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Abstract

Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal
circuit mechanisms underlying memory function. However, little is known about how MTL
stimulation alters information flow with frontoparietal cortical regions implicated in episodic
memory. We used intracranial electroencephalography recordings from humans (14 participants,
10 females) to investigate how MTL stimulation alters directed information flow between MTL
and prefrontal cortex (PFC) and between MTL and posterior parietal cortex (PPC). Participants
performed a verbal episodic memory task during which they were presented with words and
asked to recall them after a delay of ~20 seconds. 50 Hz stimulation was applied to MTL
electrodes on selected trials during memory encoding. Directed information flow was

examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced
memory recall. MTL stimulation decreased top-down PFC->MTL directed information flow
during both memory encoding and subsequent memory recall, revealing aftereffects more than
20 seconds after end of stimulation. Stimulation suppressed top-down PFC->MTL influences to
a greater extent than PPC->MTL. Finally, MTL->PFC information flow on stimulation trials
was significantly lower for successful, compared to unsuccessful, memory recall; in contrast,
MTL->ventral PPC information flow was higher for successful, compared to unsuccessful,
memory recall. Together these results demonstrate that the effects of MTL stimulation are
behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs
directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful
memory recall. Findings provide new insights into dynamic casual circuits underling episodic

memory and their modulation by MTL stimulation.
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Significance Statement

The medial temporal lobe (MTL) and its interactions with prefrontal cortex (PFC) play a critical
role in human memory. Dysfunctional MTL-PFC circuits are prominent in psychiatric and
neurological disorders including Alzheimer’s disease and schizophrenia. Brain stimulation has
emerged as a potential mechanism for enhancing memory and cognitive functions, but the
underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up
and top-down signaling involving the MTL are unknown. Here, we use intracranial
electroencephalography recordings to investigate the effects of MTL stimulation on causal
signaling in key episodic memory circuits linking the MTL with PFC. Our findings have
implications for translational applications aimed at realizing the promise of brain stimulation-

based treatment of memory disorders.
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Introduction

The medial temporal lobe (MTL) and its interactions with prefrontal cortex (PFC) play a
foundational role in human memory (Amer & Davachi, 2022; Cabeza, Ciaramelli, Olson, &
Moscovitch, 2008; Curtis, 2006; Eichenbaum, 2017; Husain & Nachev, 2007; Rolls, 2018, 2019;
Rutishauser, Reddy, Mormann, & Sarnthein, 2021; Vogt & Pandya, 1987; Wagner, Shannon,
Kahn, & Buckner, 2005). Dysfunctional MTL-PFC circuits are prominent in psychiatric and
neurological disorders including Alzheimer’s disease and schizophrenia (Dickerson &
Eichenbaum, 2010; Meyer-Lindenberg et al., 2005; Uhlhaas & Singer, 2012). Brain stimulation
has emerged as a potential mechanism for enhancing memory function (Alagapan, Lustenberger,
Hadar, Shin, & Frohlich, 2019; Ezzyat et al., 2018; Fell et al., 2013; Kucewicz, Berry, Miller, et
al., 2018; van der Plas, Braun, Stauch, & Hanslmayr, 2021; J. X. Wang et al., 2014; Yeh & Rose,
2019) and cognitive function (Grover, Nguyen, & Reinhart, 2021; Ramirez-Zamora et al., 2020),
but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying
bottom-up and top-down signaling involving the MTL are poorly understood. Given its critical
role in memory formation, deep brain stimulation of the MTL with simultaneous recordings in
the MTL and PFC has the potential to inform causal circuit mechanisms of encoding and recall
in the human brain. Here, we use intracranial electroencephalography (iIEEG) recordings to
investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits

linking the MTL with PFC.

Electrophysiological studies in rodents have reported greater information flow from the MTL to
the medial PFC than the reverse during spatial working memory (Zhang, Guo, & Liu, 2022). In

non-human primates, MTL-dorsolateral and -ventrolateral PFC interactions have been linked
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with memory performance (Brincat & Miller, 2015; Cruzado, Tiganj, Brincat, Miller, & Howard,
2020). In humans, fMRI studies have consistently found coactivation of the MTL and multiple
PFC regions during both spatial and verbal memory tasks (Dickerson & Eichenbaum, 2010;
Dobbins, Foley, Schacter, & Wagner, 2002; M. Moscovitch, Cabeza, Winocur, & Nadel, 2016;
Qin et al., 2014; Rugg & Vilberg, 2013; Simons & Spiers, 2003). Moreover, MTL-ventromedial
PFC coactivation is also associated with better memory performance (Kumaran, Summerfield,
Hassabis, & Maguire, 2009). Other studies have shown that functional connectivity between the
MTL and medial PFC is also associated with memory recall (Preston & Eichenbaum, 2013; Qin
et al., 2014; van Kesteren, Fernandez, Norris, & Hermans, 2010). Furthermore, non-invasive
magnetoencephalography studies in humans have suggested that coherence between the MTL
and the superior frontal gyrus and medial PFC subdivisions in the delta-theta frequency band is
associated with successful memory integration (Backus, Schoffelen, Szebényi, Hanslmayr, &
Doeller, 2016; Guitart-Masip et al., 2013; Spaak & de Lange, 2020). iEEG studies in humans
have reported increased MTL-dorsolateral and -ventrolateral PFC theta band synchronization
during episodic memory encoding and recall compared to resting baseline conditions (Anderson,
Rajagovindan, Ghacibeh, Meador, & Ding, 2010; Das & Menon, 2021; Ekstrom & Watrous,

2014; Watrous, Tandon, Conner, Picters, & Ekstrom, 2013).

Although prior non-invasive studies have provided significant insights into the role of the MTL
and PFC in human episodic memory processing, the causal effects of brain stimulation on the
electrophysiology of dynamic “bottom-up” and “top-down” interactions involving the PFC
remains unknown. While non-invasive transcranial magnetic stimulation can be used to

transiently alter neural processing in targeted cortical regions (J. X. Wang et al., 2014; Yeh &
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Rose, 2019), it cannot precisely target deep brain structures such as the MTL (Kim, Ekstrom, &
Tandon, 2016; Rossini & Rossi, 2007). Intracranial electrical stimulation provides an alternative
approach that can more precisely map functional brain circuits (Mohan et al., 2020; Paulk et al.,
2022) and assess the neurophysiological basis of cognitive processes and its causal basis (Grover

et al., 2021; Huang & Keller, 2022; Mercier et al., 2022).

We recently found evidence for asymmetric frequency-specific feedforward and feedback
information flow between hippocampus and PFC during memory formation (Das & Menon,
2021). Specifically, we found higher directed information flow from the MTL to the PFC than
the reverse, in delta-theta frequency band and higher directed information flow from the PFC to
the MTL, than the reverse, in the beta frequency band (Das & Menon, 2021, 2022). Crucially,
these findings were observed during both memory encoding and recall periods, indicating a
prominent role of delta-theta for “bottom-up” signaling and beta for “top-down” signaling in the

cortex.

Here we use iEEG data from the UPENN-RAM consortium (Goyal et al., 2018; Jacobs et al.,
2016) to investigate how MTL stimulation alters directed information flow between the MTL
and the PFC during episodic memory processing. Participants were presented a list of words
during the encoding period and after a short delay, were asked to recall as many words as
possible from the list. During encoding, stimulation was applied at 50 Hz to select MTL
electrodes on alternate word pairs, and memory recall was probed after a ~20 second delay
period. The choice of 50 Hz stimulation frequency was motivated by its overlap with the gamma

band (30-80 Hz) which has been associated with human episodic memory and the amplitude of



214 iEEG fluctuations in this frequency band has been shown to reflect the underlying activity of
215  single-neurons (Kahana, 2006; Kucewicz et al., 2014; Lachaux, Axmacher, Mormann, Halgren,
216 & Crone, 2012). Moreover, previous studies have reported that MTL stimulation applied in the
217  40-50 Hz range has a direct impact on memory performance (Fell et al., 2013; Inman et al.,

218  2018; Suthana et al., 2012). We investigated how MTL stimulation alters its information flow
219  with the PFC. We used phase transfer entropy (PTE) (Hillebrand et al., 2016; Lobier,

220  Siebenhiihner, Palva, & Matias, 2014; M. Y. Wang et al., 2017) which provides a robust and
221  powerful measure for characterizing information flow between brain regions based on phase
222 coupling and, crucially, it captures linear as well as nonlinear intermittent and nonstationary
223 dynamics in iEEG data (Hillebrand et al., 2016; Lobier et al., 2014; Menon et al., 1996).

224

225  The main goal of our study was to investigate how MTL stimulation alters directed information
226  flow between the MTL and the PFC. We build on our recent findings of asymmetric frequency-
227  dependent directed information flow focused on the delta-theta (0.5-8 Hz) and beta (12-30 Hz)
228  frequency bands (Das & Menon, 2021, 2022). Our analysis focused on the middle frontal gyrus
229  (MFGQG) encompassing the dorsolateral PFC regions implicated in memory formation and

230  monitoring (Chua & Ahmed, 2016; Rugg, 2022). We contrast this with MTL interactions with
231  the inferior frontal gyrus (IFG) encompassing the ventrolateral PFC regions which has been
232 implicated in controlled retrieval (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; Badre
233 & Wagner, 2007; Dobbins et al., 2002; Hasegawa, Hayashi, & Miyashita, 1999; Wagner, Paré-
234  Blagoev, Clark, & Poldrack, 2001).
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The second goal of our study was to determine whether bottom-up and top-down information
flow between the MTL and the PFC and posterior parietal cortex (PPC) are similarly impacted
by MTL stimulation. Multiple lines of evidence across species have revealed a role for the PPC
in episodic memory (Cabeza, 2008; Cabeza, Ciaramelli, & Moscovitch, 2012; Cabeza et al.,
2008; Cabeza et al., 2011; Hutchinson, Uncapher, & Wagner, 2009; Uncapher & Wagner, 2009;
Wagner et al., 2005). Anterograde and retrograde tracing studies in non-human primates have
uncovered projections from the MTL to the PPC (Clower, West, Lynch, & Strick, 2001; Insausti
& Mufioz, 2001) and in the reverse direction (Rockland & Van Hoesen, 1999). Single-neuron
studies in rodents (Chen, Lin, Green, Barnes, & McNaughton, 1994; McNaughton et al., 1994;
Nitz, 2006) as well as non-human primates (Andersen, Essick, & Siegel, 1985; Crowe, Chafee,
Averbeck, & Georgopoulos, 2004) have established PPC involvement in spatial memory. fMRI
studies in non-human primates have reported coactivation of the MTL and PPC during

successful memory encoding and recall (Miyamoto et al., 2013).

