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Abstract

The ability to anticipate and detect behaviorally salient stimuli is important for virtually all adaptive behaviors, including
inhibitory control that requires the withholding of prepotent responses when instructed by external cues. Although right
fronto-operculum-insula (FOI), encompassing the anterior insular cortex (rAl) and inferior frontal cortex (rIFC), involvement
in inhibitory control is well established, little is known about signaling mechanisms underlying their differential roles

in detection and anticipation of salient inhibitory cues. Here we use 2 independent functional magnetic resonance
imaging data sets to investigate dynamic causal interactions of the rAl and rIFC, with sensory cortex during detection
and anticipation of inhibitory cues. Across 2 different experiments involving auditory and visual inhibitory cues, we
demonstrate that primary sensory cortex has a stronger causal influence on rAl than on rIFC, suggesting a greater role for
the rAl in detection of salient inhibitory cues. Crucially, a Bayesian prediction model of subjective trial-by-trial changes in
inhibitory cue anticipation revealed that the strength of causal influences from rIFC to rAl increased significantly on trials in
which participants had higher anticipation of inhibitory cues. Together, these results demonstrate the dissociable bottom-
up and top-down roles of distinct FOI regions in detection and anticipation of behaviorally salient cues across multiple

sensory modalities.
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Introduction

Anticipation and detection of behaviorally salient events are
key components of flexible cognitive control (Corbetta and
Shulman 2002; Petersen and Posner 2012). The prefrontal cortex
is known to play an essential role in this process and disrup-
tions in prefrontally mediated control processes are thought to

underlie many psychiatric disorders, including attention deficit
hyperactivity disorder (ADHD), autism, and schizophrenia
(Casey et al. 1997; Menon 2011; Palaniyappan et al. 2013; Uddin
et al. 2013). Although the right anterior insula (rAl) and inferior
frontal cortex (rIFC) subdivisions of fronto-operculum-insula
(FOI) are among the most critical prefrontal regions for
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cognitive control (Levy and Wagner 2011; Swick et al. 2011,
Cai et al. 2014), little is known about dynamic causal signaling
underlying detection of salient task cues from sensory inputs
and how such signaling is modulated by top-down influences
arising from subjective moment-by-moment changes in antici-
pation of sensory cues.

Much of our understanding of the mechanisms underlying
flexible cognitive control has come from human functional
neuroimaging studies using inhibitory control tasks which
require participants to respond to prepotent cues and withhold
responses to infrequent inhibitory cues (Logan et al. 1984;
Verbruggen and Logan 2008). Meta-analyses of functional mag-
netic resonance imaging (fMRI) studies of human inhibitory
control have demonstrated right hemispheric dominance and
peak activations localized to both rAl and rIFC during inhibitory
control (Figure S1, Levy and Wagner 2011; Swick et al. 2011; Cai
et al. 2014). Lesions and disruptions to right FOI impair the abil-
ity to inhibit prepotent behavioral responses (Aron et al. 2003;
Chambers et al. 2006). The right FOI also displays increased
gamma-band activity immediately after the onset of inhibitory
cues, suggesting its involvement in the early stages of inhibi-
tory control (Swann et al. 2012). Thus, converging lines of evi-
dence suggest that right FOI serves as a crucial interface
between inhibitory cue detection and inhibitory control.
However, despite years of research, the precise role of individ-
ual subdivisions of FOI in detection of inhibitory cues remains
unknown. Crucially, no studies to date have attempted to dis-
entangle the differential roles of rAl and rIFC in detection of
inhibitory cues from sensory inputs.

