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A B S T R A C T   

Cognitive impairment in older adults is a rapidly growing public health concern as the elderly population 
dramatically grows worldwide. While it is generally assumed that cognitive deficits in older adults are associated 
with reduced brain flexibility, quantitative evidence has been lacking. Here, we investigate brain flexibility in 
healthy older adults (ages 60–85) using a novel Bayesian switching dynamical system algorithm and ultrafast 
temporal resolution (TR = 490 ms) whole-brain fMRI data during performance of a Sternberg working memory 
task. We identify latent brain states and characterize their dynamic temporal properties, including state tran
sitions, associated with encoding, maintenance, and retrieval. Crucially, we demonstrate that brain inflexibility is 
associated with slower and more fragmented transitions between latent brain states, and that brain inflexibility 
mediates the relation between age and cognitive inflexibility. Our study provides a novel neurocomputational 
framework for investigating latent dynamic circuit processes underlying brain flexibility and cognition in the 
context of aging.   

1. Introduction 

As the elderly population grows dramatically all over the world, 
there is an urgent need to understand the neural underpinnings of age- 
related cognitive deficits. Age-related cognitive changes in older adults 
occur even in the absence of brain disease with substantial variability in 
the extent and prevalence of age-related cognitive changes in older 
adults (Park et al., 2002; Hedden and Gabrieli, 2004; Salthouse, 2010, 
2012; Samu et al., 2017). Furthermore, the incidence of Alzheimer’s and 
other dementias increases rapidly in individuals over the age of 60 years 
(Rocca et al., 2011). Consequently, the need for investigations of 
mechanisms underlying individual differences in cognitive aging, the 
decline in cognitive processing that occurs as people get older, has taken 
on added significance (Salthouse, 2009; Hofer and Alwin, 2008]. 
Optimal cognitive functioning relies on dynamic and flexible reconfi
guration of brain circuits (or latent brain states) that transiently link 
distributed brain regions in response to changing task demands (Braun 
et al., 2015; Finc et al., 2020; Bassett et al., 2011; Murphy et al., 2020; 

Cohen and D’Esposito, 2016; Taghia et al., 2018). However, little is 
known about how brain flexibility changes with age during a later 
life-span period in which cognitive deficits may occur before the onset of 
dementias. While it is generally assumed that cognitive deficits in older 
adults are related to reduced brain flexibility, direct quantitative evi
dence to support these claims has been lacking. Here, we identify novel 
measures of brain flexibility by characterizing dynamic temporal prop
erties of latent brain states, including their context-specific occupancies 
and dynamic transitions, and determine how brain flexibility changes 
with age in a group of healthy older adults and in relation to cognition. 

Investigations of brain inflexibility arising from time-varying and 
context-dependent brain states has been limited thus far because of 
challenges inherent to the complexities of nonlinear and latent 
dynamical processes that characterize brain function (Braun et al., 2015; 
Vidaurre et al., 2017; Kitzbichler et al., 2011; Cribben et al., 2012; 
Spadone et al., 2015; Shine et al., 2016; Lainscsek et al., 2019). To 
address these challenges, we used a novel Bayesian Switching Dynamic 
System (BSDS) (Taghia et al., 2018) with high-temporal resolution (TR 
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= 490 ms) fMRI data to determine hidden (latent) brain states and their 
dynamic transitions. Briefly, BSDS implements an unsupervised learning 
algorithm for determining latent brain states and dynamic state transi
tions from observed data (Taghia et al., 2018). Importantly, BSDS does 
not require arbitrary moving windows nor does it impose temporal 
boundaries associated with predefined task conditions, which are the 
major limitations of existing methods for probing context-dependent 
dynamic processes in the brain (Leonardi and Van De Ville, 2015; Sha
kil et al., 2016). Each latent brain state is associated with a unique dy
namic process that captures time-varying activation and functional 
connectivity in an optimal latent subspace. Crucially, this approach can 
capture dynamic temporal properties of brain states, their occurrence 
rates and relation to different phases of working memory, probability of 
state transitions, and dynamic changes in the underlying functional 
circuitry. 

Diminished ability to adaptively maintain and manipulate informa
tion is a main component of cognitive aging (Braver and West, 2008). 
Deficits in working memory are associated with inability to flexibly 
engage cognitive control systems in order to inhibit irrelevant stimuli 
and switch between tasks (Braver and West, 2008; Reuter-Lorenz and 
Sylvester, 2005; Gazzaley et al., 2005; Borella et al., 2008). Ultimately, 
deficits in working memory impact cognitive flexibility (Dajani and 
Uddin, 2015), a higher-order meta-control ability to adapt behavior in 
response to changes in the environment (Scott, 1962). Both working 
memory and cognitive flexibility involve a widely distributed 
cortical-subcortical system, including dorsolateral prefrontal cortex 
(DLPFC), dorsomedial prefrontal cortex (DMPFC), anterior insula (AI), 
posterior parietal cortex (PPC), caudate (Cau) and thalamus (Cai et al., 

2014; Kim et al., 2012; Cai et al., 2019; Rottschy et al., 2012; Owen 
et al., 2005), and age-related functional alterations have been observed 
in this same cortical-subcortical system (Keller et al., 2015). However, 
little is known about how cognitive flexibility is related to latent brain 
state dynamics underlying working memory in healthy older adults. 

Here we investigate latent brain state dynamics of a cortical- 
subcortical cognitive control network associated with performance of 
a Sternberg working memory task in the context of aging. Participants 
were presented with a set of visual stimuli during an encoding phase and 
asked to remember the stimuli after a brief delay period. Because the 
Sternberg working memory task consists of distinct task phases, it is an 
ideal paradigm for investigating the dynamical evolution of brain states 
and their modulation with cognitive demand. BSDS analysis of ultra-fast 
fMRI allowed us to identify latent brain states and several key dynamic 
temporal properties associated with Sternberg working memory task 
performance: (i) posterior probability of each latent state, which pro
vides probabilistic information regarding the likelihood of a certain 
latent brain state occurring at a given time, (ii) occupancy rate and mean 
lifetime, which quantify the occurrence of each latent brain state in each 
condition and phase of the working memory task, (iii) state transition 
matrix and switch paths, which provide information regarding how 
latent brain states transition from one state to another, and (iv) func
tional brain circuits associated with each latent brain state. In sum, our 
approach using the event-related fMRI design with high temporal res
olution allowed us to more directly investigate, in a quantitively 
rigorous manner, age-related changes in cognitive and brain flexibility 
associated with working memory, and overcome limitations of resting- 
state fMRI studies (Escrichs et al., 2021; Ezaki et al., 2018) which 

Fig. 1. Overall analysis approach for identifying latent brain state dynamics and its relation to age and cognitive flexibility. Our approach is composed of four 
analysis steps. In Step 1, we used the Bayesian switching dynamical system (BSDS) model to determine the evolution of dynamic latent brain states underlying the 
Sternberg working memory (WM) task. We identified latent brain states (S1 … SN) and characterized their dynamic properties, including (1) posterior probability, (2) 
occupancy rate and mean lifetime, (3) state switching probability and state switch paths, and (4) functional circuit associated with each latent brain state. In Step 2, 
we examined how brain flexibility, quantified based on dynamic properties of latent brain states, changes with age in a group of healthy older adults. In Step 3, we 
determined how brain flexibility relates to cognitive flexibility using canonical correlation analysis with cross-validation and prediction analysis based on brain state 
properties obtained in Step 1 and neuropsychological measures of cognitive flexibility. In Step 4, we determined whether brain inflexibility mediates the relation 
between age and cognitive flexibility in healthy older adults. 
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cannot directly assess cognitive functioning. 
Our study addresses five main goals (Fig. 1). Our first goal was to 

identify latent brain states and characterize dynamic state changes 
associated with cognitive load and distinct phases of the Sternberg 
working memory task in healthy older adults using BSDS. We hypoth
esized that there are multiple latent brain states underlying working 
memory and that examination of latent brain state properties would 
reveal dynamic state changes that map onto and are constrained by task 
context (Taghia et al., 2018). We further hypothesized that latent brain 
states critical for working memory would be associated with increased 
cortical-subcortical interactions (Chang et al., 2007; McNab and Kling
berg, 2008). The second goal of our study was to identify functional 
circuits associated with latent brain states as a function of cognitive load 
and distinct phases of the Sternberg working memory task. Third, we 
derived quantitative measures from latent brain state dynamics that 
characterize brain flexibility and then used a dimensional approach to 
determine how brain flexibility is impacted by age in healthy older 
adults. We hypothesized that dynamical load-dependent measures of 
latent brain states would characterize brain flexibility in healthy older 
adults and that flexible engagement of latent brain states would be 
negatively impacted by age. The fourth goal of our study was to inves
tigate how brain inflexibility impacts cognitive inflexibility. We hy
pothesized that latent brain state properties associated with brain 
inflexibility would predict cognitive flexibility assessed with standard
ized neuropsychological assessments. Our final goal was to determine 
how changes in brain inflexibility with age impact cognitive flexibility. 
We hypothesized that reduced brain flexibility with age would emerge 
as a mediator of reduced cognitive flexibility in older adults. Our novel 
neurocomputational framework provides new insights into latent dy
namic circuit processes underlying brain and cognitive flexibility in the 
context of aging. 