Studies using resting-state fMRI in humans have confirmed intrinsic MTL connectivity with the
PPC (Vincent et al., 2006). Other human fMRI studies have reported dorsal PPC activation
during episodic memory retrieval (Buckner et al., 1998; Konishi, Wheeler, Donaldson, &
Buckner, 2000), spatial memory processing (Amorapanth, Widick, & Chatterjee, 2010;
Baumann, Chan, & Mattingley, 2012), and coactivation of the hippocampus and multiple
subdivisions of the PPC during episodic and semantic memory encoding and retrieval
(Ciaramelli, Burianova, Vallesi, Cabeza, & Moscovitch, 2020; Gurd et al., 2002; Vincent et al.,
2006). The dorsal PPC is involved in top-down attention processing during memory encoding

(Cabeza, 2008; Cabeza et al., 2012; Cabeza et al., 2011; Ciaramelli, Grady, & Moscovitch, 2008;



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

259

260

261

262

263

264

265

266

267

268

269

270

271

272
273

274

275

276

277

278

279

280

281

282

Daselaar et al., 2009; Hutchinson et al., 2009; Uncapher & Wagner, 2009). Human
electrocorticography studies have suggested a role for the PPC in verbal episodic memory
encoding and recall (Gonzalez et al., 2015) and human iEEG studies have found that
hippocampus-PPC correlation in the theta frequency band is prominent in spatial memory
(Ekstrom et al., 2005). Together, these findings suggest that coordinated interactions between the
MTL and PPC play a role in episodic memory. However, the causal role of MTL-PPC circuits
remains poorly understood and it is not known whether MTL stimulation alters directed

information flow between MTL and PPC differently from the PFC.

Our analyses reveal how MTL stimulation alters frequency-specific bottom-up and top-down
information flow between the MTL and PFC and how this differs from PPC regions implicated
in human episodic memory. Findings provide new insights into causal mechanisms involved in

the operation of human episodic memory circuits.

Materials and Methods
UPENN-RAM iEEG recordings

iEEG recordings from 14 patients (10 females, 4 males) shared by Kahana and colleagues at the
University of Pennsylvania (UPENN) (obtained from the UPENN-RAM public data release)
were used for analysis (Goyal et al., 2018; Jacobs et al., 2016). Patients with pharmaco-resistant
epilepsy underwent surgery for removal of their seizure onset zones. iEEG recordings of these
patients were downloaded from a UPENN-RAM consortium hosted data sharing archive (URL:

http://memory.psych.upenn.edu/RAM). Prior to data collection, research protocols and ethical

guidelines were approved by the Institutional Review Board at the participating hospitals and

10
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informed consent was obtained from the participants and guardians (Jacobs et al., 2016). Details
of all the recordings sessions and data pre-processing procedures are described by Kahana and
colleagues (Jacobs et al., 2016). Briefly, iEEG recordings were obtained using subdural grids and
strips (contacts placed 10 mm apart) or depth electrodes (contacts spaced 5—10 mm apart) using
recording systems at each clinical site. iEEG systems included DeltaMed X1Tek (Natus), Grass
Telefactor, and Nihon-Kohden EEG systems. These patients performed a verbal episodic
memory task (see below) and received direct brain stimulation during some of the encoding
trials. Electrodes located in brain lesions or those which corresponded to seizure onset zones or

had significant interictal spiking or had broken leads, were excluded from analysis.

Anatomical localization of electrode placement was accomplished by co-registering the
postoperative computed CTs with the postoperative MRIs using FSL (FMRIB (Functional MRI
of the Brain) Software Library), BET (Brain Extraction Tool), and FLIRT (FMRIB Linear Image
Registration Tool) software packages. Preoperative MRIs were used when postoperative MRIs
were not available. The resulting contact locations were mapped to MNI space using an indirect
stereotactic technique and OsiriX Imaging Software DICOM viewer package. We used the
Brainnetome atlas (Fan et al., 2016) to demarcate bihemispheric middle and inferior frontal
gyrus subdivisions of the prefrontal cortex (MFG and IFG) and dorsal and ventral subdivisions
of the posterior parietal cortex (dPPC and vPPC) as well as the hippocampus, parahippocampal
gyrus, and entorhinal cortex subdivisions of the MTL. We first identified electrode pairs in
patients with electrodes implanted in each pair of brain regions of interest (for example, MTL-
MFQG). Key PPC regions of interest included the superior parietal lobule, and supramarginal

gyrus, intraparietal sulcus and angular gyrus in the inferior parietal lobule, spanning its dorsal-

11
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ventral axis. The lack of sufficient number of participants and electrode pairs precluded analyses
of these subdivisions separately. We therefore combined electrodes from the superior parietal
lobule, intraparietal sulcus, and supramarginal gyrus into a dorsal PPC subdivision and the
angular gyrus regions into a ventral PPC subdivision (Tables 2, 3). Ages of these patients ranged
from 20 to 49, with mean age 36.0 = 10.1 and the dataset included 10 females. Gender
differences were not analyzed in this study due to lack of sufficient male participants for

electrodes pairs for MTL-MFG, MTL-IFG, MTL-dPPC, and MTL-vPPC interactions (Table 2).

Original sampling rates of iEEG signals were 500 Hz, 1000 Hz, and 1600 Hz. Hence, iEEG
signals were downsampled to 500 Hz, if the original sampling rate was higher, for all subsequent
analysis. The two major concerns when analyzing interactions between closely spaced
intracranial electrodes are volume conduction and confounding interactions with the reference
electrode (Burke et al., 2013). Hence bipolar referencing was used to eliminate confounding
artifacts and improve the signal-to-noise ratio of the neural signals, consistent with previous
studies using UPENN-RAM iEEG data (Burke et al., 2013; Ezzyat et al., 2018). Signals recorded
at individual electrodes were converted to a bipolar montage by computing the difference in
signal between adjacent electrode pairs on each strip, grid, and depth electrode and the resulting
bipolar signals were treated as new “virtual” electrodes originating from the midpoint between
each contact pair, identical to procedures in previous studies using UPENN-RAM data (Solomon
et al., 2019). Line noise (60 Hz) and its harmonics were removed from the bipolar signals and
finally each bipolar signal was Z-normalized by removing mean and scaling by the standard
deviation. For filtering, we used a fourth order two-way zero phase lag Butterworth filter

throughout the analysis.

12
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iEEG verbal free recall task and stimulation paradigm

Patients performed multiple trials of a free recall experiment, where they were presented with a
list of words and subsequently asked to recall as many as possible from the original list (Figure
1c) (Solomon et al., 2017; Solomon et al., 2019). Each session consisted of 25 lists. The task
consisted of three periods: encoding, delay, and recall. During encoding, a list of 12 words was
visually presented for ~30 sec. Words were selected at random, without replacement, from a pool

of high frequency English nouns (http://memory.psych.upenn.edu/Word Pools). Each word was

presented for a duration of 1600 msec, followed by an inter-stimulus interval of 800 to 1200
msec. After a 20 sec post-encoding delay where participants performed a series of distractor
tasks consisting of arithmetic problems of the form a+b+c=?, where a, b, and, ¢ were randomly
chosen integers from 1 to 9, participants were instructed to recall as many words as possible

during the 30 sec recall period.

For each subject, a selected electrode pair in the MTL was connected to an electrical stimulator
(Grass Technologies or Blackrock Microsystems) and stimulation was applied using parameters
from a prior study (Suthana et al., 2012), showing a positive effect of stimulation on memory
performance. Subjects were instructed about the stimulation procedure but were blinded to the
location of the stimulation sites. Bipolar-symmetric, charge-balanced, square-wave stimulation
current between a pair of electrodes was applied at 50 Hz and 300 us pulse-width. All the
stimulation electrodes in the present study were depth electrodes. Safe amplitude for stimulation

was determined at the start of each session under a clinically supervised mapping procedure by

13
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manually testing a range of currents for each site, beginning at 0.25 mA and slowly increasing to
a maximum of 1.5 mA. The final stimulation current (Table 1) that was used for the cognitive
experiments was the maximum current for each site that could be applied without inducing
patient symptoms, epileptiform after discharges, or seizures. We designated a stimulation site

being in the MTL if at least one electrode of the bipolar pair was in the region.

For the stimulated lists, exactly half of the words on the list were delivered simultaneously with
electrical brain stimulation. For the control lists, all 12 words on the list were presented without
stimulation. Out of the 25 lists in each session, 20 were stimulated lists and 5 were control lists in
a randomly assigned order. For each stimulated list, stimulation occurred in a blocked pattern:
the stimulator was active during the presentation of a pair of consecutive words and then inactive
for the following pair. Thus, in total, on each stimulated list, the stimulator was active for half
the total words. For the stimulation blocks, the stimulator was timed to occur 200 msec before
the presentation of the first word in each block, continuing for 4.6 s, until the disappearance of
the second word. The onset of stimulation was balanced, such that a random half of the

stimulation lists began with a non-stimulated block and the others began with a stimulated block.