Based on their distinct patterns of activation, intrinsic and
task-related connectivity, and relation to behavior, Cai et al.
(2014) suggested that the rAl may play a more important role in
inhibitory cue detection, whereas the rIFC may be more involved
in the subsequent stages of inhibitory control. However, no
studies to date have directly examined whether rAl and rIFC dif-
fer in their interactions with the sensory regions from which
they receive inputs. This question is challenging for lesion, tran-
scranial stimulation, and electrocorticogram investigations of
inhibitory control for several reasons. First, due to the close ana-
tomical proximity of the rAl to rIFC, it is difficult to find patients
with lesions restricted exclusively to only one region. Second, it
is hard to temporally disrupt only one subdivision using tran-
scranial stimulation without impacting other neighboring
regions. Third, although electrocorticograms have the requisite
anatomical and temporal resolution, limited electrode coverage
and small sample sizes have precluded investigations of long-
range cortical interactions. Finally, reproducibility remains a
challenge for both invasive and non-invasive brain imaging
techniques. In this study, we overcome these limitations using a
novel neurocognitive systems approach. Accordingly, the first
major goal of this study was to investigate dynamic causal inter-
actions between sensory cortex and FOI control system asso-
ciated with detection of salient inhibitory cues and to replicate
findings in 2 independent data sets.

Anticipatory and adaptive adjustments in response to a
dynamically changing environment are another fundamental,
but much less studied, aspect of inhibitory control (Aron 2011).
While most previous studies of inhibitory control have focused
on the behavioral and neural bases of reactive processes asso-
ciated with inhibitory cues, a few recent studies have provided
novel evidence for trial-by-trial changes in inhibitory cue
anticipation based on Bayesian prediction models (BPM)
of accumulating sensory evidence (Shenoy and Yu 2011; Ide
et al. 2013; Hu et al. 2015). Interestingly, higher inhibitory cue

anticipation is associated with less stopping errors (Ide et al.
2013). We posit that when the likelihood of an inhibitory cue
increases, the brain network important for stop-signal detec-
tion, such as the salience network, is signaled by the proactive
control system via top-down modulation in order to facilitate
cue detection. Previous studies have used contextual cues to
modulate probability of stop trials and found that rIFC is part of
a proactive control system (Chikazoe et al. 2009; Swann et al.
2012). Furthermore, direct electrical stimulation (Wessel et al.
2013) or transcranial direct current stimulation (Cai et al. 2016)
to right FOI cortex has been shown to facilitate proactive con-
trol. However, the differential roles of rAl and rIFC and their
interactions with each other and with sensory cortex during
inhibitory cue anticipation are currently unknown. Therefore,
the second major goal of our study was to examine dynamic
causal interactions of sensory cortex and FOI control system
associated with anticipation of inhibitory cues.

We hypothesized that detection of inhibitory cues would be
associated with stronger interactions between rAl, than rIFC,
and domain-specific sensory regions, whereas anticipation of
inhibitory cues would involve top-down modulation from rIFC to
the salience detection system, anchored in rAl Here we directly
test this hypothesis in a parsimonious neurocognitive model by
analyzing dynamic causal interactions associated with inhibi-
tory cue detection and anticipation. We first used dynamic cau-
sal modeling (DCM) (Friston et al. 2003) to investigate causal
interactions between rAl, rIFC, and domain-specific sensory
regions during detection of stop signals. To ensure reliability and
generalizability, we evaluated our hypotheses in 2 independent
data sets: stop-signal task 1 (SST1, Xue et al. 2008) obtained from
a public fMRI database—OpenfMRI (http://openfmri.org, Texas
Advanced Computing Center, the University of Texas at Austin)
and stop-signal task 2 (SST2, Zhang and Li 2012), acquired at
Yale University. In both SST1 and SST2, participants were
required to make motor responses to frequent go signals and to
inhibit their responses to infrequent stop signals (inhibitory cue)
(Fig. 1a). Because stop signals were delivered via 2 different sen-
sory channels, auditory in SST1 and visual in SST2, use of these
2 data sets allowed us to examine the generalizability of our
findings with respect to primary auditory and visual cortices.