2. Materials and methods 

2.1. Participants 

Participants were enrolled in the Stanford Alzheimer’s Disease 
Research Center. During clinical consensus meeting, all participants 
were adjudicated as neurologically and cognitively normal after 
completing formal neurological examination, comprehensive neuro
psychological battery and clinical history by a licensed neurologist. 
Additional inclusion criteria were > 60 years of age and neuropsycho
logical testing within 6 months of the fMRI session. A total of 44 
cognitively normal older adults (age: 71.57 + 5.68 years, range 60–85 
years; 26 females, 18 males; Table S1) with maximum head displace
ment less than 3 mm (average framewise displacement <0.2 mm) were 
included in the final analyses. Average framewise displacement was not 
correlated with age (r = 0.24, p = 0.12, Pearson’s correlation). All par
ticipants provided written consent and the Stanford University Institu
tional Review Board approved all study protocols. 

2.2. Experimental procedures 

Participants performed a modified Sternberg working memory task 
(Poston et al., 2016) during fMRI. Each trial consisted of either low-load 
(LL), high-load (HL), or distractor-load (DL) working memory condi
tions. Each trial began with fixation (0.5 s) followed by an encoding 
phase (2 s) during which a set of stimuli was simultaneously displayed. 
The set of stimuli consisted of 5 identical numbers (LL condition), 5 
different numbers (HL condition), and 5 different numbers along with 5 
different characters (DL condition). The trial was then followed by a 
maintenance phase (6 ± 2 s), during which a fixed marker was dis
played, and the presentation of a probe for 0.5 s. Participants indicated 
whether the probe matched any of the numbers displayed during the 
encoding phase. Accuracy and reaction time (RT) were recorded for each 
trial. Each scan included 4 task runs, where each consisted of 6 LL, 6 HL, 

and 6 DL working memory trials randomly intermixed. The stimulus 
presentations were implemented using E-Prime software (v2.0; Psy
chology Software Tools, Pittsburgh, PA; 2002) and projected at the 
center of the screen using a magnet-compatible projection system. Prior 
to each fMRI session, participants were trained with instructions and 
completed a practice session of the task. 

2.3. Neuropsychological tests 

To assess cognitive flexibility, participants completed the Trail 
Making Test (TMT) and Victoria Stroop Test, which are widely used 
neuropsychological instruments. The TMT consisted of two parts. In part 
A, participants rapidly connect a set of 25 dots in order (1-2-3…) while 
maintaining accuracy, whereas in part B, participants rapidly alternate 
between numbers and letters (1-A-2-B…). Part A measures processing 
speed while Part B measures processing speed and attention switching. 
We also computed the B-A time difference time, which provides a 
relatively pure indicator of executive control ability (Sánchez-Cubillo 
et al., 2009). The Victoria Stroop Test consisted of three parts. In the first 
part (Dot test), a grid of colored dots was presented and participants 
rapidly named the color; In the second part (Word test), a grid of words 
printed in black ink was presented and participants rapidly read the 
words; In the third part (Colored-word test), a grid of color names 
printed in colors not corresponding to the words (e.g., the word “red” 
printed in green ink) was presented and participants were asked to 
rapidly name the color of the words. The first (Dot test) and second 
(Word test) parts measure processing speed, while the third part (Col
ored-word test) measures selective inhibition. The scores of TMT and 
Stroop Test represent task completion times, such that low score in
dicates good performance and high score indicates poor performance. 

Participants also completed three additional neuropsychological 
tests that assessed other aspects of cognition unrelated to cognitive 
flexibility. First, a story memory test (Craft et al., 1996) was used to 
assess episodic memory. Second, a complex figure copy (Possin et al., 
2011) was used to assess visuospatial ability. Third, a confrontation 
naming test (Ivanova et al., 2013) was used to assess language ability. 

2.4. fMRI acquisition and preprocessing 

The fMRI images were collected using a 3 T scanner. A total of 790 
functional images were acquired using multiband echo-planar imaging 
with the following parameters: 47 slices, repetition time (TR) = 490 ms, 
flip angle 45 ◦, echo time = 30 ms, field of view = 220 × 220 mm, matrix 
= 74 × 74, 3 mm slice thickness, and voxel size = 2.97 × 2.97 × 3 mm. 
The first 12 time points were removed to allow for signal equilibration, 
leaving 778 time points for each subject. Each subject’s T1-weighted 
anatomical scan had been acquired using a magnetization-prepared 
rapid-acquisition gradient echo (MPRAGE) sequence (256 slices with a 
176*256 matrix; voxel size 1.00 × 0.977 × 0.977mm3). All functional 
MRI data were preprocessed using SPM12 (http://www.fil.ion.ucl.ac. 
uk/spm/software/spm12/), as well as in-house programs in MATLAB 
(MathWorks). Functional MRI data were first slice time corrected, 
aligned to the averaged time frame to correct for head motion, and co- 
registered with each participant’s T1-weighted images. Structural MRI 
images were segmented into grey matter, white matter, and cerebro
spinal fluid. Using the transformation matrix derived from the T1- 
weighted anatomical brain images, the functional images were then 
transformed to the standard Montreal Neurological Institute (MNI) 
template in 2 × 2 × 2 mm3 with the Diffeomorphic Anatomical Regis
tration Through Exponentiated Lie algebra (DARTEL, Ashburner et al. 
2007) toolbox. A 6-mm Gaussian kernel was used to spatially smooth the 
functional images. Subjects with more than 3 mm head motions were 
excluded. 
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2.5. Time series from regions of interest 

To define the regions of interest (ROIs), we first examined whole- 
brain activation patterns associated with the Sternberg DL vs. LL and 
HL vs. LL contrasts. Consistent with previous studies (Chang et al., 2007; 
Altamura et al., 2007; Heinzel et al., 2016), the Sternberg task strongly 
activated prefrontal and parietal regions implicated in cognitive control 
and working memory (Menon and D’Esposito, 2021), as well as the 
thalamus and caudate. The Brainnetome atlas (Fan et al., 2016) was 
used to demarcate ROIs in: (1) left posterior parietal cortex (lPPC), (2) 
right posterior parietal cortex (rPPC), (3) left dorsolateral prefrontal 
cortex (lDLPFC), (4) right dorsolateral prefrontal cortex (rDLPFC), (5) 
bilateral dorsomedial prefrontal cortex (DMPFC), (6) left anterior insula 
(lAI), (7) right anterior insula (rAI), (8) left caudate (lCau), (9) right 
caudate (rCau), (10) left thalamus (lThalamus), (11) right thalamus 
(rThalamus). The time series of each ROI was calculated by taking the 
average of the time series of all voxels within each ROI. A multiple linear 
regression approach with 6 realignment parameters (3 translations and 
3 rotations) was applied to account for head motion-related artifacts and 
the resulting time series were further linearly detrended, normalized, 
and high-pass filtered (>0.008 Hz). 

To examine the robustness of our findings with respect to ROI se
lection, we conducted additional analyses using cognitive control and 
working memory-related brain regions. Task-relevant brain regions 
involved in cognitive control were defined using functional clusters from 
an independent study in which brain networks were derived using in
dependent component analysis on resting-state fMRI (Shirer et al., 
2012). Networks of interest included the salience network, 
fronto-parietal network, default mode network and dorsal attention 
network, from which we chose the following ROIS: bilateral AI, bilateral 
DLPFC, bilateral FEF, bilateral PPC, PCC, VMPFC and right DMPFC 
(Fig. S6A). 