We analyzed 1600 msec iEEG epochs from the encoding periods of the free recall task. For the
recall periods, iEEG recordings 1600 msec prior to the vocal onset of each word were analyzed
(Solomon et al., 2019). Data from each trial was analyzed separately and specific measures were
averaged across trials. Effects of electrical stimulation on behavioral performance has been
analyzed in detail by Kahana and colleagues elsewhere (Goyal et al., 2018; Jacobs et al., 2016).

Our major focus in this study was on the effect of stimulation on the direction of information

14
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flow between the MTL and the PFC and PPC. The mismatch in the number of trials between
successfully versus unsuccessfully encoded words (roughly 1:3) made it difficult to directly
compare causal signaling measures associated with the two. From the point of view of probing
behaviorally effective memory encoding, our focus was therefore on how MTL stimulation
affects successful encoding and recall, consistent with most prior studies (Long, Burke, &
Kahana, 2014; Watrous et al., 2013). For stimulation trials, data corresponding to the pair of
words immediately succeeding the stimulated word pair was analyzed. Data corresponding to the
stimulated word pair were excluded from analysis to prevent contamination with stimulation
artifact (Hansen et al., 2018; Jun, Lee, Kim, Jeong, & Chung, 2020; Kucewicz, Berry, Miller, et

al., 2018).

Control analysis using resting-state iEEG data with MTL stimulation

For the control condition, we used “resting-state” data from 2 participants collected in the
UPENN-RAM public data release (Solomon et al., 2021). These patients were part of a larger
“parameter search” project whose major goal was to systematically study the effects of
stimulation frequency, current, and stimulation brain regions (Mohan et al., 2020). We
reanalyzed iEEG data from these participants to determine whether the main findings of directed
information flow between the MTL and the PFC and PPC in our study were due to brain
stimulation causing reorganization of brain circuits and thus influencing the information flow
that we observed in the memory task. Similar to the memory task, bipolar-symmetric, charge-
balanced, square-wave stimulation current between a pair of depth MTL electrodes was applied

at 50 Hz and 300 us pulse-width (also see Table 6). Similar procedures were adopted for
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determining the safe current amplitude for stimulation for these participants. Based on electrode
placement in the MTL and the PFC and PPC brain regions and based on the criteria that the
stimulation frequency was 50 Hz, we selected 2 subjects with simultaneous electrode placements
in MTL and MFG (100 electrode pairs) and also MTL and dPPC (60 electrode pairs). IFG and
vPPC were excluded from analysis due to lack of electrode placements in these regions. The

stimulation duration for these two subjects were 250 msec and 500 msec (Table 6).

We analyzed 1600 msec iEEG epochs immediately prior to the start of each stimulation trial;
these correspond to the “non-stim” condition. We also analyzed 1600 msec iEEG epochs
immediately after the end of each stimulation trial; these correspond to the “stim” condition.
Trials were spaced by 3 s, with up to = 200 msec of randomly-applied jitter added to the interval.
Subjects were instructed to sit quietly and did not perform any task. Similar to the memory task,
data from each trial was analyzed separately and PTE measures were averaged across trials. Data
corresponding to the stimulated epochs were excluded from analysis to prevent contamination
with stimulation artifact (Hansen et al., 2018; Jun et al., 2020; Kucewicz, Berry, Miller, et al.,

2018).

iEEG analysis of power

For power analysis, we first filtered the signals in the delta-theta (0.5-8 Hz) and beta (12-30 Hz)

frequency bands and then calculated the square of the filtered signals as the power of the signals

(Kwon et al., 2021). Signals were then smoothed using 0.2 sec windows with 90% overlap

(Kwon et al., 2021) and normalized with respect to 0.2 sec pre-stimulus periods.
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iEEG analysis of phase transfer entropy (PTE) and direction of information flow

Phase transfer entropy (PTE) is a nonlinear measure of the directionality of information flow
between time-series and can be applied to nonstationary time-series (Das & Menon, 2020; Lobier
et al., 2014). Note that information flow described here relates to signaling between brain arcas
and does not necessarily reflect the repsresentation or coding of behaviorally relevant variables
per se. The PTE measure is in contrast to the Granger causality measure which can be applied
only to stationary time-series (Barnett & Seth, 2014). We first carried out a stationarity test of the
iEEG recordings (unit root test for stationarity (Barnett & Seth, 2014)) and found that the
spectral radius of the autoregressive model is very close to one, indicating that the iEEG time-
series is nonstationary. This precluded the applicability of the Granger causality analysis in our

study.

Given two time-series {} and {);}, where i=1,2,..., M , instantaneous phases were first extracted
using the Hilbert transform. Let {} and {y/} , where i=1,2,..,M, denote the corresponding
phase time-series. If the uncertainty of the target signal {y/} at delay 7 is quantified using

Shannon entropy, then the PTE from driver signal {} to target signal {y/} can be given by

p(.yil-:-‘rlyip?xip)]’ (1)

PTE,,, = Zp(yfir,yf,xf’)log[ (vt 17)

i

where the probabilities can be calculated by building histograms of occurrences of singles, pairs,

or triplets of instantaneous phase estimates from the phase time-series (Hillebrand et al., 2016).
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For our analysis, the number of bins in the histograms was set as 3.49XSTDXM~ 3 and delay 7
was set as 2M/ M., where SID is average standard deviation of the phase time-series ¥} and 7}
and M, is the number of times the phase changes sign across time and channels (Hillebrand et

al., 2016). PTE has been shown to be robust against the choice of the delay 7 and the number of

bins for forming the histograms (Hillebrand et al., 2016).

iEEG analysis of phase locking value (PLV) and phase synchronization

We used phase locking value (PLV) to compute phase synchronization between two time-series
(Lachaux, Rodriguez, Martinerie, & Varela, 1999). We first calculated the instantaneous phases
of the two signals by using the analytical signal approach based on the Hilbert transform (Bruns,

2004). Given time-series x(1), 1 =1,2,..., M , its complex-valued analytical signal z() can be

computed as

2(1) = x(0) +iXt) = A, (1)e™ (i)

where ; denotes the square root of minus one, 1) is the Hilbert transform of x(1), and 4, (r) and

o (1) are the instantaneous amplitude and instantaneous phase respectively and can be given by

4,0)=\lx0)T +[%»] and d>x(z>=arctanf§g. (i)

The Hilbert transform of x(r) was computed as
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YN e
) _;PVLCEdT , (1i1)

where ,, denotes the Cauchy principal value. MATLAB function “hilbert” was used to

calculate the Hilbert transform in our analysis. Given two time-series x(r) and y(r), where

t=1,2,..,M , the PLV (zero-lag) can be computed as

PLV @‘E[e"(“’*‘”’“’y(’”} , (iv)

where @ (¢) is the instantaneous phase for time-series (1), || denotes the absolute value operator,
E[] denotes the expectation operator with respect to time ¢ , and i denotes the square root of

minus one. PLVs were then averaged across trials to estimate the final PLV for each pair of

electrodes.

iEEG analysis of modulation index and phase-amplitude coupling (PAC)

We used the modulation index estimation procedure (Tort et al., 2008) to calculate phase-
amplitude coupling (PAC) of electrodes. We first denote the amplitude and the phase frequency

ranges for our analysis by f; ([80, 160] Hz) and fp ([0.5, 8] Hz), respectively. Let x(r) denote the
time-series of the electrode. We first filter x(r) at the two frequency ranges f; and fp. Let’s denote
the filtered signals as xz(#) and x4,(7) respectively. We then estimate the phase time-series @, (t)

from the Hilbert transform of x;,(#) and the amplitude time-series Af,(t) from the Hilbert

19



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

transform of xz(#). Each point in the composite time-series [¢, (t), Ar4(t)] indicates an
amplitude of an oscillation in f; at the corresponding phase in the fp oscillation. We next bin the
phases ¢, (t) into eighteen 20° intervals (0° to 360°) and calculate the mean of A¢, over each

of the phase bins. Let’s (Ar4),, . (J) denote the mean As, value at each phase bin j. We then

define entropy H as

H= —%Y pjlogp;,

where N = 18 is the number of phase bins and p; is given by

(Aadg )

i = S e, O)

The MI is estimated by normalizing H by the maximum possible entropy value H,,,,, Which is

obtained for the uniform distribution p; = 1/N (Hpqx = log N):

MI = M

Hmax

Higher M1 values indicate stronger PAC with zero M1 corresponding to zero PAC.
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Statistical analysis

Statistical analysis was conducted using mixed effects analysis with the /merTest package
(Kuznetsova, Brockhoff, & Christensen, 2017) implemented in R software (version 4.0.2, R
Foundation for Statistical Computing). Because PTE data were not normally distributed, we used
BestNormalize (Peterson & Cavanaugh, 2018) which contains a suite of transformation-
estimating functions that can be used to optimally normalize data. The resulting normally
distributed data were subjected to mixed effects analysis with the following model: PTE ~
Condition + (1|Subject), where Condition models the fixed effects (condition differences) and
(1|Subject) models the random repeated measurements within the same participant. Analysis of
variance (ANOVA) was used to test the significance of findings with FDR-corrections for
multiple comparisons (p<0.05). Analysis of power, PLV, and PAC were carried out in the same

manner using the mixed effects analysis.

