as those studies were likely
influenced by confounding factors such as age, disease stage, and
medication use. Critically, our stDNN modeling provided a unified
framework for elucidating whether a subtype of 22q11.2DS could
serve as a suitable model for studying the functional neurobiology
of psychosis.
We found that the stDNN model initially trained to differentiate

individuals in the 22q-PS+ group, could also, without any
additional training of the model, distinguish individuals with
idiopathic early psychosis but not idiopathic autism and ADHD.
Additionally, distances between the functional brain fingerprints
of the 22q-PS+ and idiopathic early psychosis groups were
significantly shorter compared to those between the 22q-PS− and
idiopathic early psychosis groups. These results provide novel
evidence for an overlap in functional signatures associated with
psychosis in 22q11.2DS and idiopathic early psychosis, and are
aligned with findings based on brain anatomy [33, 81–84] and
clinical phenotypic features [46, 47].
Our robust methodology allowed us to discover and character-

ize a pattern in 22q11.2DS-associated psychosis that overlaps with

idiopathic early psychosis, reflecting common patterns of abnor-
mal intrinsic salience network and striatum dynamics underlying
psychosis. Collectively, these findings lend substantial empirical
support to theoretical models of psychosis [45], which suggest
that the clinical manifestation of positive symptoms arises from an
exaggerated attribution of significance to both external and
internal stimuli. This aberrant attribution is thought to be a result
of dysregulated striatal dopamine modulation, which conse-
quently impacts the dynamics of the salience network [45].

Limitations
The study has a few limitations that merit discussion. First, despite
consolidating data from three independent cohorts to create one
of the largest fMRI datasets for 22q11.2DS, the overall sample size
remains modest, in part due to the low incidence rate of the
disorder. Second, our model did not take account for genetic
factors such as deletion size that could potentially influence brain
features associated with 22q11.2DS and its related psychosis.
Another limitation is the wide age range of participants, which
introduces heterogeneity in developmental stages. Further work is
needed to explore the impact of genetic and cognitive factors
using larger sample sizes that capture heterogeneities within the
22q11.2DS population, including more focused age-specific
analyses. Finally, longitudinal data are needed to understand
how psychosis in 22q11.2DS progresses over time. Future studies
should aim to include longitudinal data to better understand the
prognostic value of the brain signatures identified in our study.

CONCLUSIONS
We developed novel DNNs that revealed robust and replicable
functional brain signatures of 22q11.2DS and associated psycho-
sis, enriching our understanding of the disorder’s neurobiological
underpinnings. Aberrancies in the salience network, striatal
dopaminergic pathway, and ventral visual stream were prominent
features of 22q11.2DS. Moreover, aberrancies in the intrinsic
spatiotemporal dynamics of the anterior insula and ventral
striatum emerged as a robust functional brain signature of
22q11.2DS-associated psychosis. Importantly, we discovered sig-
nificant overlap between the functional brain signatures of
22q11.2DS-associated psychosis and idiopathic early psychosis.
This commonality points to shared underlying brain mechanisms,
which could serve as early biomarkers for psychosis and potential
brain targets for effective interventions. Despite the wide range of
ages, symptom profiles, disease stages, and data acquisition
protocols across cohorts/sites, we successfully replicated our main
classification findings and functional brain signatures of
22q11.2DS and 22q11.2DS associated psychosis in multiple
independent cohorts, demonstrating their robustness and devel-
opmental stability. The robustness of our findings also further
underscores the potential of our novel DNN-based approach to
uncover commonalities between neurogenetic and psychiatric
disorders. Overall, our findings significantly advance our under-
standing of 22q11.2DS and 22q11.2DS-associated psychosis, and
highlight the value of 22q11.2DS as a genetic model for
investigating the neurobiological underpinnings of psychosis
and its progression.