2.6. Bayesian switching dynamical system model 

BSDS is an unsupervised Bayesian learning algorithm that de
termines latent brain states and dynamic state transitions from observed 
data (Taghia et al., 2018). In general, BSDS examines time-series data to 
identify latent brain states that vary in their activation patterns over 
time as well as their inter-regional functional connectivity. More spe
cifically, we applied a vector autoregressive (AR) (Fox, 2009) and factor 
analysis (FA) (Everett, 2013; Ghahramani and Hinton, 1996) models 
that can simultaneously estimate latent brain states in an optimal low 
dimensional subspace. Importantly, BSDS applies a hidden Markov 
model to latent space variables of the observed time-series data, 
resulting in a parsimonious model of generators underlying the observed 
data. Each estimated latent brain state is associated with a unique dy
namic process that captures time-varying activation and inter-regional 
functional connectivity in an optimal latent subspace. BSDS does not 
require arbitrary moving windows, nor does it impose temporal 
boundaries associated with predefined task conditions, which are major 
limitations of existing methods for probing dynamic processes in the 
brain (Leonardi and Van De Ville, 2015; Shakil et al., 2016). 

Here we briefly describe the mathematical framework of the BSDS 
model (Taghia et al., 2018). Let ys

t denote a D-dimensional vector of ROI 
timeseries obtained from subject s in time t, where D is the number of 
ROIs. Following the general formulation of the switching state-space 
models, we defined zs

t as the latent state variables and xs
kt as the latent 

space variables associated to ys
t at the k -th latent state, that is zs

kt = 1. 
The zs

t is a 1-of- K discrete vector with elements zs
kt, ∀k = 1,…,K. Two 

successive time instances are dependent through a 1st-order Markov 
chain of Hidden Markov Model (HMM). Using Markovian properties and 
given state transition probabilities A, where Ajk ≡ p

(
zs
tk = 1

⃒
⃒zs

t− 1,j = 1)

and a marginal distribution p
(

zs
1
⃒
⃒π) =

∏K

k=1
πzs

1k
k represented by a vector 

of initial probabilities π where πk ≡ p(zs
1k = 1), the probability distri

bution for the latent state variables is expressed by p
(

zs
t
⃒
⃒zs

t− 1, A) =

∏K

k=1

∏K

j=1
A

zs
t− 1,j zs

tk
jk for all t > 1. We assume that at a given latent state k in 

time t, shown by zs
kt = 1, the observed vector ys

t is generated via prob
abilistic interpretation of a factor analysis model (Everett, 2013; 
Ghahramani and Hinton, 1996) as: 

ys
t = Ukxs

kt + μk + ekt, ∀t |zs
kt = 1  

where Uk is a D × P dimensional linear transformation matrix, where the 
P is the dimensionality of the latent space variable (in general P < D), μk 
is the overall bias, and ekt is the measurement noise. With the normality 
assumption, that is xs

kt ∼ N (0, 1) and ekt ∼ N (0,Ψk), the marginal 
distribution of ys

t follows a Gaussian distribution as p
(

ys
t
⃒
⃒μk, Uk, Ψk) =

N
(
μk, UkUk

T + Ψk
)

where T denotes the transpose operator. We then 
define a dynamical process on the latent space variables using an 
autoregressive (AR) model (Fox, 2009) of order R as: 

xs
kt = Xs

kt Vk
̅→

+ εkt, ∀t |zs
kt = 1  

where Vk
̅→ is a vector of AR coefficients. Xs

kt = diag(xs
kt) is a block di

agonal isotropic matrix with elements of xs
kt =

(
xs

k,t− 1
T
, xs

k,t− 2
T
, … ,

xs
k,t− R

T
)

represented using latent space variables from the previous R 

time frames. εkt ∼ N (mk,Σk) is the remaining error term in the latent 
space. All analyses conducted in this study use a 1st-order AR model (R =

1). BSDS was initialized with 10 states and it converged to 5 states. 
Detailed theoretical derivations are provided in the previous study 
(Taghia et al., 2018). 

2.7. Temporal properties of latent brain states 

BSDS estimated the posterior probability of each latent brain state at 
each time point and chose the latent brain state with highest probability 
as the dominant state at that time point. Using the temporal evolution of 
the latent brain states, we measured temporal properties of each latent 
brain state in each task condition (LL, HL, and DL), including occupancy 
rate, mean lifetime, and state switching probability. Occupancy rate 
quantifies the proportion of time that a state is chosen as the dominant 
state. Mean lifetime quantifies the average duration that the state per
sists as a dominant state before switching to another state. State 
switching probability quantifies the chance that brain state at time point 
t either remains at its own state or switches to another brain state at the 
time point t + 1. These temporal properties were examined to charac
terize each task condition and further used to examine their relationship 
with age and behavioral performances. Further details are provided in 
Supplementary Methods. 

2.8. Task and phase prediction using time-varying latent brain state 
dynamics 

Task classification analysis was performed to investigate whether 
time-varying latent brain state dynamics contain task-specific informa
tion. We built a multiclass classifier based on a linear support vector 
machine using the MATLAB package LIBSVM (http://www.csie.ntu.edu. 
tw/~cjlin/libsvm) (Chang and Lin, 2001) to discriminate task condi
tions at each time point. The averaged posterior probabilities of the 
latent brain states at each time point were used as features to train the 
classifier. Classifier performance was evaluated by conducting 
leave-one-out cross-validation (LOOCV) analysis. Specifically, posterior 
probability time series of the five latent brain states from one participant 
were used as a test set and the posterior probability time series of the 
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brain states obtained from the rest of the participants were used to train 
the classifier. Then, the trained classifier was applied to the test set to 
predict moment-by-moment correspondence between posterior proba
bilities of the latent brain states and task conditions (LL, HL, and DL). 
This procedure was performed S times (S: number of participants), and 
the cross-validation accuracy across the test set was used to evaluate the 
performance of the classifier. We further evaluated statistical signifi
cance of LOOCV accuracy using permutation test (5,000 times). We also 
examined whether time-varying latent brain state dynamics contain 
phase-specific information by performing phase classification analysis in 
each load condition using the same analytic procedure as described 
above. 

2.9. Dynamic functional connections that distinguish latent brain states 

To identify dynamic functional connections that distinguish each 
latent brain state, a feature identification analysis was performed on the 
covariance matrix estimated from the BSDS analysis. We first performed 
logistic regression on feature matrix with Elastic-net regularized 
generalized linear model using the MATALB package Glmnet (https:// 
web.stanford.edu/~hastie/glmnet_matlab/) (Qian et al., 2013) to 
distinguish brain states. A lambda optimization was done by conducting 
a 10-fold cross-validation to minimize misclassification error. Then, the 
optimized lambda was applied on the full data set and connections with 
nonzero weights were selected. Next, we performed a univariate analysis 
on the chosen connections and examined connections that are signifi
cantly different between latent brain states. Lastly, we examined 
whether the connection pattern of each latent brain state is enough to 
distinguish brain states. It was done by training logistic regression 
classifier and evaluating the performance using LOOCV. Statistical sig
nificance of LOOCV accuracy was further evaluated using permutation 
test (5,000 times). 

2.10. Latent brain state dynamics in relation to cognitive flexibility 

To examine whether the latent brain state dynamics underlying 
working memory are associated with cognitive flexibility, we conducted 
canonical correlation analysis (CCA). CCA is a powerful statistical 
method for examining the relationship between two multivariate sets of 
variables by finding an optimal linear combination for each of the sets 
(referred to as canonical variates) that maximizes the relation between 
the two multivariate sets. The set of brain variables consisted of mean 
lifetimes of the latent brain states under three task load conditions (LL, 
HL, and DL). The set of cognitive variables consisted of TMTA Time, 
TMTB-A Time and Stroop Color-Word Time, which reflects processing 
speed, attention switching, and selective inhibition, respectively. Next, 
prediction analysis was performed using LOOCV. Pearson’s correlation 
was used to evaluate the correlation between the predicted brain and 
cognitive variables. The statistical significance of the correlation was 
evaluated using permutation tests (1,000 times). All analyses controlled 
for sex and education level. Further details are provided in Supple
mentary Methods. 