Next, we combined BPM (Shenoy and Yu 2011; Ide et al. 2013)
with DCM to investigate dynamic causal interactions between
rAl, 1IFC, and domain-specific sensory regions during anticipa-
tion of inhibitory cues. BPM was used to compute Pstop, the sub-
jective expectation of stop signals in each trial (Shenoy and Yu
2011; Ide et al. 2013). This analysis was only conducted on SST2
because of the small sample size and small number of trials
with low psiop in SST1. We predicted that proactive top-down
signaling from rIFC (Aron 2011; Wessel et al. 2013) would have
strong causal influences on rAl. We contrasted our findings with
a model based on a purely attentional view of rIFC function,
which would predict that rIFC plays a dominant role in detec-
tion, but not anticipation, of inhibitory cues via interaction with
rAl and sensory cortex. We demonstrate the crucial role of rAI
in detecting behaviorally salient inhibitory cues in both auditory
and visual modalities and highlight the role of rIFC in top-down
modulation of rAl during inhibitory cue anticipation.

Materials and Methods
Overview of Data Sets

We used 2 previously published Stop-signal task data sets (Xue
et al. 2008; Zhang and Li 2012), with Stop signals presented in 2
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Figure 1. Task design and brain activations. (a) SST paradigms SST1 and SST2. The design of the 2 tasks is similar except that an auditory stop cue was used in SST1,
while a visual stop cue was used in SST2. (b) Increased activation of FOI, sensory and other cortical regions during successful stop trials (SuccStop) compared with Go
trials during SST1 and SST2. (c) Regions of interest (ROIs), based on SST1 and SST2 task activations, which were used in the DCM analysis.

different sensory modalities. All participants were healthy
adults and they provided written consent to their local institu-
tional review boards. Details of task design and data acquisi-
tion for the SST1 and SST2 can be found in Supplementary
Information (Fig. 1).

Preprocessing of fMRI Data

SPM8 (http://www fil.ion.ucl.ac.uk/spm/software/spma8) was used
for preprocessing, including realignment, slice-timing correction,
normalization to the Montreal Neurological Institute space, and
smoothing carried out using a 5-mm full-width half maximum
Gaussian kernel to decrease spatial noise.

General Linear Models of the Stop-Signal Task

We used 2 different general linear models (GLMs) to investigate
task-related activation and dynamic causal interactions. The
first “conventional” model was used to examine causal inter-
action between the sensory regions and the right FOI during
detection of Stop signals on successful Stop trials only. The
second “anticipation” model, in which trials were grouped by
participants’ subjective expectation of Stop signals, allowed us
to investigate causal interactions between sensory regions and
right FOI during detection and anticipation of stop signals on
successful Stop trials. Details of each model are described as
follows.

Conventional Model

First, we examined causal interactions between the right FOI
and sensory regions when a Stop signal was detected and
the prepotent response was successfully canceled. To obtain
the effect of interest for successful Stop trials only, a conven-
tional task design construct of the Stop-signal task was used.

The task design construct included successful Go (Go), success-
ful Stop (SuccStop), and unsuccessful Stop (UnsuccStop) trials.

Anticipation Model—High versus Low P,y

Second, we examined causal interactions between the right
FOI and sensory regions modulated by anticipation of inhibi-
tory cues pgop—as described in the following section. To obtain
the effect of interest for anticipation of inhibitory cues, the
regressors in the conventional model were further split by
the median pgp, including Go with low pgiop (Go-low-psiop),
Go with high psop (Go-high-psiop), SuccStop with low psiop
(SuccStop-low-psiop), SuccStop with high pgop (SuccStop-high-
Pstop), UnsuccStop with low psiop (UnsuccStop-low-psiop), and
UnsuccStop with high pgop (UnsuccStop-high-psiop). Trial-by-
trial pstop Was estimated using the BPM (see below).

All GLM models incorporated 6 motion parameters as cov-
ariates of no interest. ROI time series were extracted for the
subsequent DCM analyses using an F contrast to remove con-
founds of nuisance regressors.

BPM of P

We used a well-validated BPM (Shenoy and Yu 2011; Ide et al.
2013) to investigate brain responses and dynamic causal inter-
actions associated with trials with high and low inhibitory cue
probability psiop. Here we briefly describe the BPM. More
detailed information and its validation can be found in previ-
ous studies (Shenoy and Yu 2011; Ide et al. 2013).