MATERIALS/SUBJECTS AND METHODS
Study cohorts and participants
UCLA. We leveraged neuroimaging and phenotypic data from
22q11.2DS and healthy control participants collected at the
UCLA. The diagnosis of 22q11.2 microdeletion was confirmed
molecularly. Exclusion criteria for all study participants were
additional neurological or medical condition that might affect
neuroimaging measures, insufficient fluency in English, sub-
stance or alcohol abuse and/ or dependence within the past
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6 months, and/or any condition that is a contraindication for MRI
(pregnancy, claustrophobia, etc.). Healthy controls additionally
did not meet criteria for any major mental disorder, based on
information gathered during administration of the Structured
Clinical Interview for DSM-IV Axis I Disorders (SCID), with an
additional developmental disorders module, for participants
over the age of 16 years, and/or the Computerized Diagnostic
Interview Schedule for Children for participants aged ≤16 years.
Healthy controls additionally could not meet criteria for a
prodromal state, as assessed by the Structured Interview for
Prodromal Syndromes (SIPS) [85]. 22q-PS+ were categorically
defined based on the presence of any positive symptom rated in
the prodromal or psychotic range, that is, a rating of 3 or higher
on any item in the positive symptom subscale of the SIPS. 22q-
PS− individuals was defined as having no positive symptoms in
the prodromal/psychotic range. Table 1 shows demographic
information.

UCDavis. An independent cohort of participants recruited and
scanned at the University of California Davis was used to
determine the robustness of brain signatures of 22q11.2DS and
associated psychosis, identified using the UCLA (primary) cohort
data. The diagnosis of 22q11.2 microdeletion was confirmed
molecularly. Exclusion criteria for all study participants include
contraindication for an MRI. Healthy controls additionally did not
meet criteria for psychiatric disorders. 22q-PS+ individuals were
categorically defined based on the presence of any positive
symptom rated in the prodromal or psychotic range, that is, a
rating of 3 or higher on any item in the positive symptom subscale
of the SIPS [85]. 22q-PS− individuals were defined as having no
positive symptoms in the prodromal /psychotic range. Table 1
shows demographic information.

PUC. An independent cohort of participants recruited and
scanned at the Pontificia Universidad Católica de Chile was used
to determine the robustness of brain signatures of 22q11.2DS and
associated psychosis, identified using the UCLA (primary) cohort
data. The diagnosis of 22q11.2 microdeletion was confirmed
molecularly. Exclusion criteria for all study participants include
contraindication for an MRI. Healthy controls additionally did not
meet criteria for psychiatric disorders. All healthy controls also
underwent molecular analysis to confirm that they were not
carriers of the deletion. 22q-PS+ individuals were categorically
defined as those 22q11.2DS individuals who fulfilled criteria for a
present or lifetime psychotic disorder according to the MINI.
Presence of psychotic symptoms when scanned where deter-
mined by the Positive and Negative Syndrome Scale (PANSS) [86].
Table 1 shows demographic information.

HCP-EP. An independent cohort of participants acquired by the
Human Connectome Project for Early Psychosis (HCP-EP) and
shared through the National Institutes of Mental Health Data
Archive was used to investigate the overlap between brain
signatures of 22q-PS+ is and those associated with idiopathic
early psychosis. The cohort information has been described in
detail elsewhere (https://www.humanconnectome.org/study/
human-connectome-project-for-early-psychosis). Briefly, early psy-
chosis participants were identified as those within the first 3 years
of onset of psychotic symptoms. The diagnosis of affective/
nonaffective psychosis was based on DSM-V. Supplementary
Table S24 shows demographic information.

Stanford. An independent cohort of participants recruited and
scanned at Stanford University was used to investigate was used to
determine the distinctiveness of the brain signatures of 22q-PS+.
The cohort information has been described in detail elsewhere [40].
Briefly, ASD diagnosis was assessed using the Autism Diagnostic
Observation Schedule (ADOS) and the Autism Diagnostic Interview-Ta
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Revised (ADI-R) as described in our published studies [87–89].
Supplementary Table S26 shows demographic information.

NYU. An independent cohort of participants recruited and
scanned at NYU and made available through the ADHD200
consortium was used to determine the distinctiveness of the brain
signatures of 22q-PS+. The cohort information has been described
in detail elsewhere [40]. Briefly, the Schedule of Affective Disorders
and Schizophrenia for Children–Present and Lifetime Version
(KSADS-PL) was used for ADHD diagnosis. Supplementary
Table S27 shows demographic information.