2.11. Mediation effect of brain state dynamics on the relation between age 
and cognitive flexibility 

To investigate whether the cognitive deficits in older adults are 
mediated by brain state dynamics, we conducted mediation analysis. 
Mediation analysis examines whether a covariance between two vari
ables (X and Y) can be explained by a mediating (M) variable. In this 
study, we examined the relationship between age (X), cognitive flexi
bility (Y), and brain state dynamics (M) while controlling for sex and 
education level from the variables Y and M. Specifically, we examined 
the total effect of X on Y (path c), the relationship between X and M (path 
a), the relationship between M and Y (path b), and the direct effect of X 
on Y after including M as a mediator in the model (path c’). The 

significance of the indirect effect of X on Y through the M (i.e., path axb) 
was tested using a bootstrapping procedure. This approach included 
calculating unstandardized indirect effects for each of 10,000 boot
strapped samples and then calculating the 95 % confidence interval. The 
significance of the indirect effect was evaluated using bootstrapped 
confidence intervals within the R package “mediation” (https://cran. 
r-project.org/web/packages/mediation/). 

3. Results 

3.1. Behavior: working memory performance, cognitive flexibility, and 
age 

Forty-four cognitively healthy older adults (71.36 years old, 26 fe
males/18 males) performed a modified Sternberg working memory task 
during fMRI (Poston et al., 2016). The Sternberg task included three load 
conditions, low-load (LL), high-load (HL), and distractor-load (DL), that 
required low, medium, and high levels of cognitive demand, respec
tively. For each trial, participants viewed a set of stimuli for 2 s 
(encoding phase), a jittered delay varying between 4 and 8 s (mainte
nance phase), and a probe prompting participants to determine whether 
the probe was one of the stimuli (retrieval phase) (Fig. 2A). This para
digm allowed us to investigate the effects of cognitive load (LL, HL, and 
DL) and working memory phases (encoding, maintenance and retrieval) 
on intra-trial dynamics. Each participant completed four runs of the 
Sternberg task, with each run consisting of 6 trials per task condition in 
random order. Accuracy and reaction time (RT) were recorded for each 
trial. 

Average accuracy in the LL condition (96.8 ± 4.1 %) was signifi
cantly higher than HL (91.7 ± 5.4 %) [t(43) = 5.64, p < 0.001, Cohen’s 
d = 1.07, paired t-test] and DL (93.1 ± 9.3 %) [t(43) = 2.51, p < 0.05, 
Cohen’s d = 0.55, paired t-test] conditions (Fig. 2B). Average RT in the 
LL condition (1.00 ± 0.22 s) was also significantly faster than HL (1.28 ±
0.24 s) [t(43)=-13.27, p < 0.001, Cohen’s d = 1.22, paired t-test] and DL 
(1.29 ± 0.25 s) [t(43)=-13.74, p < 0.001, Cohen’s d = 1.23, paired t-test] 
conditions (Fig. 2B, Table S1). No significant differences in accuracy or 
RT were found between HL and DL conditions (all ps>0.3). Thus, par
ticipants performed well on the Sternberg task and demonstrated a load 
effect. Age was marginally correlated with accuracy in the DL condition 
(r=-0.28, p = 0.07, Pearson’s correlation) but not LL and HL conditions 
(ps>0.05). Age was not correlated with RT in any condition (all ps>0.3) 
(Fig. 2B, Table S1) 

Participants also completed the Trail Making Test (TMT) (Bowie and 
Harvey, 2006) and Victoria Stroop Test (Stroop, 1935) outside the 
scanner. The TMT and Stroop Test assessed processing speed, attention 
switching, and inhibition, and were not correlated with age (all ps>0.3, 
Table S1). TMT and Stroop tasks provide comprehensive measures for 
different components of cognitive flexibility (Dajani and Uddin, 2015; 
Scott, 1962). Taken together, performance on the Sternberg working 
memory task, TMT and Stroop task were not directly related to age in 
this group of healthy older adults, but were rather indirectly related as 
demonstrated below. 

3.2. Latent brain states during working memory 

Functional MRI data was acquired using a multiband EPI protocol 
with high temporal resolution (TR = 490 ms), which enhances the 
power to model brain circuit dynamics. We applied BSDS to time series 
extracted from 11 brain regions of interest (ROIs), which are determined 
by activation associated with a strong load effect (Fig. 2C). Consistent 
with previous studies of working memory (Taghia et al., 2018; Chang 
et al., 2007; D’Esposito and Postle, 2015; Goldman-Rakic, 1995; Myers 
et al., 2017), the ROIs include bilateral posterior parietal cortex (PPC), 
dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex 
(DMPFC), anterior insula (AI), caudate (Cau), and thalamus. BSDS was 
used to determine key temporal properties of latent brain states 
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including: (i) their time-varying posterior probabilities, (ii) occupancy 
rates and mean lifetime, (iii) transition probabilities and switch paths 
related to LL, HL and DL conditions, and (iv) difference in dynamic 
functional connectivity pattern between states. 

3.3. Temporal properties of latent brain states: posterior probability 
distinguishes task conditions 

BSDS revealed five latent brain states defined by their unique 
spatiotemporal properties. To facilitate interpretation of each brain 
state, the temporal properties of each latent brain state were examined. 
For each participant, BSDS estimated the posterior probability of each 
latent brain state at each time point (Fig. 2 D middle and Fig. S1), and 
the latent brain state with the highest posterior probability was chosen 
as the dominant state at that point for that participant (Fig. 2D bottom 
and Fig. S1). Across participants, each latent brain state showed distinct 
moment-by-moment changes in posterior probability across working 
memory trials and inter-trial-intervals (ITI) in the LL, HL, and DL task 
conditions (Fig. 3A–C). 

To determine whether latent brain state dynamics (Fig. 3D) 

differentiates cognitive load conditions (i.e., LL, HL, DL), we conducted 
multivariate classification analyses using a Linear Support Vector Ma
chine (LSVM) algorithm and leave-one-out cross-validation (LOOCV) 
(Chang and Lin, 2001). The classification models trained on posterior 
probabilities of latent brain states in each task accurately predicted load 
conditions on unseen data with greater than 50 % accuracy, which 
significantly exceeds the chance level of 33 % (p < 0.001, permutation 
test) (Fig. 3E). Interestingly, the posterior probability of latent brain 
states during the retrieval phase had the highest prediction accuracy in 
comparison to encoding and maintenance phases (72.2 %, p = 0.002, 
permutation test) (Fig. 3E), suggesting that the temporal properties of 
latent brain states are more differentiated during retrieval than encoding 
or maintenance (all ps<0.001, two-tailed t-test). These results demon
strate that the posterior probabilities of latent brain states can distin
guish cognitive load. 

3.4. Temporal properties of latent brain states: posterior probability 
distinguishes task phases 

We next conducted multivariate classification analyses using the 

Fig. 2. Bayesian switching dynamical system (BSDS) analysis of Sternberg working memory task data. (A) Sternberg working memory paradigm with low-load (LL; 5 
identical numbers), high-load (HL; 5 different numbers), and distractor-load (DL; 5 different numbers and 5 different letters) conditions. Each trial consisted of 
fixation (0.5 s), an encoding phase (2 s) with stimuli presentation, a maintenance phase (6 ± 2 s) during which a fixation cross is displayed, the presentation of a 
probe (0.5 s), and an intertrial interval (12 + 4 s). During the probe, participants indicated whether the probe matched any number displayed during the encoding 
phase. (B) Accuracy and reaction time (RT) for the Sternberg working memory task. Accuracy and RT were significantly greater and faster, respectively, in the LL 
compared to HL and DL conditions (top). Accuracy and RT of all three load conditions were not associated with age (bottom). Data represent mean and standard 
deviation (mean ± SD). *p < 0.05, **p < 0.001. (C) Brain regions of interest used in BSDS analysis. (D) The scan session included 4 task runs, each consisting of 6 L L, 
6 H L, and 6 DL randomly intermixed trials. Task design of the three load conditions in run A (top). Averaged time-varying posterior probability of the five latent 
brain states across the 44 participants (middle). Temporal evolution of the five latent brain states identified in each of the 44 participants (bottom). 
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same LSVM algorithm and LOOCV to examine whether the posterior 
probability of latent brain states distinguishes between the encoding, 
maintenance, and retrieval phases of the task. Task phase classification 
accuracies were 50.4 %, 63.1 %, and 65.7 % in LL, HL and DL, respec
tively, and significantly above the chance level of 33 % (all ps<0.001, 
permutation test) (Fig. 3F), suggesting that temporal properties of latent 
brain states are more differentiated in HL and DL than LL conditions (all 
ps<0.001, two-tailed t-test). These results demonstrate that the posterior 
probabilities of latent brain states can distinguish working memory 
phase. Taken together with findings from the previous section, these 
results demonstrate that the posterior probabilities of latent brain states 
contain rich information that differentiates working memory phase and 
load. 