The BPM estimates the belief about the chance of an inhibi-
tory cue occurring in the coming trial based on trial history
(Yu and Cohen 2008). On an incoming trial k, subjects believe
that the chance that an inhibitory cue will occur (Stop trial) is 1,
and the chance that no inhibitory cue will occur (Go trial) is
1-r.. The model assumes that subjects believe that r, has
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a probability a of being the same as r,_; (the chance that an
inhibitory cue occurs in the previous trial) and a probability 1-«
of being resampled from the prior distribution =(r):

P(MelSk—1) = & X p(Ne—1|Sk-1) + (1 — o) X [I(re),

where s, refers to the true trial type of trial k (sy=1 for Stop
trial, sp =0 for Go trial); p(rx_1lSk-1) refers to the posterior distri-
bution conditional on the last observed trial k-1; =(ry) is
assumed to be a g distribution with prior mean (pm) and
another shape parameter (scale).

The model also assumes that subjects update their prior
belief using Bayesian inference, and therefore the posterior dis-
tribution is computed based on Bayes’ rule:

P (el Sie) o< P(SklTie) X P (Tel Sk-1)-
The probability of trial k being a Stop trial is determined by

P(sg = 1I8_1) = [P(sg = 1I7e) X p(Tiel Se—1)dre

= [ X p(lsk—1) Ak = (lSe1)-

In summary, the model allows us to estimate trial-by-trial
anticipation of inhibitory cues pgiop based on subjects’ trial
history (Go or Stop trials). Here we used the same model
parameters {a, pm, scale} as in the previous study since they
have been well validated on the same data set (Ide et al.
2013).

Behavioral and Brain Analysis of High versus Low-Pgp
Stop Trials

We investigated how behavior was modulated by prediction of
the likelihood of an inhibitory cue (stop signal) in the upcoming
trial. psop Was computed using the BPM as described earlier.
Then, we conducted whole-brain analysis for the contrast of
SuccStop-low-pstop Versus SuccStop-high-ps:op, and further ana-
lysis on regions of interest.

Regions of Interest

We constructed 4 ROIs, including the rAl, rIFC, and 2 sensory
regions, to study causal interactions between the right FOI and
sensory regions in Stop tasks. We leveraged our previous work
on functional parcellation of the right FOI (Cai et al. 2014) to
construct the specific rAl and rIFC ROIs used in this study.
Using the same data sets, our previous study identified 2 func-
tional masks for the rAl and rIFC (Figure S1). In both SST1 and
SST2, we first identified peak activations in successful Stop
trials within the rAl and rIFC functional masks then averaged
coordinates in the SST1 and SST2 for the rAl (x = 35, y = 17,
z = 3) and 1IFC (x = 56, y = 13, z = 16) separately. Because an
auditory and visual Stop signal was used in the SST1 and SST2,
we constructed 2 sensory ROIs. Peak activations were identified
in the right auditory cortex (rAud, x = 64, y = =30, z = 2) in
SST1 and in the right visual cortex (rVis, x = 34, y = -90,
z = -2) in SST2, respectively. All ROIs are spheres of 6 mm
radius (Fig. 1).

We also conducted several additional analyses to examine
interactions of the left sensory cortex (left V1 and left A1) with
right FOI during detection and anticipation of stop signals. We
found similar patterns of causal interactions with right FOI for
left and right sensory cortex (see Supplementary Information
for details).

Dynamic Causal Modeling

We used the DCM module in SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/) to examine causal interactions
between the rAl, rIFC, and rAud in SST1 and rVis in SST2.

DCM is a quantitative approach to infer the causal architec-
ture in a network constructed by a set of predefined brain
regions in the latent state given the observed brain signals in a
cognitive task (Friston et al. 2003). It is a confirmatory method
where several candidates of causal models are tested and the
model with the highest evidence is chosen.