The differential effects of stimulation on directed information flow between the MTL and the
MFG, IFG, dPPC, and vPPC was also tested with a 2-way ANOVA with the factors Region
(MFG, IFG, dPPC, and vPPC) and Stimulation (ON/OFF). Linear mixed effects analysis was run
in a similar way, with the following model: PTE ~ Stimulation x Region + (1|Subject). 2-way
ANOVA was then used to test the significance of findings with FDR-corrections for multiple

comparisons (p<0.05).

For effect size estimation, we used n” statistics for complex F-based effects such as interactions

effects and main effects with multiple factors and Cohen’s d statistics for pairwise post-hoc
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comparisons. We used the eta squared() function in the effectsize package implemented in R for
estimating M’ and the /me.dscore() function in the EMAtools package in R for estimating

Cohen’s d.

We also conducted surrogate analysis to test the significance of the estimated PTE values
(Hillebrand et al., 2016). The estimated phases from the Hilbert transform for electrodes from a
given pair of brain areas were time-shuffled so that the predictability of one time-series from
another is destroyed, and PTE analysis was repeated on this shuffled data to build a distribution

of surrogate PTE values against which the observed PTE was tested (p<0.05).

Results

Behavioral effects of MTL stimulation

Participants were presented with a sequence of words and asked to remember them for
subsequent recall (Methods, Tables 1-3, Figure 1) (Solomon et al., 2019). During encoding, a
list of 12 words was visually presented for ~30 s. Each word was presented for a duration of
1600 msec, followed by an inter-stimulus interval of 800 to 1200 msec. After a ~20 sec post-
encoding delay, participants were instructed to recall as many words as possible from the
original list during the 30 sec recall period. MTL stimulation occurred in a blocked pattern: the
stimulator was active during the presentation of a pair of consecutive words and then inactive for

the following pair.

Average memory recall accuracy across patients was 22.9% + 11.7% for MTL stimulation trials

and 27.5% + 12.9% for non-stimulation trials. Memory recall was lower on stimulation,
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compared to non-stimulation, trials, this difference was marginally significant (p = 0.0574,
Cohen's d = 0.51, Wilcoxon signed-rank test). This result is consistent with prior studies using
UPENN-RAM data (Goyal et al., 2018; Jacobs et al., 2016; Kucewicz, Berry, Kremen, et al.,
2018) as well as other reports that direct stimulation of the hippocampus generally impairs
memory (Chua & Ahmed, 2016; Coleshill et al., 2004; Fernandez, Hufnagel, Helmstaedter,
Zentner, & Elger, 1996; Halgren, Wilson, & Stapleton, 1985; Herweg, Solomon, & Kahana,
2020; Jackson, Feredoes, Rich, Lindner, & Woolgar, 2021; Jun et al., 2020; Lacruz et al., 2010;

Merkow et al., 2017).

Effect of MTL stimulation on information flow from MTL to PFC and PPC during memory

encoding

We examined the differential effects of stimulation on directed information flow from the MTL
to MFG, IFG, dorsal PPC (dPPC), and ventral PPC (vPPC), using a 2-way ANOVA with the
factors Region (MFG, IFG, dPPC, and vPPC) and Stimulation (ON/OFF) (Methods). We
focused on directed information flow from the MTL to the PFC and PPC, in the delta-theta and
beta bands, based on our replicable findings across verbal and spatial memory domains (Das &
Menon, 2021, 2022). To preclude confounding influences associated with unsuccessful recall,
we focused on how MTL stimulation affects encoding and recall on successful trials, consistent
with prior studies (Long et al., 2014; Watrous et al., 2013). We found no interaction between
Stimulation and Region in either delta-theta (F(1, 660) = 0.06, p>0.05, N* = 9.76¢-05) or beta
(F(1, 663) = 0.68, p>0.05, > = 1.02¢-03) frequency bands during memory encoding. We also

did not find any main effects of Stimulation in either delta-theta (F(1, 660) = 3.99, p>0.05, > =
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6.01e-03) or beta (F(1, 663) = 0.06, p>0.05, n* = 9.76¢-05) frequency bands during memory

encoding (Table 4).

Effect of MTL stimulation on information flow to the MTL from the PFC and PPC during

memory encoding

We next examined directed information flow to the MTL from the PFC and PPC during verbal
memory encoding. We examined the differential effects of stimulation on directed information
flow from the MFG, IFG, dPPC, and vPPC to the MTL, using a 2-way ANOVA with factors
Region (MFG, IFG, dPPC, and vPPC) and Stimulation (ON/OFF) (Methods). We found a
significant Stimulation x Region interaction for directed information flow from the PFC and PPC
to the MTL in the delta-theta band, (F(1, 663) = 11.75, p<0.01, n’= 0.02) (Table 4). There was
no interaction between Stimulation and Region (F(1, 663) = 0.67, p>0.05, N’ = 1.01e-03), or
main effect of Stimulation (F(1, 663) = 1.04, p>0.05, n’= 1.57e-03) in the beta frequency band

(Table 4).

Next, we conducted post-hoc tests to systematically investigate regional differences in the effects
of MTL stimulation on directed information flow to the MTL in the delta-theta band (Figure 2).
MFG->MTL directed information flow decreased during stimulation trials compared to non-
stimulation trials in the delta-theta band (F(1, 260) = 12.00, p<0.01, Cohen's d = 0.43) (Figure
2). In contrast, IFG>MTL (F(1, 130) = 0.42, p>0.05, Cohen's d = 0.11), dorsal PPC>MTL
(F(1,220) = 0.45, p>0.05, Cohen's d = 0.09), and ventral PPC>MTL (F(1, 42) = 3.36, p>0.05,

Cohen's d = 0.57) directed information flow did not differ between stimulation and non-
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stimulation trials. We then compared the strength of top-down information flow to the MTL
from the MFG, and dorsal and ventral PPC, associated with MTL stimulation. MFG>MTL
directed information flow did not differ from dorsal PPC->MTL (F(1, 28) = 0.03, p>0.05,
Cohen's d = 0.07) and ventral PPC->MTL (F(1, 137) =0.17, p>0.05, Cohen's d = 0.07) directed

information flow on stimulation trials.

These results demonstrate that MTL stimulation reduces top-down MFG—>MTL information
flow in the delta-theta band during memory encoding, and that this effect is specific to PFC with

no differences in either the dorsal or ventral PPC.

Effect of MTL stimulation on information flow from MTL to PFC and PPC during memory recall

We next examined the differential effects of stimulation on directed information flow from the
MTL to the MFG, IFG, dPPC, and vPPC, with a 2-way ANOVA with the factors Region (MFG,
IFG, dPPC, and vPPC) and Stimulation (ON/OFF) during the memory recall period which
occurred ~20 sec after word encoding (Methods). There was no significant Stimulation x Region
interaction in the delta-theta band (F(1, 662) = 2.64, p>0.05, n? = 3.98¢-03) (Table 4). However,
there was a main effect of Stimulation, with higher directed information flow from the MTL to
the PFC and PPC during trials with stimulation (F(1, 662) = 7.19, p<0.05, n? = 0.01). There was
no Stimulation x Region interaction (F(1, 663) = 5.61, p=0.05, N’ = 8.39¢-03) or main effect of

Stimulation (F(1, 663) = 4.62, p>0.05, n* = 6.91¢-03) in the beta-band (Table 4).

Effect of MTL stimulation on information flow to MTL from PFC and PPC during memory recall
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We next examined the differential effects of stimulation on directed information flow from the
MEFG, IFG, dPPC, and vPPC to the MTL, with a 2-way ANOVA with the factors Region (MFG,
IFG, dPPC, and vPPC) and Stimulation (ON/OFF) during the memory recall period (Methods).
In the delta-theta band, we found no significant Stimulation x Region interaction (F(1, 663) =
0.00, p>0.05, N* = 1.49¢-06) or main effect of Stimulation (F(1, 663) = 0.78, p>0.05, > =

1.18¢-03) (Table 4).

We found a significant Stimulation x Region interaction for directed information flow from PFC
and PPC to MTL in the beta-band (F(1, 663) = 11.92, p<0.01, n° = 0.02) (Table 4). Post-hoc
analysis of this interaction revealed that MFG>MTL directed information flow decreased during
stimulation, compared to the non-stimulation, trials (F(1, 260) = 11.11, p<0.01, Cohen's d = 0.41)
(Figure 3). In contrast, IFG>MTL (F(1, 130) = 3.75, p>0.05, Cohen's d = 0.34), dorsal
PPC>MTL (F(1,220) =1.93, p>0.05, Cohen's d = 0.19), and ventral PPC>MTL (F(1, 41) =
0.48, p>0.05, Cohen's d = 0.22) information flow did not differ between stimulation and non-
stimulation trials. We then compared the strength of top-down information flow to the MTL from
the MFG and dorsal PPC associated with MTL stimulation. This analysis revealed that
MFG->MTL directed information flow was significantly lower than dorsal PPC>MTL
information flow on stimulation trials (F(1, 213) = 10.02, p<0.01, Cohen's d = 0.43) (Figure 4).
MFG->MTL directed information flow did not differ from dorsal PPC->MTL information flow
during non-stimulation trials (F(1, 104) = 3.50, p>0.05, Cohen's d = 0.37). MFG>MTL directed

information flow was lower than ventral PPC->MTL information flow during both stimulation
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(F(1, 149) = 17.23, p<0.001, Cohen's d = 0.68) (Figure 4) and non-stimulation trials (#(1, 142)

=10.26, p<0.01, Cohen's d = 0.56).

Together, these results suggest that MTL stimulation reduces top-down directed information
flow from the MFG subdivision of the PFC to the MTL in the beta band during memory recall.
Results further suggest that MTL stimulation selectively suppresses top-down influences from
the MFG, compared to both dorsal and ventral PPC, and that the PFC is relatively more sensitive

to the effects of stimulation compared to the PPC.