3.5. Temporal properties of latent brain states: occupancy rate and mean 
lifetime across task conditions 

We next examined occupancy rates and mean lifetimes for each load 
condition and each latent brain state. Occupancy rate quantifies the 
fraction of time a given state is most likely to occur, and mean lifetime 
quantifies the average dwelling time that a state persists before 
switching to another state. Examination of load effects on occupancy 
rate and mean lifetime revealed that these temporal properties were 
significantly higher in DL than HL and in HL than LL conditions for State 
4 (all ps<0.05, two-tailed t-test, FDR-corrected), suggesting that State 4 
is a key state associated with cognitive load (Fig. 4A and B). In contrast, 
occupancy rates and mean lifetimes of States 1 and 2 were significantly 
higher in the LL compared to both the HL and DL conditions (all 
ps<0.05, two-tailed t-test, FDR-corrected), but there was no difference 
between HL and DL conditions (p > 0.05, Fig. 4A and B). There was no 
significant difference between load conditions in State 3 (ps > 0.05, 
Fig. 4A and B). These results demonstrate that the latent brain states are 
characterized by unique load-dependent temporal properties. 

3.6. Temporal properties of latent brain states: occupancy rate and mean 
lifetime across task phases 

We then examined occupancy rate and mean lifetime of each latent 
brain state for each working memory task phase. During the encoding 
phase, States 1 and 2 had significantly higher occupancy rate and mean 
lifetime than other states in LL, HL, and DL conditions (all ps<0.05, two- 
tailed t-test, FDR-corrected) (Fig. 4C and F). During the maintenance and 
retrieval phases, States 3 and 4 had significantly higher occupancy rates 
and mean lifetimes than other states in HL and DL conditions (all 
ps<0.05, two-tailed t-test, FDR-corrected) (Fig. 4D, E, G and H). During 
ITI phase, States 2 and 3 had the highest occupancy rates and mean 
lifetimes (Fig. S2) (all ps<0.05, two-tailed t-test, FDR-corrected). Com
parisons for each state across task phases revealed that the occupancy 
rate and mean lifetime of State 1 during the encoding phase was 
significantly higher than the maintenance and retrieval phases in all the 
load conditions (all ps<0.05, two-tailed t-test, FDR-corrected), suggest
ing that State 1 is more associated with information encoding. In 
contrast, the occupancy rates and mean lifetimes of State 3 and 4 were 
significantly higher during the maintenance and retrieval phases in 
comparison to the encoding phase (all ps<0.05, two-tailed t-test, FDR- 
corrected) (Fig. 4D, E, G and H). State 4 showed significant load- 
dependent increments in occupancy rate and mean lifetime from LL to 
HL and from HL to DL in both maintenance and retrieval phases (all 
ps<0.05, two-tailed t-test, FDR-corrected), whereas State 3 did not show 
significant load-dependent changes in its occupancy rate and mean 
lifetime. This suggests that State 4 is modulated by cognitive load for 
maintaining and retrieving information. Finally, the occupancy rate of 
State 5 remained low (under 15 %) across all the task phases and con
ditions, but was more likely to occur at the beginning of the task runs 
(Fig. 2D and Fig. S1). Uniquely, State 5 had significantly higher occu
pancy rates (67 ± 31 %) and mean lifetimes (12.8 ± 6.6 s) than any other 
states during the first trial of the task runs (all ps<0.05, two-tailed t-test, 
FDR-corrected, Fig. S3), suggesting its role in initiating task-set 

Fig. 3. Temporal evolution of latent brain states during Sternberg working memory task. Time-varying posterior probabilities of five latent brain states identified 
using BSDS associated with the (A) low-load (LL), (B) high-load (HL), and (C) distractor-load (DL) conditions. Temporal dynamics of each state are shown in relation 
to working memory trials and inter-trial-intervals (ITI). Each latent brain state showed distinct moment-by-moment changes in posterior probability before, during, 
and after engaging in the conditions. (D) Time-varying posterior probabilities of latent brain state corresponding to Fixation Onset to 1 s after Response Onset. Each 
task phase was separated by vertical dashed lines (E: Encoding, M: Maintenance, R: Retrieval). Posterior probability of each latent brain state showed distinct 
temporal profiles across different task phases. Notably, posterior probability of State 4 increased with cognitive load during maintenance and retrieval phases. (E) 
Classification analysis based on a linear SVM classifier. Time-varying posterior probability of latent brain states distinguished between LL, HL and DL conditions. 
Classification rate was highest in the retrieval phase (R), followed by maintenance (M) and encoding (E) phases. (F) Time-varying posterior probability of latent brain 
states distinguished between Encoding, Maintenance, and Retrieval phases of the working memory task. HL and DL conditions showed better classification accuracy 
compared to the LL condition. In (E) and (F), the black horizontal line indicates the chance level (33.3 %). **p< 0.001. 
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reconfiguration for upcoming cognitive challenge. Taken together, these 
results demonstrate that latent brain states are characterized by unique 
cognitive-phase and load-dependent temporal properties. 

3.7. Transition properties of latent brain states: state switch paths for 
different WM load conditions 

To investigate transition paths of latent brain states during working 
memory, we used BSDS-derived state transition matrices for each 
participant. We first examined the stability of brain states by calculating 
the likelihood that a brain state remains the same brain state from a time 
point t to the next time point t + 1. This analysis revealed that all the five 
brain states persisted and were stable over time (Fig. 5A). We also found 
that latent brain states are constrained in the way they can switch be
tween each other. For example, State 1, the brain state associated with 
stimulus encoding, cannot directly transit to State 4, the brain state 
associated with maintaining and retrieving information, but instead had 
to pass through States 2 and 3 or through State 5 (Fig. 5B). The most 
likely switching path in the LL condition consisted of transitioning from 
State 1 to 2 to 3 (Fig. 5C and D). In contrast, the most likely switching 
paths in both the HL and DL conditions consisted of transitioning from 
State 1 to 2 to 3 to 4 (Fig. 5C and D). Our findings demonstrate that state 
transitions depend on cognitive phase and task conditions. 

3.8. Dynamic functional connectivity patterns distinguish latent brain 
states and switch paths 

To analyze dynamic functional connectivity patterns associated with 
each latent brain state, we conducted classification analysis to deter
mine whether multivariate patterns of functional connectivity can 
differentiate between latent brain states. We found that classifiers 
trained on functional connectivity accurately distinguish latent brain 
states (average accuracy = 91.1 %, all ps = 0.002, permutation test, 
Table S2). We then conducted univariate link-specific analyses to 
identify functional connectivity patterns that distinguished between 
latent brain states. We focused on the most likely switching path from 
encoding to retrieval in the HL and DL conditions (i.e., State 1 to 2 to 3 to 
4, Fig. 5C and D) and examined changes in dynamic functional con
nectivity associated with these state transitions (all ps<0.05, two-tailed 
t-test, FDR-corrected) (Fig. 5E). We found that State 1, which dominates 
the encoding phase, has increased functional connectivity of the left 
caudate with the DLPFC and DMPFC, and left AI, compared to State 2, an 
intermittent switching state. State 3, which showed increased occur
rence in the maintenance and retrieval phases of all three load condi
tions, had increased connectivity between DLPFC and left AI and 
thalamus compared to State 2. State 4, which exhibited load effect in 
maintenance and retrieval, had increased connectivity between the left 
caudate, and DLPFC and DMPFC, as well as between right caudate and 
right AI compared to State 3. These results suggest that connectivity 
changes in prefrontal-basal ganglia circuits play an important role in 
switching between latent brain states. 

Fig. 4. Occupancy rates and mean lifetimes of latent brain states across task conditions and phases. (A) Occupancy rate and (B) mean lifetimes of latent brain states 
change significantly across low-load (LL), high-load (HL) and distractor-load (DL) conditions. Notably, the occupancy rate and mean lifetime of State 4 increased 
significantly as load demand increases. Occupancy rates of the latent brain states for (C) encoding, (D) maintenance, and (E) retrieval phases of the Sternberg task. 
Each phase is characterized by a mixture of brain states with distinct occupancies: The Encoding phase was dominated by States 1 and 2, such that State 1 showed a 
significantly higher occupancy rate than State 2 in LL and DL conditions. The maintenance phase of the LL condition was dominated by States 2 and 3, whereas the 
maintenance phase of HL and DL conditions were dominated by States 2, 3, and 4. During the maintenance and retrieval phases, the occupancy rate of State 4 
increased significantly with cognitive load. Mean lifetime of the latent brain states for (F) encoding, (G) maintenance, and (H) retrieval phases of the Sternberg task. 
During the maintenance and retrieval phases, both occupancy rate and mean lifetime of State 4 increased significantly with cognitive load. Data represent as mean 
and standard deviation (mean ± SD). *p < 0.05. two-tailed t-test, FDR-corrected. 
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3.9. Effect of age on brain state dynamics in older adults 

Next, we investigated how age is associated with brain state dy
namics, with focus on four temporal properties of latent brain states: 
state transition, state switch path, state mean lifetime, and state poste
rior probability. 