fMRI acquisition
UCLA. Structural MRI and resting state functional scans for the
UCLA cohort were acquired at either the Ahmanson–Lovelace
Brain Mapping Center (BMC) or the Staglin Center for Cognitive
Neuroscience. Both sites had an identical 3 T Siemens Tim Trio
system, using a 12-channel head coil. 22q11DS subjects and
control subjects were split equally between the 2 scanner sites,
the scanning protocols implemented at each site were identical
and analysis of potential between scanner differences revealed no
regions of differential cortical activation between scanner loca-
tions. The primary structural scan used for registration purposes
consisted of a matched-bandwidth high resolution T1 image
(voxel size 1.5 × 1.5 × 4.0 mm3,echotime[TE]= 34ms, repetition
time [TR]= 5000ms, echo spacing= 0.89 ms, 34 axial slices, slice
thickness 4.0 mm, slice spacing 0mm, flip angle 90°, field of view
[FOV]= 210, matrix size= 128 × 128). Subsequently, a 5-min
resting state functional scan was acquired, during which a black
screen was presented and participants were instructed to keep
their eyes open, remain relaxed, and attempt to avoid falling
asleep. The resting state scan consisted of 152 BOLD 3D images
(voxel size 3.0 × 3.0 × 4.0 mm3,TE= 30ms, TR= 2000 ms, echo
spacing= 0.79 ms, 34 axial slices, slice thickness 4.0 mm, slice
spacing 0mm,flip angle 90°,FOV= 192, matrix size= 64 × 64).

UCDavis. Structural MRI and resting state functional scans for the
UCDavis cohort were acquired at the UCDavis Imaging Research
Center on a 3-Tesla Siemens Trio MRI scanner using a 32-channel
whole-head coil. The primary structural scan used for registration
purposes consisted of magnetization prepared rapid gradient
echo (MPRAGE) pulse sequence T1 image (voxel resolution= 1
mm3, matrix size= 256 × 256, slice direction= sagittal, number of
image slices= 192, TR= 2170ms, TE= 4.82 ms, and flip angle=
7). Subsequently, a 4-min resting state functional scan was
acquired, where the participants were instructed to keep their
eyes closed and not move during the scan. The resting state scan
consisted of 120 BOLD 3D images of 31 axial slices that were
acquired parallel to the plane connecting the anterior and
posterior commissures.

PUC. Structural MRI and resting state functional scans for the
PUC cohort were acquired at the Pontificia Universidad Católica de
Chile on a 3-Tesla Philips Ingenia scanner. The primary structural
scan used for registration purposes consisted of TFE pulse
sequence T1 image (voxel resolution= 1mm3, number of slices=
341, direction of acquisition= sagittal, TR= 7.7 ms, TE= 3.5 ms,
FA= 8° and TI= 965.3 ms). Subsequently, an 8-min resting state
functional scan was acquired, where the participants were
instructed to remain calm with their eyes opened. The resting
state scan consisted of 200 BOLD 3D images (TR= 2.5 s, TE= 32
ms, FA= 82°, FOV= 220 × 220mm, acquired voxel size= 2.75 ×
2.75 × 3.00 mm3 and number of slices= 40).

HCP-EP. Structural MRI and resting state functional scans for the
HCP-EP cohort were acquired on a 3 T Siemens Magnetom Prisma
scanner. The primary structural scan used for registration purposes
consisted of T1 image (voxel resolution = 0.8 mm3, TR= 2.4 ms;

TE= 2.2 ms; flip angle= 8°; field of view= 256mm; 208 axial slices
(0.8 mm thickness)). Subsequently, a 5.5-min resting state func-
tional scan was acquired, where the participants were instructed
to stay awake, keep their eyes closed and try not to move for the
duration of the scan. The resting state scan consisted of 410 BOLD
3D images (TR= 800ms, TE= 37ms, flip angle= 52°, FOV= 208
mm, multiband, acquired voxel size= 2 × 2 × 2mm3 and number
of slices= 72).

Stanford. Structural MRI and resting state functional scans for the
Stanford cohort were acquired at the Lucas Imaging Center on a 3
T General Electric (GE) Signa scanner using a custom-built head
coil. The primary structural scan used for registration purposes
consisted of MPRAGE pulse sequence T1 image (TR= 5.9 ms;
TE=minimum; flip angle= 11°; field of view= 240mm; matrix
size= 256 × 192; 170 axial slices (1.0 mm thickness)). Subse-
quently, a 6-min resting state functional scan was acquired, where
the participants were instructed to stay awake, keep their eyes
closed and try not to move for the duration of the scan. The
resting state scan consisted of 240 BOLD 3D images (TR= 2000
ms, TE= 30ms, flip angle= 80°, 1 interleave, FOV= 20 cm, and
the matrix size was 64 × 64, providing an in-plane spatial
resolution of 3.125 mm).