Effect of MTL stimulation on information flow between the MTL and the PFC and PPC in resting

State

To determine whether our main findings related to the direction of information flow between the
MTL and the PFC and PPC in our study were specific to the effects of memory processing, we
used “resting-state” data from participants collected in the UPENN-RAM public data release
(Solomon et al., 2021). Subjects were instructed to sit quietly and did not perform any task.
Similar to the memory task, bipolar stimulation current between pairs of depth MTL electrodes
was applied at 50 Hz (Table 6). Based on electrode placement in the MTL and the PFC and PPC
brain regions and based on the criteria that the stimulation frequency was 50 Hz, we selected 2
subjects (n=105 electrode pairs for MFG and n=60 electrode pairs for dPPC; IFG and vPPC did
not have electrode sampling) with simultaneous electrode placements in MTL and MFG and also
MTL and dPPC. We analyzed 1600 msec iEEG epochs immediately prior to the start of each

stimulation trial; these correspond to the “non-stim” condition. We also analyzed 1600 msec
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iEEG epochs immediately after the end of each stimulation trial; these correspond to the “stim”

condition.

We found that, in contrast to the memory task, neither MTL->MFG (F(1, 207) = 0.04, p>0.05,
Cohen's d = 0.03) nor MFG>MTL (F(1, 207) = 0.00, p>0.05, Cohen's d = 0.00) directed
information flow changed during stimulation, compared to the non-stimulation, trials in the delta-
theta frequency band. Moreover, neither MTL->MFG (F(1, 207) = 1.44, p>0.05, Cohen's = 0.17)
nor MFG>MTL (F(1, 207) = 3.35, p>0.05, Cohen's d = 0.25) directed information flow changed

during stimulation, compared to the non-stimulation, trials in the beta frequency band.

Furthermore, we found that, neither MTL—=>dPPC nor dPPC>MTL directed information flow

changed during stimulation, compared to the non-stimulation, trials in both the delta-theta (F(1, 117)
=1.69, p>0.05, Cohen's d = 0.24 for MTL->dPPC and F(1, 117) = 0.08, p>0.05, Cohen's d = 0.05
for dAPPC>MTL) and beta (F(1, 117) =0.01, p>0.05, Cohen's d = 0.02 for MTL->dPPC and F(1,

117) = 0.84, p>0.05, Cohen's d = 0.17 for dPPC->MTL) frequency bands.

Together, these results suggest that the reported results related to direction of information flow
between the MTL and the PFC and PPC that we observed during the memory task, cannot be
solely attributable to effects of brain stimulation causing reorganization of brain circuits, rather

they are related to the combined effects of stimulation and memory processing.

Comparison of information flow between the MTL and the PFC and PPC during memory

processing and resting state
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To provide further evidence that our main findings related to the direction of information flow
between the MTL and the PFC and PPC were specific to the effects of memory processing, we
directly compared information flow from the MTL to the PFC and PPC, and the reverse, for the
memory encoding and recall conditions with the resting-state condition, during the stimulation

trials.

We first focused our analysis on bottom-up directed information flow from the MTL to the PFC
and PPC. This analysis revealed that MTL->MFG directed information flow was higher for both
memory encoding (F(1, 235) = 8.34, p<0.01, Cohen's d = 0.38) and recall (F(1, 115) = 23.72,
p<0.001, Cohen's d = 0.91) compared to rest, during stimulation in the delta-theta frequency
band. This finding was reversed in the beta frequency band, where MTL->MFG directed
information flow was lower for both memory encoding (F(1, 233) = 16.33, p<0.001, Cohen's d =
0.53) and recall (F(1, 233) = 36.70, p<0.001, Cohen's d = 0.79) compared to rest. MTL->dPPC
directed information flow was higher for both memory encoding (F(1, 170) =29.73, p<0.001,
Cohen's d = 0.83) and recall (F(1, 161) = 39.08, p<0.001, Cohen's d = 0.99) compared to rest,
during stimulation in the delta-theta frequency band. MTL—>dPPC directed information flow was
also higher for memory recall (F(1, 169) = 5.75, p<0.05, Cohen's d = 0.37) compared to rest,
during stimulation in the beta band, however, MTL->dPPC directed information flow did not
differ for memory encoding and rest conditions in the beta band (F(1, 170) = 0.08, p>0.05,
Cohen's d = 0.04). These results suggest that the “bottom-up” effects of stimulation on memory
processing enhance MTL to PFC information flow in the delta-theta frequency band and

suppress this information flow in the beta frequency band, compared to rest. On the other hand,
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the “bottom-up” effects of stimulation on memory processing enhance MTL to PPC information

flow in both delta-theta and beta frequency bands, compared to rest.

We next examined top-down directed information flow from the PFC and PPC to the MTL. This
analysis revealed that MFG>MTL directed information flow was lower for both memory
encoding (£(1, 172) = 42.28, p<0.001, Cohen's d = 0.99) and recall (¥(1, 181) = 35.23, p<0.001,
Cohen's d = 0.88) compared to rest, in the delta-theta frequency band and for memory recall
compared to rest, in the beta frequency band (F(1, 235) = 47.55, p<0.001, Cohen's d = 0.90).
MFG->MTL directed information flow did not differ between memory encoding and rest in the
beta band (F(1, 235) = 0.05, p>0.05, Cohen's d = 0.03). dPPC>MTL directed information flow
was lower for both memory encoding (F(1, 21) = 15.00, p<0.01, Cohen's d = 1.67) and recall
(F(1,172) = 14.26, p<0.001, Cohen's d = 0.58) compared to rest, in the delta-theta frequency
band. dAPPC->MTL directed information flow was higher for memory encoding (F(1, 161) =
15.46, p<0.001, Cohen's d = 0.62), but lower for memory recall (F(1, 172) = 13.41, p<0.001,
Cohen's d = 0.56) compared to rest, during stimulation in the beta band. These results suggest
that the “top-down” effects of stimulation on memory processing mostly suppress information

flow from the PFC and PPC to the MTL compared to rest.

Together, these results provide further evidence that the reported results related to direction of
information flow between the MTL and the PFC and PPC, during the memory task, cannot be
solely attributable to effects of brain stimulation causing reorganization of brain circuits. Rather,

they are related to the combined effects of stimulation and memory processing.
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Effect of MTL stimulation on directed information flow for successful vs. unsuccessful memory

recall

We next examine the effect of stimulation on directed information flow for successful compared
to unsuccessful memory trials. To directly examine behavioral effects of stimulation, we focus
our results on the memory recall periods (Table 5) (but see Table 5 for results related to the
memory encoding periods where strong behavioral signatures were absent). This analysis
revealed that MTL->MFG directed information flow was significantly lower for successful,
compared to unsuccessful, memory recall in the beta band (F(1, 259) = 18.50, p<0.001, Cohen's
d=0.53) (Figure 5). MTL->vPPC directed information flow was significantly higher for
successful, compared to unsuccessful, memory recall in both delta-theta (F(1, 41) = 24.01,
p<0.001, Cohen's d = 1.62) and beta (F(1,41) =10.27, p<0.01, Cohen's d = 0.77) frequency

bands (Figure 5).

Together, these results suggest that the strongest behavioral effects of MTL stimulation are in the

bottom-up direction, mediating information flow from MTL to MFG and vPPC. Results also

suggest that both stimulation and memory processing contribute to directed information flow

between the MTL and the PFC and PPC that we observed during the memory task.

Surrogate data analysis of directed information flow between the MTL and the PFC and PPC

Next, we conducted surrogate data analysis to test the significance of the estimated PTE values

compared to PTE expected by chance (Methods) for the stimulation trials. The estimated phases
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from the Hilbert transform for electrodes from pairs of brain areas were time-shuffled and PTE
analysis was repeated on this shuffled data to build a distribution of surrogate PTE values against

which the observed PTE was tested.

Surrogate data analysis revealed that directed information flow from the MTL to MFG, IFG,
dorsal PPC, and ventral PPC and in the reverse direction, were significantly higher than those
expected by chance (p<0.05 in all cases) in the delta-theta frequency band during both memory
encoding and recall periods. In contrast, in the beta frequency band, directed information flow
from the MTL to PFC and PPC subdivisions, and in the reverse direction, were significantly
lower than those expected by chance (p<0.05 in all cases) during both memory encoding and

recall periods.

These results demonstrate that the reported directed information flow between different brain
areas during stimulation trials arise from causal signaling that is enhanced significantly above

chance levels.

Effects of MTL stimulation on intra-regional information flow

Next, we examined information flow between electrodes pairs within each of the individual brain
regions examine above. We found that information flow between the electrodes did not differ
between the stimulation and non-stimulation trials in any of the brain regions examined (MTL,
MEFG, dorsal PPC, ventral PPC) during either memory encoding or recall in the delta-theta or

beta bands (ps>0.05, Cohen's d < 1.16). However, information flow in the IFG was higher for
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stimulation, compared to non-stimulation, trials in the beta band during memory recall (F(1, 60)
=9.45, p<0.05, Cohen's d = 0.79). These results indicate that MTL stimulation has minimal

effect on intra-regional directed information flow.

Effects of MTL stimulation on phase synchronization between MTL and PFC and PPC

In addition to analysis of time-delayed directed information flow using PTE, we also examined
instantaneous phase synchronization between the MTL and the PFC and PPC. Analysis of
instantaneous phase locking values (PLVs) (see Methods) revealed that phase locking of the
MTL with the MFG, IFG, dorsal PPC, ventral PPC did not differ between stimulation and non-
stimulation trials for either memory encoding or recall in the delta-theta or beta bands (ps>0.05,
Cohen's d < 0.70). These results suggest that the neuromodulatory effects of MTL stimulation
are a consequence of the time-delayed interactions between different brain areas as precisely
captured by the PTE measure rather than instantaneous synchronization measures such as the

PLV.