First, we examined onset of state transition after the offset of the 
encoding phase, during which attention is shifted from external stimuli 
(encoding phase) to internal representation of stimuli (maintenance). 
We found that state transition onsets from State 1 (i.e., encoding- 
associated state) to State 2 (i.e., intermittent switching state) after the 
encoding phase is significantly shorter in HL (3.11 s) and DL (3.15 s) 
than LL conditions (LL: 3.65 s) (all ps<0.001, two-tailed t-test, Fig. 6A), 
reflecting higher maintenance demands in HL and DL conditions in 
comparison to the LL condition. Crucially, State 1 to 2 transition onset in 
the DL condition was positively correlated with age (r = 0.38, p = 0.01, 
Pearson’s correlation, Fig. 6A). Because participants not only needed to 

encode stimuli but also suppress distractors during the encoding phase 
in the DL condition, this result suggests that older age is associated with 
requiring more time to suppress distractors and complete encoding of 
task-relevant stimuli. 

We then investigated how age affects state switching paths. Specif
ically, we examined the relation between age and the occurrence rate of 
state switch paths across participants, with a focus on the two state 
switching paths that dominated HL and DL conditions (i.e., State 1 to 2 
to 3 to 4; State 2 to 3 to 4). We found that the total occurrence rate of 
these two state switch paths in the DL condition was negatively corre
lated with age (r=-0.37, p = 0.02, Pearson’s correlation, Fig. 6B), sug
gesting that older age is associated with reduced likelihood of following 
these two common state switch paths required to complete the working 
memory task. Notably, these two paths include the states that dominate 
the maintenance phase (States 3 and 4, Fig. 4D and G), suggesting that 
age impacts optimal paths associated with task maintenance. 

We further examined whether age specifically affects mean lifetime 

Fig. 5. Dynamic switching properties of latent brain states and functional connectivity patterns of each latent brain state. (A) State switching probabilities between 
the five latent brain states in low-load (LL), high-load (HL) and distractor-load (DL) conditions. The switching probability, also called transition matrix, is defined as 
the probability that a brain state at time point t remains within the same state or switches to one of the other four states at the next time point t+1. (B) State switching 
probability diagrams illustrating specific state switching characteristics between latent brain states in LL, HL, and DL conditions. State 1, a key state for stimulus 
encoding, does not switch directly to State 4, a key state for maintaining and retrieving information, in the HL and DL conditions. The most likely switch path from 
State 1 to 4 is through States 2 and 3. Line widths indicate switching probabilities between two latent brain states such that a heavier line width indicates a more 
likely switching probability. (C) Analysis of likely switching paths in each load condition. The most likely switching paths in the low-load condition were different 
from the most likely switching path of the high- and distractor-load conditions. (D) The most likely switch path in each phase of the Sternberg task for the three load 
conditions. Across the three phases, the most likely switching path in the low-load condition consisted of switching from State 1 to 2 to 3, whereas the most likely 
switching paths in the high and distractor conditions consisted of switching from State 1 to 2 to 3 to 4. (E) Specific circuits that distinguish functional connectivity 
patterns of latent brain states during the transition from State 1, which dominates the encoding phase, to State 4, which dominates the maintenance and retrieval 
phases, which has the most likely switching path from State 1 to 2 to 3 to 4. State transitions were characterized by dynamic changes in functional connectivity of the 
caudate nucleus with the prefrontal cortex (all ps < 0.05, two-tailed t-test, FDR-corrected). 
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of States 3 and 4 during the maintenance phase in the DL task condition. 
We trained a multiple linear regression model with LOOCV to evaluate 
the model by computing the similarity between predicted age and true 
age. This analysis revealed a significant correlation between predicted 
age and true age (r = 0.30, p = 0.04, Pearson’s correlation, Fig. 6C). 
Correlation analysis revealed that age was negatively correlated with 
mean lifetime of State 4 (r=-0.35, p = 0.02, Pearson’s correlation, 
Fig. 6C). To further demonstrate the robustness of our findings, we 
replicated the same analysis using the posterior probabilities of States 3 
and 4. Again, we found a significant correlation between predicted age 
and true age (r = 0.52, p < 0.001, Pearson’s correlation, Fig. 6D). 

Taken together, these results demonstrate that within healthy older 
adults, age is negatively related to brain state dynamics associated with 
the maintenance phase. 

3.10. Latent brain state dynamics predicts cognitive flexibility 

Next, we used canonical correlation analysis (CCA) to probe the 
relationship between brain state dynamics and cognitive flexibility. CCA 
estimates the linear relationship between two sets of variables by finding 

an optimal linear combination for each of the sets so that these linear 
combinations (referred to as canonical variates) are maximally corre
lated (Hotelling, 1992; Smith et al., 2015). For CCA, brain dynamic 
measures included mean lifetimes of all latent brain states except State 5 
because of its low occurrence rate throughout all cognitive phases and 
task conditions; cognitive measures consisted of TMTA Time, which 
measures processing speed, TMTB-A Time, which measures attention 
switching, and Stroop Color-Word time, which measures inhibitory 
control. Sex and education level were regressed out from all brain and 
cognitive measures included in the analysis. 

CCA determined pairs of canonical variates such that brain dynamic 
measures and cognitive measures co-vary in a similar way across par
ticipants. We refer to each pair of variates as a mode of co-variation 
(Smith et al., 2015). Statistical significance of canonical correlations 
of each CCA mode was computed through permutation testing. This 
analysis revealed a single highly significant CCA mode between the 1st 

brain canonical variate and 1st cognitive canonical variate (canonical 
correlation = 0.83, pFWE = 0.002 using permutation testing, Fig. 7A) and 
the LOOCV further demonstrated that our CCA model can predict 
cognitive flexibility on unseen data (r = 0.63, p = 0.03, Pearson’s 

Fig. 6. Inflexible brain state dynamics associated with age. (A) Age impacts transitions between latent brain states associated with stimulus encoding in healthy older 
adults. Participants showed stimulus-encoding related state transitions from State 1 to 2 in low-load (LL), high-load (HL), and distractor-load (DL) conditions. State 
transition times were significantly shorter in HL and DL than LL conditions, respectively, reflecting the higher maintenance demands in HL and DL compared to LL 
conditions (left). Encoding-related state transition time increased with age in the DL condition (right). Data represent mean and standard deviation (mean ± SD). (B) 
Age impacts state switching paths taken by the participants during the DL condition. We examined the relation between age and the occurrence rate of state switch 
paths that dominated HL and DL conditions: State 1 to 2 to 3 to 4 and State 2 to 3 to 4. We found that the total occurrence rate of these two state switch paths 
decreased with age. (C) Prediction based on mean lifetime of States 3 and 4 during the maintenance phase in the DL condition (left). Mean lifetime of State 4, which is 
differentially engaged during the maintenance and retrieval phases of the DL condition, was negatively correlated with age (right). (D) Prediction based on posterior 
probability of States 3 and 4 during the maintenance phase in the DL condition. **p < 0.001. 
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correlation, Fig. 7B). 
To further evaluate the relation between brain state dynamics and 

cognitive flexibility, we examined the canonical weights of the cognitive 
measures constituting the 1st cognitive canonical variate. The canonical 
weights of the cognitive measures were all positive (Fig. S4). Since the 
cognitive measures represent the task completion time of TMT and 
Stroop tests, a lower value of the 1st cognitive canonical variate indicates 
greater cognitive flexibility. Additional analysis revealed that the mean 
lifetime of State 4 in the DL condition was most strongly and negatively 
associated with the 1st cognitive canonical variate (r=-0.42, p < 0.05, 
Pearson’s correlation, FDR-corrected), indicating that longer dwelling 
time of the State 4 in the DL condition is associated with better cognitive 
flexibility (Fig. 7C). 