NYU. Structural MRI and resting state functional scans for the
HCP-EP cohort were acquired on a 3 T Siemens Magnetom Allegro
syngo MR scanner. The primary structural scan used for
registration purposes consisted of T1 image (voxel resolution=
1.3 × 1.0 × 1.3 mm3, TR= 2530ms; TE= 3.25 ms; flip angle= 7°;
field of view= 256mm; 208 axial slices (1.33 mm thickness)).
Subsequently, a 6-min resting state functional scan was acquired,
where the participants were instructed to remain still, close their
eyes, think of nothing systematically and not fall asleep. The
resting state scan consisted of 240 BOLD 3D images (TR= 2000
ms, TE= 15ms, flip angle = 90°, FOV= 240mm, acquired voxel
size= 3 × 3 × 4mm3 and number of slices= 33).

fMRI preprocessing
All functional MRI data were preprocessed using the
SPM12 software package, along with in-house MATLAB scripts.
Structural MRI images were segmented into gray matter, white
matter (WM), and cerebrospinal fluid (CSF). Prior to preprocessing,
quality assurance (QA) of functional and structural MRI was
performed, and subjects with poor quality imaging data were
excluded from analysis. Resting-state functional MRI (fMRI) data
were realigned to the averaged time frame to correct for head
motion, slice-time corrected to the first slice, and co-registered to
each participant’s T1-weighted images. The functional images
were then normalized to the standard Montreal Neurological
Institute (MNI152) template at 2mm3. A 6-mm Gaussian kernel was
used to spatially smooth the functional images and a band-pass
filter ranging from 0.01 to 0.1 Hz was applied. Band-pass filtering
of fMRI timeseries was used to remove low frequency artifacts
such as scanner drifts and high-frequency components, which do
not contain useful information. Critically, band-pass filtering does
not remove non-stationarities in the data, and non-stationarities
such as time-varying means and covariances can still exist in a
band-pass filtered signal. To account for artifacts from motion and
nonneural sources, the mean time series from each of the CSF and
WM masks as well as six motion parameters, obtained by rigid
body registration, were regressed out from the fMRI data. We used
the binarized WM and CSF tissue probability maps provided by
FSL (https://fsl.fmrib.ox.ac.uk/fsl).

Data input into the stDNN
We used the Brainnetome Atlas (246 regions) and computed the
average resting-state fMRI timeseries across the voxels in a given
region of interest (ROI). We used Brainnetome as it provides fine-
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grained brain-wide parcellations of both cortical and subcortical
areas with better anatomical and functional interpretability than
most other atlases. Critically, the Brainnetome Atlas is one of the
most extensively used atlases, with over 1000 studies using it,
enabling the comparison of our method/findings with those from
extant related research work as well as those under development
elsewhere. Each participant’s time series data was represented by
a matrix of size NC ´NT, where NC is the number of channels or
ROIs, and NT is the number of time points. Critically, because our
stDNN model accommodates varying time lengths, subjects in the
training and testing cohorts were not required to have the same
number of time points, as is common with existing approaches.