Effects of MTL stimulation on intra-regional phase synchronization

Next, we used PLV to examine information flow between electrodes pairs within each of the
individual brain regions. We found that phase locking between the electrodes did not differ
between stimulation and non-stimulation trials in any of the brain regions during both memory
encoding and recall, in the delta-theta or beta bands (ps>0.05, Cohen's d < 0.42). These results

indicate that MTL stimulation does not affect intra-region phase synchronization.
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Effects of MTL stimulation on power in each individual brain region

We examined whether iEEG power differed between the stimulation and non-stimulation trials in
each of the brain regions, as this may potentially underlie differences in directed information
flow between the MTL and the PFC and PPC. We estimated power in the delta-theta and beta
frequency bands (see Methods) for stimulation and non-stimulation trials and for both the
memory encoding and recall periods. Power did not differ between stimulation and non-
stimulation trials in the delta-theta or beta frequency bands in any of the brain regions (ps>0.05,

Cohen's d < 0.68) (Figure 6).

Together, these results suggest that the differential directed information flow between the MTL
and the PFC and PPC for stimulation and non-stimulation conditions are not driven by

differences in the amplitude of iEEG fluctuations.

Effects of MTL stimulation on phase-amplitude coupling

Based on previous studies demonstrating phase-amplitude coupling (PAC) between low
frequency delta-theta phase and amplitudes of high-gamma (80-160 Hz) frequency bands
(Canolty et al., 2006; Tort et al., 2008), we examined the effects of stimulation on PAC in MTL,
MFG, IFG, and dorsal and ventral PPC. We used the modulation index as an estimate of PAC in
individual electrodes in different brain areas (Tort et al., 2008) (Methods). This analysis

revealed that PAC did not differ between stimulation and non-stimulation trials in any of the
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brain regions during memory encoding or recall (ps>0.05, Cohen's d <0.80). This suggests that

stimulation of the MTL does not affect PAC in any of the five brain regions.

Discussion

We examined how MTL stimulation alters directed information flow between the MTL and
frontoparietal cortical regions implicated in formation and monitoring of episodic memories. We
used depth iEEG recordings from the UPENN-RAM cohort in which participants performed a
verbal free recall task during concurrent stimulation of MTL neurons. During memory encoding,
select MTL electrodes were electrically stimulated at 50 Hz on half the trials (Goyal et al., 2018;
Jacobs et al., 2016). Building on our replicable prior findings of frequency specific interactions
between the MTL and PFC (Das & Menon, 2021, 2022), we examined how MTL stimulation
alters communication between the MTL and MFG subdivision of the PFC (i.e. dorsolateral PFC),
during memory encoding, and how this stimulation altered communication during subsequent
memory recall. MTL stimulation reduced memory recall (Cohen’s effect size = 0.5) and

disrupted directed information flow with the PFC. Figure 7 summarizes our key findings.

MTL stimulation decreased MFG>MTL information flow in the delta-theta frequency band
during the encoding period. Furthermore, the effects of MTL stimulation carried over from the
encoding to the subsequent memory recall period, despite a ~20 sec delay period in which there
was no external stimulation of the MTL. This process was characterized by decreased top-down
MFG->MTL information flow in the beta frequency band. However, there was no difference in
top-down PPC>MTL information flow. A direct comparison between the PFC and PPC
revealed stronger modulation of top-down influences on the MTL from the PFC, compared to the

PPC. Together, these findings demonstrate that MTL stimulation disrupts processing specifically
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in the PFC in the low frequency delta-theta range during memory encoding with aftereffects that

extend to subsequent recall periods.

MTL stimulation effects on directed MTL ?PFC and PFC 2>MTL information flow during

memory encoding

The primary goal of our study was to characterize the effect of MTL stimulation on directed
information flow between the MTL and the PFC during verbal episodic memory processing. The
MTL and MFG (dorsolateral PFC) play a critical role in human episodic memory encoding
(Anderson et al., 2010; Ekstrom & Watrous, 2014; Gonzalez et al., 2015; Neuner et al., 2014;
Watrous et al., 2013). However, it is unclear how electrical stimulation of the MTL modulates
neural dynamics of the targeted regions and the circuits that link them. Specifically, the effect of
stimulation on directed information flow between the MTL and the PFC during episodic memory

processing is poorly understood.

Our study builds on previously replicated findings across verbal episodic and spatial memory
domains which revealed higher bottom-up MTL->PFC information flow than the reverse, in
delta-theta and higher top-down PFC->MTL information flow than the reverse, in the beta
frequency bands (Das & Menon, 2021, 2022). We used phase transfer entropy (PTE), which
provides a robust and powerful tool for characterizing information flow between brain regions
based on phase coupling (Hillebrand et al., 2016; Lobier et al., 2014; M. Y. Wang et al., 2017).
We took an unbiased approach for assigning electrodes to individual anatomically-defined brain

regions and we did not select electrodes based on arbitrary task or stimulation-induced activation
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profiles. Our approach thus allowed us to probe the electrophysiological correlates of the effects
of MTL stimulation on directed information flow between the MTL and PFC more generally.
We found that MTL stimulation decreased PFC->MTL information flow during the encoding
period, in delta-theta band. Notably, these effects were specific to the dorsolateral MFG

subdivision of the PFC and were not observed in the more ventral aspects that comprise the IFG.

We conducted control analyses to ensure that the reported effects related to the directed
information flow between the MTL and the MFG did not arise solely from brain stimulation
causing reorganization of brain circuits. Specifically, we used “resting-state” data from a
separate group of participants, also acquired and released as part of the UPENN-RAM public
data release (Solomon et al., 2021). Participants were instructed to sit quietly and did not perform
any task. Similar to the memory task, in the resting-state condition, bipolar stimulation current
between pairs of depth MTL electrodes was applied at S0 Hz. We found that, in contrast to the
memory task, neither MTL->MFG nor MFG>MTL directed information flow changed during
stimulation, compared to the non-stimulation, trials in the delta-theta frequency band. These
results suggest that directed information flow between the MTL and the MFG observed during
the memory task are not solely attributable to brain stimulation-induced reorganization of brain

circuits, rather they are related to the combined effects of stimulation and memory processing.

MTL stimulation effects on directed MTL ?PFC and PFC2>MTL information flow during

memory recall
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Crucially, the effects of MTL stimulation were also detectable in the subsequent recall period
which occurred after a delay of 20 seconds. This finding is consistent with previous human iEEG
studies which have observed strong afterdischarge iEEG signals within and outside the MTL
during memory retrieval, which occurred tens of seconds after MTL stimulation was applied
during the encoding period of an episodic memory task (Halgren et al., 1985; Jun et al., 2020).
Moreover, similar to our findings, these afterdischarge effects were linked to memory
impairment in these studies (Halgren et al., 1985; Jun et al., 2020). Specifically, we observed
decreased MFG>MTL information flow on stimulation, compared to non-stimulation, trials in
the beta frequency band. Again, this effect was specific to the dorsolateral MFG subdivision of
the PFC, which is known to play a prominent role in top-down control of both subcortical and
cortical regions involved in memory formation (Brovelli et al., 2004; Engel & Fries, 2010;
Spitzer & Haegens, 2017; Stanley, Roy, Aoi, Kopell, & Miller, 2018). Extending our findings of
spectrally resolved top-down influences from the PFC, we found MTL stimulation effects in the
beta-band but not in the delta-theta frequency band, providing consistent evidence for spectral
dissociation associated with the beta frequency band. Theoretical models have pointed to both
excitatory and inhibitory mechanisms underlying deep brain stimulation (McIntyre, Grill,
Sherman, & Thakor, 2004; Vitek, 2002). We did not observe changes in power of iEEG signals
in either frequency band, suggesting causal circuit mechanisms arising from phase, rather than

amplitude, changes underlie the observed MTL stimulation related changes in information flow.

LFP studies in monkeys have demonstrated a more prominent role for the dorsal, compared to

the ventral PFC, in top-down control in the beta frequency band for processing higher level

abstractions during working memory performance (Wutz, Loonis, Roy, Donoghue, & Miller,
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2018). Electrophysiology studies in rodents performing an odor-place associative memory
guided decision task on a T-maze have shown that hippocampal-PFC coherence in the beta
frequency band is linked to accurate decisions (Symanski, Bladon, Kullberg, Miller, & Jadhav,
2022). LFP studies in monkeys performing a paired association learning task have shown that
beta oscillations in the MFG encode picture-color association (Tanigawa et al., 2022). fMRI
studies in humans have shown that the dorsal MFG is a part of the central executive network
which plays an important role in memory processing and complex decision making (Menon &
Uddin, 2010; Seeley et al., 2007; Sridharan, Levitin, & Menon, 2008). Additionally,
magnetoencephalography and iEEG studies in humans have shown a prominent role of beta for
feedback signaling (Hayat et al., 2022; Michalareas et al., 2016). Consistent with our findings,
rodent studies have also shown that inhibition of PFC projections to the hippocampus impairs
memory recall (Rajasethupathy et al., 2015; Yadav et al., 2022). Reduction in neural signaling
from the MFG to the MTL during memory recall may explain why stimulation of the MTL
reduces or impairs memory performance (Coleshill et al., 2004; Goyal et al., 2018; Jacobs et al.,

2016; Lacruz et al., 2010).