Lastly, to investigate the specificity of the relationship between brain 
dynamic measures and cognitive flexibility, we applied the same 
analytical procedure used above to test whether brain dynamic mea
sures are associated with other aspects of cognition that are less related 
to cognitive flexibility (i.e., memory, visuospatial functioning, and lan
guage). This analysis revealed no significant CCA mode between the 
brain state dynamics and the cognitive measures unrelated to cognitive 
flexibility (canonical correlation = 0.76, pFWE = 0.08 using permutation 
testing, Fig. S5). Taken together, these results demonstrate that the 
temporal properties of latent brain states underlying working memory, 
and State 4 dynamics in particular, are closely and specifically associ
ated with cognitive flexibility. 

3.11. Brain state dynamics mediates relation between age and cognitive 
inflexibility 

Finally, we tested the hypothesis that the relation between age and 
cognitive flexibility is mediated by brain state dynamics. Based on our 
findings above that the mean lifetime of State 4 in the DL condition was 
significantly associated with both age (Fig. 6C) and the 1st cognitive 
canonical variate reflecting cognitive flexibility (Fig. 7C), we specif
ically assessed whether mean lifetime of State 4 during the DL condition 
mediates the relation between age and cognitive flexibility while con
trolling for sex and education level. Mediation analysis with permuta
tion testing revealed a significant indirect effect (indirect estimate =
0.03, p = 0.02, 95 % CI = 0.003 to 0.06) such that older age was asso
ciated with reduced mean lifetime of State 4 (path a in Fig. 8), which was 
in turn associated with reduced cognitive flexibility (path b in Fig. 8). 
The direct relation between age and cognitive flexibility was non- 
significant (p = 0.28). These results demonstrate that brain state 

dynamics is an intervening variable (Hayes, 2017, 2009) that mediates 
the relation between age and cognitive flexibility in healthy older adults. 

3.12. Replication of findings using independent resting-state fMRI 
network derived ROIs 

To examine the robustness of our findings with respect to ROI se
lection, we conducted additional analyses using independent cognitive 
control-related brain regions. We repeated all the above analyses using 
functional clusters from an independent study in which brain networks 
were derived using ICA on resting-state fMRI (Shirer et al., 2012). All 
major findings were replicated with this more general resting-state 
network-derived choice of ROIs (see Supplementary Results for details). 

3.13. Control analyses using task-irrelevant brain regions 

To further investigate the specificity of our findings with respect to 
prefrontal and parietal brain areas involved in cognitive control and 
working memory, we then repeated all the analyses using brain regions 
that are not expected to covary with task demands, including auditory, 
somatosensory, and visual networks (Fig. S7A). We found that none of 
the findings reported above were observed with these task-irrelevant 
ROIs (see Supplementary Results for details). Taken together, these 

Fig. 7. Relation between brain and cognitive inflexibility. (A) Canonical correlation analysis (CCA) revealed a significant mode of covariation between dynamic 
brain measures of latent brain state dynamics, assessed using mean lifetimes of latent brain states, and standardized measures of cognitive flexibility, assessed using 
TMTA Time, TMTB-A Time, and Stroop Color-Word Time. Each dot represents an individual participant and an example cognitive measure (TMTB-A Time) showed its 
high correlation with the canonical variates. (B) Prediction analysis performed using leave-one-out cross-validation revealed that, based on mean lifetimes of the four 
latent brain states, our CCA model can predict cognitive flexibility on unseen data. (C) Correlations between brain dynamic measures (i.e., mean lifetimes of latent 
brain states in LL, HL, and DL conditions) and 1st cognitive canonical variate (left). Correlations between cognitive measures and 1st brain canonical variate (right). 
Colored boxes indicate statistical significance of correlation (p < 0.05, FDR-corrected). Font size indicates variance explained by the opposite canonical variate. 

Fig. 8. Brain inflexibility mediates the relation between age and cognitive 
inflexibility in older adults. Mediation analysis revealed that the relation be
tween age and cognitive inflexibility was mediated by flexible engagement of 
latent brain states. Brain flexibility was measured using mean lifetime of State 4 
of the DL condition, the transient state engaged during the maintenance and 
retrieval phases of the Sternberg task. Cognitive flexibility was assessed using 
the 1st cognitive canonical variate (Fig. 7A). *p < 0.05. 
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results demonstrate the specificity of frontal and parietal cognitive 
control ROIs for our findings. 

4. Discussion 

We used a novel Bayesian switching dynamical system (BSDS) 
model, and ultrafast temporal resolution (TR = 490 ms) whole-brain 
fMRI data from cognitively normal older adults (ages 60–85), to iden
tify latent brain states and characterize dynamic state changes as a 
function of cognitive load and distinct phases of a Sternberg working 
memory task (Fig. 1). BSDS identified distinct load and phase-dependent 
dynamic latent brain states, each exhibiting unique temporal profiles 
and dynamic connectivity patterns. Our findings reveal, for the first 
time, a dynamic profile of the evolution of latent brain states and 
functional circuits associated with the encoding, maintenance and 
retrieval phases of the Sternberg task. We derived measures of brain 
flexibility using dynamic properties of latent brain states during working 
memory and found a significant negative effect of age on engagement of 
task-relevant dynamic latent brain states during working memory. Our 
analyses revealed increased brain inflexibility and greater inability to 
update information in working memory with age in healthy older adults. 
We further demonstrate that weak engagement of brain states impairs 
performance, and provide novel evidence for a relation between brain 
inflexibility and cognitive deficits in older adults. Finally, these findings 
were replicated using functional clusters from an independent study in 
which brain regions were obtained from salience network, fronto- 
parietal network, default mode network, and dorsal attention network 
with independent component analysis on resting-state fMRI (Shirer 
et al., 2012). Critically, our findings identify a latent brain mechanism 
by which age impairs cognitive flexibility in older adults and demon
strate that brain inflexibility mediates the relation between age and 
cognitive flexibility. 

4.1. Dynamic temporal evolution of latent brain states associated with 
working memory phase 

The first goal of our study was to identify latent brain states and 
characterize dynamic state changes as a function of cognitive load and 
the three distinct encoding, maintenance, and retrieval phases of the 
Sternberg working memory task. Human electrophysiological studies 
have revealed distinct activation and connectivity patterns associated 
with encoding, maintenance, and retrieval processes (Jensen and Lis
man, 1998; Bashivan et al., 2014; Zakrzewska and Brzezicka, 2014), but 
the anatomical correlates have been hard to discern using scalp EEG 
recordings. In contrast, fMRI studies have typically not had the temporal 
resolution to disentangle brain responses associated with distinct phases 
(Ghuman and Martin, 2019; Glover, 2011), and, moreover, most pre
vious studies have simply assumed that brain states are aligned with 
externally-driven task conditions and trial phases. We tested this 
assumption by examining how latent brain states emerge during work
ing memory performance. 

We leveraged one of the highest temporal resolutions to date of 
whole-brain functional neuroimaging, with a sub-second sampling rate, 
and a novel unsupervised learning algorithm to identify latent brain 
states and their temporal evolution associated with the Sternberg task. 
Intriguingly, we found distinct temporal profiles of latent brain states 
associated with the three cognitive phases in the Sternberg task. First, 
the encoding phase was dominated by States 1 and 2 (Fig. 4C and F). 
State 1 showed a transient response such that its rise and fall was aligned 
with the encoding phase but its occupancy rate during the encoding 
phase was not dependent on cognitive load, suggesting a role in initia
tion of encoding and disengagement when cognitive resources shift from 
processing external input to maintaining internal representation of 
stimuli. State 2 also had high occupancy rate during the encoding phase. 
In contrast to State 1, however, the rise and fall of occupancy rate of 
State 2 was not aligned with the encoding phase. The occupancy rate of 

State 2 remained high throughout the delay period and the encoding 
phase, dropping only after the encoding phase in high- and distractor- 
load working memory conditions but not in the low-load condition. 
This pattern of temporal evolution across task phase and cognitive load 
suggests that State 2 is differentially engaged when the cognitive load is 
low. State 2 also serves as an intermediate switching state that facilitates 
transitions between State 1 which dominates the encoding phase and 
State 3 that dominates the maintenance phase (see Supplementary In
formation for details on constraints on state switch paths). 