We performed DCM analyses in the following steps. First, a
set of DCM candidate models was determined by combinations
of 3 matrices, which defined fixed/intrinsic connectivity, modu-
latory connectivity, and extrinsic/driving input (see below),
respectively. Entries of the 3 matrices were then estimated for
each DCM candidate model in each session for each participant
using Bayesian approximation given the mean fMRI time series
from the corresponding ROIs. Next, at the group level, families
of DCM models were compared and the winning family was
selected using Bayesian model selection (BMS) with random
effects (Stephan et al. 2009). BMS estimated the posterior model
probability, referring to the probability that a model is true
given the observed data, and the exceedance probability, refer-
ring to the probability that a model candidate is more likely
than other model candidates. The entries of the 3 matrices
in the winning family for the group were computed using
Bayesian parameter averaging across the specified DCM models
belonging to the wining family (Stephan et al. 2009).

Each DCM model is determined by 3 matrices: A, B, and C.
Matrix A represents fixed/intrinsic connectivity among ROIs.
Matrix B represents modulatory connectivity among ROIs under
a certain task condition. Matrix C represents extrinsic/driving
input to the predefined ROIs. In this study, we assumed recipro-
cal fixed connectivity among all 3 ROIs (i.e. full connection
Matrix A) and systematically varied modulatory connectivity
among the 3 ROIs (Matrix B). Matrix C was set such that extrin-
sic inputs (i.e. Stop signal) went through sensory cortex.

Matrix B estimates how and to what extent specific cogni-
tive events change connectivity between regions. Since our
study aims to examine causal interactions between sensory
cortex and right fronto-operculo-insular regions in detection of
Stop signals, all possible models are grouped into 3 model fam-
ilies distinguished by whether there is modulatory connectivity
from sensory cortex to the rAl alone, from the sensory cortex to
the rIFC alone, or from the sensory cortex to both the rAl and
rIFC, when a Stop signal was detected (Figure S2). The 3 fam-
ilies are named “rVis/rAud — rAl” “rVis/rAud — rIFC,” and
“rVis/rAud — rAl & rIFC.” In each family, the rest of connec-
tions were systematically varied, including “rAl — rVis/rAud,”
“rIFC — rVis/rAud,” “rAl - rIFC,” and “rIFC — rAL” The full
combination leads to 13 models for each family, resulting in
39 models for each session in each participant.

DCM analyses based on the 39 models were applied to the 2
task design constructs for SST1 and SST2 separately. First, using
task design in the conventional model, we examined dominant
causal interactions between sensory cortex and the right fronto-
operculo-insular regions on SuccStop during which each partici-
pant successfully detected the Stop signal and canceled prepro-
tent responses. We predicted that causal interactions between
sensory cortex and rAl would play a dominant role in detection
of Stop signals on SuccStop trials. Then, using the task design in
the anticipation model, we examined whether the strength of
causal interactions between the rAl and rIFC was modulated by
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Figure 2. Dynamic causal interactions of the FOI during detection of inhibitory cues. (a, b) In SST1, the strength of causal interactions from the auditory cortex was sig-
nificantly greater to the Al, compared with the IFC. (c, d) In SST2, the strength of causal interactions from the visual cortex was significantly greater to the Al, compared
with the IFC. *P < 0.05; *P < 0.01. SST1, Stop-signal task 1; SST2, Stop-signal task 2; r, right. Line and arrow width is set as exponential power of estimated weight.

probabilistic anticipation of Stop signals. We predicted increased
causal interactions from rIFC to rAl with high-probabilistic
anticipation of Stop signals. Five thousand permutations were
performed to generate a null distribution for the connectivity
strength difference between 2 connections of interest from
which the corresponding P value was obtained.

Results

Dynamic Interactions Between Sensory Cortex and FOI
Control System Associated with Detection of Salient
Inhibitory Cues

The first major goal of our study was to probe causal interactions
between task-specific sensory cortex and rAl and rIFC subdivi-
sions of right FOI associated with detection of inhibitory cues.
We used DCM, a confirmatory method for examining causal
interactions among a small number of task-relevant ROIs. In this
approach, several plausible models are tested, and the model
with the highest evidence is chosen as the one most likely to
explain the data given the data and model assumptions.