A recent study using 1 Hz repetitive transcranial magnetic stimulation (rTMS) of the MFG found
enhancement of verbal memory performance and also showed that this stimulation induced
stronger beta power modulation in the posterior areas (van der Plas et al., 2021), suggesting that
neuromodulatory effects in the MFG might be the most prominent in the beta frequency band. A
meta-analysis of 'TMS studies has revealed that 1 Hz rTMS of the MFG usually leads to an
enhancement of episodic memory performance, whereas 20 Hz rTMS of the MFG usually leads

to a reduction in episodic memory performance (Yeh & Rose, 2019). These results indicate a

39



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

disruptive effect of beta on MFG neural dynamics at frequencies significantly greater than 1 Hz,
including the 50 Hz stimulation frequency used in our study, and may explain the reduction of
information flow from the MFG that we observed during the recall periods in this frequency

band.

Dissociable effects of MTL stimulation on top-down causal information flow from PFC and PPC

The next goal of our study was to contrast the effects of MTL stimulation on information flow
with the PFC and PPC. In addition to the PFC, the PPC also plays an important role in episodic
memory (C. Moscovitch, Kapur, Kohler, & Houle, 1995; Schacter, Alpert, Savage, Rauch, &
Albert, 1996; Tulving et al., 1994). PTE analysis revealed that, in contrast to the PFC, there were
no differences between stimulation and non-stimulation trials in top-down dorsal PPC>MTL
information flow. A direct comparison revealed stronger MTL stimulation-induced modulation
of top-down MFG>MTL, compared to dorsal PPC->MTL in the beta frequency band (Figure
4). Information flow between the MTL and ventral PPC was unaffected by MTL stimulation, and
a direct comparison confirmed stronger MTL stimulation-induced modulation of top-down
MFG—->MTL, compared to ventral PPC->MTL in the beta frequency band. This suggests that the
dorsolateral MFG subdivision of the PFC is more sensitive to MTL stimulation than PPC regions

involved in episodic memory.

Electrophysiology studies in monkeys have shown that the PFC is more sensitive to memory

encoding compared to the PPC (Dang, Li, Pu, Qi, & Constantinidis, 2022; Masse, Hodnefield, &

Freedman, 2017; Murray, Jaramillo, & Wang, 2017; Qi, Elworthy, Lambert, & Constantinidis,
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2015; Zhou et al., 2021). Specifically, these studies showed that, compared to the PPC, neurons
in the PFC are more responsive (Dang et al., 2022), show more persistent firing rate (Masse et
al., 2017), and are more robust to distractors (Murray et al., 2017; Qi et al., 2015; Zhou et al.,
2021). Together, these findings suggest that the MFG may play an enhanced role compared to
the PPC in memory formation, which may make it a more sensitive target of brain stimulation

compared to the PPC in humans (J. X. Wang et al., 2014).

Behavioral specificity of the effects of MTL stimulation

Finally, we examined whether the observed effects of MTL stimulation on information flow
between different brain regions reflect cognitive processes related to memory encoding, or
whether they are solely attributable to the reorganization of brain circuits from the effects of
stimulation. We tested the hypothesis that the information flow between different brain areas
would differ between successful and unsuccessful memory trials during stimulation, thus
putatively reflecting cognitive processes related to memory processing, rather than effects of

stimulation only.

We found that the direction of information flow between the MTL and both the PFC and PPC
during memory recall is behaviorally relevant. Results support the hypotheses that causal
signaling from the MTL to both regions are associated with memory recall processes, rather than
arising solely from the effects of MTL stimulation-related reorganization of brain circuits.

MTL->MEFG directed information flow was significantly lower for successful, compared to
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unsuccessful, memory recall in the beta band. This suggests that the higher causal signaling

between the MTL->MFG in the beta band during unsuccessful trials is disruptive during recall.

Crucially, we found that the direction of information flow between the MTL and the ventral PPC
during memory recall was also behaviorally relevant. MTL—=>vPPC directed information flow
was significantly higher for successful, compared to unsuccessful, memory recall in both the
delta-theta and beta frequency bands. MTL-vPPC have been previously proposed to form a
coherent set of network and interactions within this network have been proposed to play a crucial
role in memory processing in humans (Ranganath & Ritchey, 2012; Wagner et al., 2005).
Moreover, non-invasive rTMS to the vPPC area is known to be associated with successful
associative memory retrieval in humans (J. X. Wang et al., 2014). The increased MTL->vPPC
directed information flow that we observed for the successful trials during memory recall is thus
consistent with the prominent role of the vPPC for episodic memory retrieval and extends our

understanding of directed causal signaling that supports such a role in the human brain.

Together, these results demonstrate that stimulating the MTL has a significant impact on
communication between the MTL and the PFC and PPC, which can either enhance or hinder
memory recall. Additionally, the results indicate that the direction of information flow in the
MTL is not solely due to reorganization of brain circuits caused by stimulation, but rather a

combination of stimulation and memory processing

Limitations
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The stimulation paradigm used in the study was applied only at a single frequency (50 Hz)
(Methods). Previous studies in humans have usually applied direct stimulation at theta and
gamma frequencies to modulate memory performance, which are considered to be the
endogenous rhythms of the MTL (Eichenbaum, 2017), although these frequencies have had a
varied effect on memory performance. Whereas theta frequency stimulation have shown
improvement in memory performance (Alagapan et al., 2019; Koubeissi, Kahriman, Syed,
Miller, & Durand, 2013; Lee et al., 2013), stimulation at 50 Hz has shown heterogenecous
patterns of memory performance, with some studies suggesting memory enhancement (Fell et
al., 2013; Inman et al., 2018; Suthana et al., 2012), while others have found impairment in
memory performance (Coleshill et al., 2004; Goyal et al., 2018; Jacobs et al., 2016; Lacruz et al.,
2010). Limitations of electrode placement precluded analysis of causal circuit dynamics
associated with each hemisphere and distinct subdivisions of the MTL; denser sampling of
electrodes in multiple brain regions with a wider range of experimental tasks, and a larger
number of participants are needed to further address these limitations. Additionally, studies with
memory and resting-state iEEG data acquired in the same participants are needed to confirm that
the effects of MTL stimulation reported in our study are not solely attributable to brain
stimulation-induced reorganization of brain circuits. Finally, it is not known whether some of the
patients may have shown considerable memory dysfunction in formal neuropsychological
testing. Future studies with rigorous neuropsychological testing procedures are needed to

determine the effect of brain stimulation in patients with different cognitive abilities.

In the present study, participants received stimulation at a range of current amplitudes, starting

from 0.25 mA to 1.5 mA. The choice of the current amplitude values for the cognitive
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experiments of the participants was the maximum current for each site that could be applied
without inducing patient symptoms, epileptiform after discharges, or seizures. Lack of sufficient
participants and electrode pairs for each of these current amplitude values did not allow us to
study the effects of current amplitude on the information flow between the MTL and the PFC
and PPC. Future studies will also need to consider the effects of a range of stimulation
frequencies and currents, and electrode sites across MTL subdivisions in gray/white matter to
rigorously assess other factors that influence memory performance, monitoring and directed

information flow between the MTL and PFC.

Conclusions

Our findings provide novel evidence that MTL stimulation alters directed information flow with
the PFC and PPC and that these influences are behaviorally relevant. Stimulating the MTL
decreased flow of information from PFC to the MTL during both the encoding and recall
periods, with effects lasting for more than 20 seconds after end of stimulation. This suppression
of top-down PFC to MTL influences was stronger than suppression of PPC to MTL influences.
Additionally, the flow of information from MTL to PFC was lower during successful memory
recall compared to unsuccessful recall, while the flow of information from the MTL to the
ventral PPC was higher during successful recall. These results show that the effects of MTL
stimulation are specific to behavior, region, and direction, that MTL stimulation specifically
impairs communication with the PFC, and that causal MTL-ventral PPC circuits support
successful memory recall. Findings further suggest that information theoretic measures based on

phase delays may provide a more robust measure of the effects of stimulation than other
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measures such as changes in power and phase-amplitude coupling. Crucially, our findings
demonstrate that suppression of the dorsolateral PFC is a locus of circuit vulnerability induced
by MTL stimulation. Findings uncover a mechanism by which human MTL stimulation disrupts
both formation and retrieval of recent memories (Halgren et al., 1985). Our findings have
implications for translational applications aimed at realizing the promise of brain stimulation-

based treatment of memory disorders.
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Figure captions

Figure 1. (a) Intracranial stimulation sites in the medial temporal lobe (MTL) investigated
in this study. Each anode-cathode pair of electrodes is connected by a red line. MTL included
the hippocampus, parahippocampal gyrus, and entorhinal cortex. (b) Non-stimulation iEEG
recording sites in the MTL, middle and inferior frontal gyrus subdivisions of the prefrontal
cortex (MFG and IFG), and dorsal and ventral subdivisions of the posterior parietal cortex
(dPPC and vPPC), investigated in this study. (c) Event structure of the verbal episodic
memory task during non-stimulation (top panel) and stimulation (bottom panel) trials used
in this study (see Methods for details). Participants were first presented with a list of words in
the encoding block and asked to recall as many as possible from the original list after a short
delay (distractor period). Stimulation was provided in a blocked pattern; the stimulator was
active during the presentation of a pair of consecutive words and then inactive for the following
pair. On each stimulated list, the stimulator was active for half the total words (see Methods for
details).

Figure 2. Directed information flow from PFC and PPC to the MTL in delta-theta band
(0.5-8 Hz) during stimulation, compared to non-stimulation, trials in the memory encoding
period. MFG - MTL information flow, measured using phase transfer entropy (PTE), was
reduced during the stimulation, compared to non-stimulation, trials (n=132). In contrast,
IFG>MTL (n=68), dorsal PPC>MTL (n=114), and ventral PPC>MTL (n=23) directed
information flow did not differ between stimulation and non-stimulation trials. The central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. Whiskers extend to the most extreme data points not considered
outliers. dPPC = dorsal PPC, vPPC = ventral PPC. ** p <0.01 (FDR-corrected).