stDNN model
We developed an innovative stDNN model to extract informative
brain dynamics features that accurately distinguish between
22q11.2DS and neurotypical controls. A key advantage of our
approach is that it provides a novel technique to capture latent
dynamics without the need for explicit feature engineering [90].
Our stDNN model consists of two 1D convolutional block layers, a
“temporal averaging” operation, and then a linear output layer
(Supplementary Fig. 2, Supplementary Table S28). Each convolu-
tional block layer consists of a convolutional operation and
Parametric ReLU activation. We introduce “batch normalization”
and “maxpool” layers after each of the two convolutional block
layers. The batch normalization layers help in training the stDNN
faster and more stable by normalizing each layers’ inputs. The
“maxpool” layers help in (a) reducing the temporal dimension of
the data, (b) hierarchical representation of the features, and (c)
increasing the receptive field of the filter to capture the long-term
correlations in the timeseries. Conventionally, after the last
convolutional block, the data is flattened and a fully connected
layer is connected to an output layer. The fully connected layers
typically have the maximum number of parameters to be trained
compared to the convolutional layers. In our model, instead of the
normal flattening operation, we use a “temporal averaging layer”
where we average the temporal features for each filter and
therefore the number of inputs to the fully connected layer is just
the number of output channels of the second convolution block
layer. The temporal averaging layer is a dimensionality reduction
step in the latent space and not in the original timeseries space, so
is unlikely to cause loss of significant temporal information. The
advantages of the averaging layer over the flattening layer are (a)
the number of parameters reduced from NC2 ´NT2 to NC2, where
NC2 is the number of output channels of the second convolutional
block layer and NT2 is the temporal dimension of the output of the
second “maxpool” layer, (b) with the averaging layer, we can train
and test fMRI timeseries with varying time lengths. Varying time
length is common with open-source data where the data is
acquired with different data acquisition protocols. We introduce a
dropout layer (=0.55) after each of the two convolutional block
layers to avoid overfitting during the model training process. The
stDNN classified participants in the two groups by minimizing the
binary cross-entropy cost function. We train the model for up to
250 epochs with a stopping criterion and a learning rate of 0.0003
with a batch size of 16. An Adam optimizer with a weight decay of
6e-7 was used to estimate the stDNN model parameters [91].
Model hyperparameters were determined using Ray Tune.

Classification of 22q11.2DS versus control subjects in the
UCLA cohort
To prevent bias and account for low variance, we conducted a five-
fold cross-validation to evaluate the performance of our stDNN
model. In the five-fold cross-validation approach, we divided the
whole dataset into five different parts. We used four parts for
training and validation and the fifth part as the test set. We then
rotated through the whole dataset five times to select a different
section as the test set during each iteration (Supplementary Fig. 3).

For each of the five subsets, we evaluated the performance of our
stDNN model individually and then averaged over the five subsets
to report the mean and standard deviation values of the key
performance metrics (accuracy, precision, recall, F1). Using the five-
fold cross-validation approach, the performance for every sample
from the UCLA data gets accounted, which helps in assessing the
effectiveness of the model more robustly instead of just reporting
the performance on one-time random split of the data.

Generalization of 22q11.2DS classification in the UCLA cohort
to the independent UCDavis and PUC cohorts
Similar to the five-fold cross-validation process used for UCLA, for
reporting the performance of our stDNN for UCDavis cohort, we used
each of the five stDNN models trained on different subsets of UCLA.
Using the five different models, we evaluated each model’s
performance on the UCDavis cohort data independently (Supple-
mentary Fig. 3) and reported the mean and standard deviation
values of the key performancemetrics (accuracy, precision, recall, F1).
Similar to the five-fold cross-validation process used for UCLA, for

reporting the performance of our stDNN for the PUC cohort, we
used each of the five stDNN models trained on different subsets of
UCLA. Using the five different models, we evaluate each model’s
performance on the PUC cohort data independently (Supplemen-
tary Fig. 3) and report the mean and standard deviation values of
the key performance metrics (accuracy, precision, recall, F1).