We conducted DCM analyses in SST1 and SST2 with 2 dis-
tinct sensory inputs from rAud and rVis, respectively. At the
group level, a BMS procedure with random effects (Stephan
et al. 2009) was used to identify the “winning” model family
with the highest evidence. We used these models to test the
prediction that inhibitory cue detection is dominated by causal
interactions between domain-specific sensory regions and rAl.

Causal Interactions Between Auditory Cortex and rAl/rIFC During
Successful Stopping in SST1

We examined causal interactions between auditory cortex and
rAl and 1IFC on SuccStop trials in SST1. BMS revealed that the

winning family was “rAud — rAlI & rIFC” (Figure S3a). The poster-
ior probabilities were 13%, 41%, and 46% for the “rAud — rAlL”
“rAud - 1IFC,” and “rAud — rAl & rIFC” families, respectively.
The exceedance probabilities were 2%, 42%, and 56%, respect-
ively. Aggregating the models within the winning family, we
specifically tested the strength of modulatory connectivity of
rAud — rAl versus that of rAud — rIFC (Fig. 2a) and found that
the strength of rAud — rAl connectivity was significantly greater
than that of rAud - rIFC (P < 0.05, Fig. 2b & Figure S5a).

Causal Interactions Between the Visual Cortex and rAl/v¥IFC During
Successful Stopping in SST2

We examined causal interactions between the visual cortex
and the rAlI and rIFC on SuccStop trials in SST2. BMS revealed
that the winning family was “rVis — rAl & rIFC” (Figure S3b).
The posterior probabilities were 32%, 18%, and 50% for the
“rVis — rAl,” “rVis — 1rIFC,” and “rVis — rAl & rIFC” families,
respectively. The exceedance probabilities were 13.2%, 0.5%,
and 86.3%, respectively. Aggregating the models within the
winning family, we specifically tested the strength of modula-
tory connectivity of rVis — rAl versus rVis — rIFC (Fig. 2c¢) and
found that the strength of rVis — rAl connectivity was signifi-
cantly greater than that of rVis — rIFC (P < 0.001, Fig. 2d &
Figure S5b).

Dynamic Interactions of FOI Control System Associated
with Anticipation of Inhibitory Cues

The second goal of our study was to investigate how causal
interactions between domain-specific sensory regions and
subdivisions of right FOI during successful stopping are modu-
lated by subjective expectations of stop signals. Trial-by-trial
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Figure 3. Bayesian prediction of behavior and brain activation associated with anticipation of inhibitory cues. (a) Participants showed faster RTs on Go and unsuccess-
ful stop trials (UnsuccStop) with low, compared with high, probability of expecting an inhibitory cue (low-pstop Vs. high-psiop; “left panel”). Participants had higher
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well as unsuccessful, compared with successful stop trials (UnsuccStop vs. SuccStop, “right panel”). (c) Activation levels in unbiased Al and IFC ROIs from a previous

study of right FOI parcellation (Cai et al., 2014). **P < 0.01; ***P < 0.001.

probabilistic stop-signal expectation pgop Was estimated
using BPM, and SuccStop trials were split by median psop to
allow contrasting of “behavior, brain response, and dynamic
causal interaction” between SuccStop-low-psop and SuccStop-
high-psiop. This analysis was conducted only in SST2 because
of the small sample size and small number of SuccStop-low-
Pstop trials in SST1. Our hypothesis is that anticipation of stop
signals or proactive control involves top-down modulation
of the salience detection system via interaction between rIFC
and rAlL

Behavioral Effects of Inhibitory Cue Anticipation in SST2

As predicted, we found that reaction times (RTs) on go trials
with high pswp (mean + standard error of mean: 599 + 14 ms)
were significantly longer than RTs on go trials with low pstop
(561 + 14ms) (t = 9.37, P < 0.001, Cohen’s d = 1.35, Fig. 3a &
Figure S6a, left panel). RTs on UnsuccStop trials with high psop

(526 + 14ms) were also significantly longer than those on
UnsuccStop trials with low pgop (501 + 13ms) (t = 4.35,
P < 0.001, Cohen’s d = 0.63 Fig. 3a & Figure Sé6a, right panel).
These results suggest that as the expectation of stop signals
increases, participants slow down their responses.