Figure 3. Directed information flow from the PFC and PPC to the MTL in beta band (12-
30 Hz) during stimulation, compared to non-stimulation, trials in the memory recall
period. MFG - MTL information flow was reduced during the stimulation trials compared to
the non-stimulation trials (n=132). In contrast, IFG>MTL (n=68), dorsal PPC>MTL (n=114),
and ventral PPC->MTL (n=23) directed information flow did not differ between stimulation and
non-stimulation trials. dPPC = dorsal PPC, vPPC = ventral PPC. ** p < 0.01 (FDR-corrected).

Figure 4. Comparison of directed information flow from the MFG and dorsal/ventral PPC
to the MTL in beta band (12-30 Hz) during stimulation trials in the memory recall period.
MFG - MTL (n=132) information flow was significantly lower during the stimulation trials
compared to both dorsal PPC->MTL (n=114) and ventral PPC->MTL (n=23) information flow.
dPPC = dorsal PPC, vPPC = ventral PPC. *** p <0.001, ** p <0.01 (FDR-corrected).

Figure 5. Comparison of directed information flow from the MTL to the MFG and vPPC
for successful compared to unsuccessful recall, during stimulation trials in the memory
recall period. MTL - MFG (n=132) information flow was significantly reduced during
successful, compared to unsuccessful, recall in the beta band. Moreover, MTL->ventral PPC
(n=23) information flow was significantly higher during successful, compared to unsuccessful,
recall in both the delta-theta and beta frequency bands. *** p < 0.001, ** p <0.01 (FDR-
corrected).
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Figure 6. Spectral power in the delta-theta (0.5-8 Hz) and beta (12-30 Hz) frequency bands
during stimulation compared to non-stimulation trials for the encoding and retrieval
periods. (a) Spectral power in the delta-theta band during encoding periods. (b) Spectral power
in the delta-theta band during recall periods. (¢) Spectral power in the beta band during encoding
periods. (d) Spectral power in the beta band during recall periods. Zero on the x-axis denotes the
onset of word presentation for the encoding periods and the verbal recall of a word during the
recall periods.

Figure 7. Schematic illustration of key findings related to MTL stimulation. (a) Directed
information flow on successful trials. MTL stimulation decreased concurrent directed
information flow from the middle frontal gyrus (MFG) subdivision of the prefrontal cortex to the
MTL during memory encoding (delta-theta band). These effects were specific to MFG and were
not observed in inferior frontal gyrus (IFG) or dorsal or ventral nodes of posterior parietal cortex.
MTL stimulation aftereffects were observed in the subsequent memory recall period more than
20 seconds later, characterized by decreased top-down information flow from MFG to MTL
(beta band); again, these effects were specific to MFG and were not observed in IFG or dorsal or
ventral nodes of the posterior parietal cortex. Blue arrows show decrease during stimulation,
compared to non-stimulation trials. (b) Comparison of directed information flow during
successful vs. unsuccessful memory recall. MTL to MFG information flow on stimulation trials
was significantly lower for successful, compared to unsuccessful, memory recall (beta band). In
contrast, MTL to ventral posterior parietal cortex (PPC) information flow was significantly
higher for successful, compared to unsuccessful, memory recall (both delta-theta and beta
bands). Thickness of arrows correspond to relative strength of information flow, with higher
thickness denoting stronger information flow.
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1626
1627
1628
1629
1630

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

Tables

Table 1. Participant demographic information for the memory task and stimulation details
(total 14 participants).

Participant ID | Gender Age Stimulation Stimulation
electrode type current
(D= “depth”) amplitude

001 F 48 D 1 mA

003 F 39 D 1.5 mA

020 F 48 D 1.5 mA

030 M 23 D 1 mA

031 M 40 D 1.5 mA

033 F 31 D 1 mA

035 F 45 D 0.5 mA

056 M 34 D 1.5 mA

077 F 47 D 1 mA

085 F 30 D 1.5 mA

101 F 26 D 0.5 mA

111 M 20 D 0.75 mA

112 F 29 D 0.5 mA

150 F 49 D 0.25 mA
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1654
1655
1656
1657
1658
1659

1660
1661
1662
1663
1664
1665
1666
1667

1668
1669
1670
1671

Table 2. Number of electrode pairs used in the phase transfer entropy (PTE) and phase
locking value (PLV) analysis. MTL: medial temporal lobe; MFG: middle frontal gyrus, IFG:
inferior frontal gyrus, dPPC: dorsal posterior parietal cortex; vPPC: ventral posterior parietal

cortex.

Network pairs Number of | Number of Participant IDs (Gender/Age)
electrode participants
pairs (n)
MTL-MFG 132 4 003 (F/39), 020 (F/48), 033 (F/31), 077
(F/47)
MTL-IFG 68 5 003 (F/39), 020 (F/48), 035 (F/45), 077
(F/47), 101 (F/26)
MTL-dPPC 114 8 001 (F/48), 003 (F/39), 020 (F/48), 033
(F/31), 035 (F/45), 077 (F/47), 101 (F/26),
111 (M/20)
MTL-vPPC 23 4 033 (F/31), 077 (F/47), 101 (F/26), 111
(M/20)

Table 3. Number of electrodes in each brain region, used in power and phase-amplitude
coupling analysis. MTL: medial temporal lobe; MFG: middle frontal gyrus, IFG: inferior frontal
gyrus, dPPC: dorsal posterior parietal cortex; vPPC: ventral posterior parietal cortex.

Brain regions Number of Number of | Participant IDs (Gender/Age)
electrodes (n) | participants

MTL 30 10 001 (F/48), 003 (F/39), 020 (F/48), 031
(M/40), 033 (F/31), 035 (F/45), 077 (F/47),
101 (F/26), 111 (M/20), 112 (F/29)

MFG 51 7 003 (F/39), 020 (F/48), 030 (M/23), 033
(F/31), 056 (M/34), 077 (F/47), 085 (F/30)

IFG 35 9 003 (F/39), 020 (F/48), 030 (M/23), 035
(F/45), 056 (M/34), 077 (F/47), 085 (F/30),
101 (F/26), 150 (F/49)

dPPC 52 11 001 (F/48), 003 (F/39), 020 (F/48), 030
(M/23), 033 (F/31), 035 (F/45), 056
(M/34), 077 (F/47), 085 (F/30), 101 (F/26),
111 (M/20)

vPPC 9 4 033 (F/31), 077 (F/47), 101 (F/26), 111

(M/20)
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1672

Table 4. Differential effects of stimulation on directed information flow between the MTL

1673  and the MFG, IFG, dPPC, and vPPC. Results from 2-way ANOVA analysis with factors
1674  Region (MFG, IFG, dPPC, and vPPC) and Stimulation (ON/OFF). Statistically significant p-
1675  values of interaction, and main effects of Stimulation when interactions were non-significant, are
1676  indicated in bold (FDR-corrected for multiple comparisons).
1677
Direction Interaction Interaction Stimulation | Stimulation
effect (0.5-8 Hz) | effect (12-30 Hz) | main effect | main effect
(0.5-8 Hz) | (12-30 Hz)
Encode (MTL->PFC, PPC) | 0.9138971 0.5496000 0.07382400 | 0.79940000
Encode (PFC, PPC->MTL) | 0.0025908 0.5496000 0.00146600 | 0.41133333
Recall (MTL->PFC, PPC) 0.2090900 0.0482400 0.02006667 | 0.05436000
Recall (PFC, PPC>MTL) 0.9749598 0.0025908 0.42993429 | 0.00076512

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
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1688  Table 5. Differential effects of MTL stimulation on directed information flow for successful
1689  vs. unsuccessful memory during (a) Encoding and (b) Recall periods. Statistically significant
1690  p-values are indicated in bold (FDR-corrected for multiple comparisons).

1691
= 1692 (a) Memory Encoding
Q_ 1693
" — 1694
S 1695 Direction 0.5-8 Hz 12-30 Hz
O 1696 MTL>MFG 0.0252080 0.9950
1697 MTL->IFG 0.9338286 0.9950
U) 1698 MTL->dPPC 0.0252080 0.9950
3 1699 MTL->vPPC 0.9338286 0.9950
1700
C 1701
CU 1702 MFG->MTL 0.9338286 0.8712
1703 IFG>MTL 0.9958000 0.9950
2 1704 dPPC>MTL 0.9338286 0.9950
1705 vPPC>MTL 0.9338286 0.9950
1706
U 1707
1708
q) 1709 (b) Memory Recall
== };}? Direction 0.5-8 Hz 12-30 Hz
Q_ 1712 MTL>MFG 0.29573333 0.00017304
q) 1713 MTL->IFG 0.09964000 0.50540000
1714 MTL~->dPPC 0.44040000 0.04010667
O 1715 MTL>vPPC 0.00012136 | 0.00869200
o 1716
1717
< 1718 MFG>MTL 0.50053333 0.32848000
1719 IFG>MTL 0.50053333 0.39906667
S 1720 dPPC>MTL 0.68120000 0.32848000
O 1721 vPPC>MTL 0.68120000 0.50540000
1722
dp) 1723
O 1724
1725
S 1726
- 1727
1728
D 1729
1730
Z 1731
- 1732
1733
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1734
1735
1736

1737
1738

Table 6. Participant demographic information for analysis of resting-state iEEG (total 2

participants).

Participant ID | Gender Age Stimulation Stimulation | Stimulation
electrode type current duration
(D= “depth”) amplitude

054 M 23 D 1 mA 250 ms

136 F 56 D 2 mA 500 ms
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