Second, the maintenance and retrieval phases were dominated by 
States 3 and 4, which showed higher occupancy rates than the other 
latent brain states (Fig. 4D, E, G and H). The occupancy rates of both 
states were also higher in the maintenance and retrieval phases than the 
encoding phase. However, States 3 and 4 differed in their load- 
dependencies. Specifically, State 4 was load-dependent such that its 
occupancy rate was higher during DL than HL and HL than LL condi
tions. Furthermore, its occupancy rate dropped dramatically during 
inter-trial-interval (ITI) after the response phase (Fig. S2). In contrast, 
occupancy rates of State 3 were similar between three cognitive load 
conditions and remained stable across maintenance and retrieval pha
ses. These findings suggest that State 4 may play a more crucial role in 
actively refreshing memorized items and searching for items to match 
the probe whereas State 3 may represent a passive maintenance process. 

Third, while State 5 had overall low occupancy rate, it showed 
significantly higher occupancy than the other states in the first trial of 
each task run (Fig. S3). This suggests that State 5 may play a role in 
engaging latent brain states into an active task mode. 

Lastly, we found that the temporal profiles of latent brain states in 
each load condition could predict cognitive phases with high accuracy, 
providing additional validation of distinct task-state profiles. Taken 
together, our findings reveal, a dynamic profile of the evolution of latent 
brain states associated with distinct phases of the Sternberg task. Further 
analyses of these temporal profiles were used to determine quantitative 
measures of brain flexibility in each participant, as described below. 

4.2. Distinct functional circuits associated with latent brain states 

The second goal of our study was to identify functional circuits 
associated with latent brain states in relation to cognitive load and the 
three distinct encoding, maintenance, and retrieval phases of the 
Sternberg working memory task. Each latent brain state is characterized 
by a distinct pattern of functional connectivity in the cognitive control 
network examined here. Classification analyses confirmed that multi
variate patterns of inter-regional functional connectivity could accu
rately distinguish between the five latent brain states (Table S2). The 
basal ganglia circuit models suggest that cortico-striatal interactions act 
as a gate to select and update information in working memory (Chatham 
et al., 2014). Previous studies have demonstrated that the basal ganglia 
circuit is not only important for selectively encoding sensory informa
tion, but also plays a role in selective output gating (McNab and 
Klingberg, 2008). Our study extends these previous findings and pro
vides insight into dynamical connectivity in cortico-striatal circuits 
during working memory. 

Crucially, in both the HL and DL conditions, BSDS identified the most 
likely state switching path from encoding to maintenance and retrieval 
phases as State 1 to 2 to 3 to 4 (Fig. 5C). By examining dynamic con
nectivity changes during state transitions in this common state switching 
path, we found dynamic connectivity differences in prefrontal-striatum 
circuits between States 1 and 2 (i.e., encoding to an intermittent 
switching state), States 2 and 3 (i.e., an intermittent switching state to 
passive maintenance and retrieval), and States 3 and 4 (i.e., a passive 
maintenance and retrieval state to load dependent maintenance and 
retrieval), including dynamic interaction between caudate and DLPFC 
and DMPFC (Fig. 5E). States 3 and 4, in particular, were dominant in 
maintenance and retrieval phases but had functional dissociations 
demonstrated by load-dependent (State 4) vs. –independent (State 3) 
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characteristics. This pattern suggested that State 4 plays a role in 
refreshing and updating internal representation of stimuli whereas State 
3 plays a role in passive maintenance. Indeed, by contrasting dynamic 
connectivity patterns between States 3 and 4, we found that State 4 has 
increased dynamic interactions between left caudate and left DLPFC and 
between left caudate and DMPFC in comparison to State 3. This suggests 
that State 4 involves more prefrontal-striatal interaction, which may 
underlie memory updating and refreshing. State 4 also has greater 
prefrontal-parietal interactions than State 3, which is consistent with the 
engagement of fronto-parietal network during working memory. 
Together, our findings identify a dynamic context dependent state and 
prefrontal-subcortical-parietal network that plays an essential role 
during working memory through refreshing and updating internal rep
resentations of external stimuli. 

4.3. Brain inflexibility increases with age in healthy older adults 

The third goal of our study was to investigate how brain flexibility, 
assessed through dynamic latent brain state properties underlying 
working memory, are affected by normal aging in older adults between 
ages 60–85 years. Our analysis revealed a significant negative impact of 
age on transitions between latent brain states characterized by slower 
transitions from State 1 to 2 in the DL condition, which requires 
encoding of task-relevant stimuli while suppressing distractors (Fig. 6A). 
These results are consistent with, and extend, previous findings of 
slower encoding of information (Zanto et al., 2010; Salthouse, 1996, 
2016) and increased difficulty with top-down suppression of distractors 
(Clapp and Gazzaley, 2012) with age in older adults. We also found 
reduced likelihood of transitioning through the two dominant state 
switching paths in the DL condition, e.g. State 1 to 2 to 3 to 4 and State 2 
to 3 to 4 with age (Fig. 6B). Taken together, these results demonstrate 
more fragmented transitions between latent brain states and provide 
novel quantitative evidence for increased brain inflexibility with age in 
healthy older adults. 

We also examined whether mean lifetimes of latent brain states 
during working memory changed with age. A trained multiple linear 
regression model can accurately predict the age of a left-out participant 
(Fig. 6C). Further analysis revealed that the mean lifetime of State 4 was 
negatively correlated with age, suggesting that older participants have 
more difficulty in engaging a key load-dependent latent brain state 
during maintenance and retrieval (Fig. 6C). Our findings converge with 
and extend findings suggesting that the ability to update information in 
working memory may be specifically reduced with age (Lubitz et al., 
2017; Zuber et al., 2019). These results reveal a significant effect of age 
on brain flexibility and context-specific engagement of task-relevant 
dynamic latent brain states during working memory. 

4.4. Brain inflexibility, latent brain state dynamics and cognitive 
inflexibility 

The fourth goal of our study was to determine how brain inflexibility 
impacts cognitive inflexibility. To address this, we examined the relation 
between engagement of dynamic brain states and performance on 
multiple neuropsychological tests that are commonly used to examine 
cognitive flexibility (Bowie and Harvey, 2006; Rabin et al., 2005). Ca
nonical correlation analysis (CCA) revealed a significant linear rela
tionship between dwell times of dynamic brain states and a composite 
measure of cognitive flexibility (Fig. 7A). Cross-validation analysis 
further demonstrated the robustness of the CCA model such that the 
trained model could accurately predict brain-behavior relationships in 
unseen data (Fig. 7B). We also found that longer dwelling time of State 4 
in the DL condition was associated with better cognitive flexibility 
(Fig. 7C). These results suggest that weak engagement of 
task-phase-specific transient brain states impairs performance, and 
provide novel evidence for a link between brain and cognitive inflexi
bility in older adults. 

4.5. Brain inflexibility mediates the relation between age and cognitive 
flexibility in older adults 

The final goal of our study was to determine whether brain inflexi
bility mediates the relation between age and cognitive flexibility in 
healthy older adults. We evaluated the direct effects of age on cognitive 
inflexibility and contrasted this with a model in which brain inflexibility 
mediated the relation between age and cognitive inflexibility. We did 
not find a direct effect of age on cognitive flexibility. Rather, mediation 
analysis revealed a significant indirect path between age and cognitive 
flexibility via reduced mean lifetime of State 4 in the DL condition 
(Fig. 8). This result indicates that older age is associated with cognitive 
inflexibility through reduced engagement of State 4, the transient brain 
state involved in refreshing and updating internal representation of 
stimuli, particularly in high cognitive load contexts. It should be noted 
that despite some arguments to the contrary (Gelfand et al., 2009), a 
significant total (or direct) effect is not a prerequisite for a significant 
and interpretable mediation effect (Hayes, 2017, 2009; Rucker et al., 
2011; MacKinnon et al., 2000, 2002) Furthermore, simulations have 
shown that bootstrapping is a powerful method for testing the effects of 
intervening variables and characterizing sources of variability (Hayes, 
2017; Williams and MacKinnon, 2008). Critically, our results reveal a 
latent mechanism by which brain inflexibility mediates the relation 
between age and cognitive flexibility. 

5. Conclusion 

We used Bayesian switching dynamical system (BSDS) model to 
uncover latent time-varying and context-dependent brain states and 
quantify brain inflexibility in a quantitatively rigorous manner. Our 
study provides a novel neurocomputational framework for investigating 
dynamic circuit processes underlying brain inflexibility and age-related 
cognitive changes. The approach and methods developed here may be 
useful for probing brain inflexibility in neurological and psychiatric 
disorders across the lifespan. 
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