Average psiop Was significantly higher on SuccStop (29 + 0.1%)
than on UnsuccStop trials (27 + 0.1%) (t = 11.65, P < 0.001,
Cohen'’s d = 1.68, Fig. 3a & Figure S6b). Note that average stop-
signal delays (SSDs) were also significantly shorter on SuccStop
(344 + 15ms) than on UnsuccStop trials (402 + 15ms)
(t = 33.21, P < 0.001, Cohen’s d = 4.79, Fig. 3a & Figure S6c).
These findings suggest that successful stopping is influenced
by how fast stop signals are detected, which could be facili-
tated by (1) higher expectation of stop signals so that partici-
pants are better prepared to detect stop signals and (2) shorter
stop-signal delays such that earlier stop signals allowed more
time to cancel a prepotent response.
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Brain Responses to Inhibitory Cue Anticipation in SST2

Next, we compared brain responses to stop trials with high and
low psiop- We found that rAl, along with anterior cingulate cor-
tex (ACC), showed significantly greater activation on SuccStop
trials with low, compared with high, pswop (activation height
P < 0.01, cluster size P < 0.01, Fig. 3b). There was a much weaker
activation difference on SuccStop trials with low, compared
with high, psop for rIFC. A similar pattern of stronger activation
in rAl and ACC and weaker activation in rIFC was found for
UnsuccStop versus SuccStop trials (activation height P < 0.01,
cluster size P < 0.01, Fig. 3b).

To further confirm the findings of dissociations in causal
interactions associated with rAl and rIFC, we conducted add-
itional ROI analyses. Because our goal is to test the anatomical
specificity of findings from our previous work, we used the
same rAl and rIFC ROIs from our previous parcellation study
(Cai et al. 2014) (Figure S1b). We performed an ANOVA with
factors of Region (rAl vs. rIFC) and pstop (low vs. high). As in the
previous analysis, beta weights contrasting activation between
SuccStop and go trials were used. We found a significant
Region X pgop interaction (F = 8.37, P < 0.01) and a significant
main effect of pgop (F = 10.37, P < 0.005) (Fig. 3c). Post hoc ana-
lysis revealed that rAl showed significantly greater activation
for low, compared with high, psyp trials (t = 4.11, P < 0.001,
Cohen’s d = 0.59), while this difference was only marginally sig-
nificant for rIFC (t = 1.90, P = 0.06, Cohen’s d = 0.27). We then
used an ANOVA to examine the interaction between Region
(rAl vs. 1IFC) and activation on SuccStop versus UnsuccStop
trials. We found a significant Region x Trial type interaction
(F = 31.83, P < 0.001) and significant main effects of Region
(F = 4.54, P < 0.05) and Trial type (F = 10.69, P < 0.01) (Fig. 3c).
Post hoc analysis revealed significantly greater activation on
UnsuccStop, compared with SuccStop, trials in rAl (t = 4.66,
P < 0.001, Cohen’s d = 0.67) but not rIFC (t = 0.64, P = 0.5,
Cohen’s d = 0.09).