Control analysis examining alternative models for
classification of 22q11.2DS versus Control subjects
stDNN models the dynamic spatiotemporal characteristics of brain
activity to classify 22q11.2DS vs. neurotypical controls using fMRI
timeseries without any explicit feature engineering. To demon-
strate the advantages of our stDNN model over extant classifica-
tion approaches, we performed extensive control analyses. We
evaluated several commonly used linear and nonlinear classifica-
tion algorithms, including K-Nearest Neighbor, Decision Tree,
Linear SVM, Logistic Regression, Ridge Classifier, LASSO, and
Random Forest. fMRI timeseries features were provided as input to
these classification algorithms. We explored several commonly
used fMRI timeseries feature spaces, including static functional
connectivity, amplitude of low-frequency fluctuation (ALFF), BOLD
signal variability, and sliding-window functional connectivity
variability. Static functional connectivity [92], which represents
time-invariant functional interactions between brain regions, was
computed by Pearson correlations between regional fMRI time-
series. ALFF [93], which reflects the intensity of spontaneous
fluctuations in a brain region, was computed by obtaining the
square root of the fMRI timeseries signal across the low-frequency
range of 0.01–0.08 Hz for each of the 246 Brainnetome brain
regions. BOLD signal variability, which represents the moment-to-
moment brain variability, was calculated as the standard deviation
of regional fMRI signal across the duration of the fMRI scan.
Sliding-window functional connectivity variability, which reflects
variability in dynamic functional interactions between brain
regions, was computed by first calculating time-varying functional
connectivity using a sliding-window approach [94] and then
calculating the standard deviation of the time-varying functional
connectivity. To evaluate the performance of the aforementioned
classification models in distinguishing between 22q11.2DS and
healthy controls, we used the same five-fold cross-validation
approach we used to evaluate our stDNN model. Briefly, we
divided the whole dataset into five different parts, where we used
four parts for training and validation and the fifth part as the test
set. We then rotated through the whole dataset five times to
select a different section as the test set during each iteration. For
each of the five subsets, we evaluated the performance of the
alternate classification model individually and then averaged over
the five subsets to report the mean and standard deviation values
of the key performance metrics (accuracy, precision, recall, F1).
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Identification of discriminating brain features underlying
22q11.2DS classification
We used an integrated gradients-based feature attribution
approach to identify brain features that discriminated between
the 22q11.2DS and healthy control groups. A major problem in
developing and evaluating feature attribution methods is that it is
difficult to distinguish errors from the DNN model and those from
feature attribution procedures. Integrated gradients solves this
problem by taking an approach that satisfies two fundamental
axioms—sensitivity and implementation invariance [43]. Another
advantage of integrated gradients is that the gradients can be
computed easily for any given network architecture. Integrated
gradients estimates the integral of gradients with respect to the
i-th dimension of the input x along the straight-line path from a
given (or random) baseline to the input as follows:

IGi ¼ ðx � x0Þ
Z 1

0
ðxi � x0 iÞ ∂Fðx

0 þ α x � x0ð ÞÞ
∂xi

∂α

where, IGi is the integrated gradient for the i-th component of the
input x and x0 is the baseline input for which the neural network F
results in a neutral output. IG provides a score of how important
each feature contributes to the final prediction. This approach
provides insights about important features that predict 22q11.2DS
class label. Conventional gradient-based approaches wrongly
assign zero attributions for inputs where the function is flat, even
when the output of F for such an input is different from the
baseline. Integrated gradients avoids this problem by computing
an average gradient along a linear path. Our integrated gradients
implementation is based on the “Captum” (https://captum.ai/docs/
introduction.html) module of Pytorch. The IG-derived feature
importance/weights are computed at an individual level and
relative to a baseline that is common across individuals, and
therefore were not normalized.

Cross-cohort comparative analyses of brain features
underlying 22q11.2DS classification
To examine the consistency of brain features underlying
22q11.2DS classification across cohorts, we conducted cross-
cohort comparative analyses. Specifically, we computed Pearson
correlation analysis between the mean brain signatures of all 22q-
PS+ individuals in the UCLA cohort, the mean brain signatures of
all 22q-PS+ individuals in the UCDavis cohort, and the mean brain
signatures of all 22q-PS+ individuals in the PUC cohort. The mean
brain signatures are comprised of ROI-level feature strengths; as a
result, we did not utilize the spin test, which is typically employed
to control for voxel-level spatial similarity, in this analysis. This
approach was chosen as the focus was on ROI-level features rather
than voxel-level spatial characteristics.

Distinctiveness of brain features underlying 22q11.2DS
classification
The aforementioned integrated gradients-based feature attribu-
tion procedure also identifies an individual signature of predictive
brain features in each participant. We examined whether these
“signatures” cluster differently in 22q11.2DS individuals from
healthy controls. Specifically, we computed a distance metric
across brain features between individuals and compared the
distances between individuals in the 22q11.2DS and healthy
control groups. The Pearson correlation between individuals’
integrated gradients-derived brain feature maps was used to
calculate the distance between them.

Identification of brain features predictive of 22q11.2DS-
associated psychosis
We next determined the brain features predictive of 22q-PS+
classification using the output of the integrated gradients
procedure—individualized brain signature – described in the

previous section. To identify brain areas that were most predictive
of 22q-PS+ individuals, we computed the mean of brain signatures
of all 22q-PS+ individuals and contrasted them against the mean of
brain signatures of 22q-PS− individuals.

Cross-cohort comparative analyses of brain features
predictive of 22q11.2DS-associated psychosis
To examine the consistency of brain features predictive of
22q11.2DS-associated psychosis across cohorts, we conducted
cross-cohort comparative analyses. Specifically, we computed
Pearson correlation analysis between the mean brain signatures of
all 22q-PS+ individuals in the UCLA cohort and the mean brain
signatures of all 22q-PS+ individuals in the PUC cohort.
The mean brain signatures are comprised of ROI-level feature

strengths; as a result, we did not utilize the spin test, which is
typically employed to control for voxel-level spatial similarity, in
this analysis. This approach was chosen as the focus was on ROI-
level features rather than voxel-level spatial characteristics.

Distinctiveness of brain features predictive of 22q11.2DS-
associated psychosis
We next examined whether these “signatures” cluster differently
in 22q-PS+ individuals from 22q-PS− individuals. Specifically, we
computed a distance metric across brain features between
individuals and compared the distances between individuals in
the 22q-PS+ and 22q-PS− groups. The Pearson correlation
between individuals’ integrated gradients-derived brain feature
maps was used to calculate the distance between them.

Examination of the relationship between the brain features
predictive of 22q11.2DS-associated psychosis and brain
features predictive of idiopathic early psychosis
To determine the overlap between 22q-PS+ and idiopathic early
psychosis, we computed a distance metric across brain features
between individuals and compared the distances between
individuals in the 22q-PS+ and 22q-PS− groups from the combined
UCLA and PUC cohort, and individuals in the idiopathic early
psychosis group from the HCP-EP cohort. The Pearson correlation
between individuals’ integrated gradients-derived brain feature
maps was used to calculate the distance between them.
To further examine the overlap between 22q-PS+ and idiopathic

early psychosis, we trained a de novo stDNN model to distinguish
between 22q-PS+ and 22q-PS− by combining 22q11.2DS data
from the UCLA and PUC cohorts and then investigated whether the
stDNNmodel trained to distinguish between 22q-PS+ and 22q-PS−
can identify individuals with idiopathic early psychosis from the
HCP-EP cohort. In this analysis, we combined 22q11.2DS data from
the UCLA and PUC cohorts to increase the sample size. Importantly,
we de novo trained our stDNN model here using a label-
distribution-aware margin (LDAM) loss as our combined dataset
has a small number of 22q-PS+ participants compared to 22q-PS−.
We have previously shown LDAM loss to outperform the conven-
tional cross-entropy loss under such class-imbalance conditions.
Specifically, we first conducted a five-fold cross-validation to
evaluate the performance of our stDNN model with LDAM loss in
distinguishing between 22q-PS+ and 22q-PS−.
In the five-fold cross-validation approach, we divided the

combined UCLA-PUC dataset into five different parts, where we
used four parts for training and validation and the fifth part as the test
set. We then rotated through the whole dataset five times to select a
different section as the test set during each iteration. For each of the
five subsets, we evaluated the performance of our stDNN model
individually and then averaged over the five subsets to report the
mean and standard deviation values of the key performance metrics
(accuracy, precision, recall, F1). We next investigated whether the
stDNN model trained to distinguish between 22q-PS+ and 22q-PS−
can distinguish individuals with idiopathic early psychosis in the
HCP-EP cohort. Specifically, we used the stDNN model that most
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accurately distinguishes between 22q-PS+ and 22q-PS− in the
combined UCLA-PUC dataset. Using the best model, we evaluated its
performance on the HCP-EP idiopathic early psychosis data and
reported classification accuracy. Lastly, to determine the model’s
specificity, we investigated whether the stDNN model trained to
distinguish between 22q-PS+ and 22q-PS− can distinguish indivi-
duals with idiopathic autism in the Stanford cohort and individuals
with idiopathic ADHD in the NYU cohort. Specifically, we used the
stDNN model that most accurately distinguishes between 22q-PS+
and 22q-PS− in the combined UCLA-PUC dataset. Using the best
model, we evaluated its performance on the Stanford autism cohort
data as well as NYU ADHD cohort data, and reported classification
accuracy.

DATA AVAILABILITY
The processed fMRI regional time-series data along with demographic information
will be made available upon reasonable request.
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