Differential Causal Interactions Between rAl and rIFC Associated
with Inhibitory Cue Anticipation in SST2

Finally, we compared the strength of causal interactions
between visual cortex and rAl and rIFC on SuccStop trials with
low, compared with high, psiop in the SST2 task (anticipation
model). BMS revealed that the winning family was “rVis — rAI
& 1IFC” (Figure S4). The posterior probabilities were 19%, 14%,
and 67%, and the exceedance probabilities were 0.02%, 0%, and
99.8% for the “rVis — rAl,” “rVis — rIFC,” and “rVis — rAl & rIFC”
families, respectively. Aggregating the models within the winning

(a) Causal Interaction

Strength g
= exp(0.0) 3
— = exp(05) o

= exp(10)

&
g

F 74\

omoﬂ )
t 164£0.12

SuccStop-low-p_

SuccStop-high-p,, .,

—_
(=)

Modulatory Connectivity

Dissociable Prefrontal Control Signals Caietal. | 7

family, we found a strong interaction between factors psop
(high vs. low) and causal direction (rAl — 1IFC vs. 1IFC — rAl)
(P < 0.01, Fig. 4a). Specifically, the strength of rIFC — rAl con-
nectivity was significantly greater on SuccStop trials with high,
compared with low, psop (P < 0.01, Fig. 4b).

Interestingly, the strength of extrinsic input into visual cortex
was significantly greater on SuccStop trials with low, compared
with high, psiop (P = 0.01), which suggests that infrequent stop
signals have a greater influence on the rVis-rAl-rIFC network
when participants are less prepared to detect stop signals.

Discussion

We investigated the differential roles of rAl and rIFC subdivi-
sions of right FOI in detection and anticipation of inhibitory
cues. A novel aspect of our study is the analysis of dynamic
causal interactions of rAl and rIFC with primary sensory
regions and how these interactions change with subjective
anticipation of inhibitory cues. Across 2 different experiments,
we demonstrate that sensory regions have a stronger causal
influence on rAlI than on rIFC, suggesting that rAl plays a more
important role in inhibitory cue detection. Crucially, we also
found that the strength of causal influence from rIFC to rAl
increased when participants had higher levels of anticipation of
inhibitory cues. Our findings significantly advance knowledge of
how a key FOI control system interacts with inputs from primary
sensory regions and how these interactions are modulated by
subjective changes in expectation of inhibitory cues.

Primary Sensory Cortex has Stronger Influences on rAl
than on rIFC During Detection of Inhibitory Cues

While rAI and rIFC subdivisions of FOI have both been consist-
ently implicated in detection of behaviorally salient and infre-
quent inhibitory cues, how these regions interact with sensory
cortex is poorly understood. Here we show that primary sen-
sory cortices have differential influences on rAl and rIFC during
inhibitory cue detection. Specifically, the strength of causal
influences to rAl from sensory regions is greater than that of
influences to rIFC. Importantly, we replicated this finding in
2 independent studies in which stop signals were presented
through different sensory channels. These results demonstrate
that sensory inputs help dissociate the differential roles of the
2 subdivisions of FOI, with rAlI playing a more dominant role in
inhibitory cue detection during cognitive control.
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Figure 4. Dynamic causal interactions of the FOI associated with anticipation of inhibitory cues. (a) Causal interactions associated with successfully stopping on trials
with low and high probability of anticipating inhibitory cues (SuccStop-low-pgop, SuccStop-high-psiop). (b) The strength of casual interactions from the IFC to Al was
significantly greater during trials with high, compared with low, probability of anticipating inhibitory cues (low-psop Vs high-pgiop). *P < 0.05; P < 0.01. Line and arrow

width is set as exponential power of estimated weight.
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Our findings are relevant to a more general reconsideration
of the role of rAl and rIFC in detection of behaviorally salient
signals via interactions with sensory cortex. Previous studies of
the classic “oddball” task have also consistently reported coac-
tivation of rAl and rIFC during detection of infrequent targets
(e.g. Linden et al. 1999). Like the stop-signal task, the oddball
task requires inhibiting a frequent/dominant response followed
by either withholding a response or initiating a different
response (Crottaz-Herbette and Menon 2006). An influential
model has proposed that the ventral attention system is spe-
cialized for stimulus-driven (or bottom-up) attention, with rIFC
as the key prefrontal cortex node (Corbetta and Shulman 2002).
The role of Al in stimulus-driven attention has, however, been
less clear despite consistent reports of its coactivation with
1IFC (Levy and Wagner 2011). Our findings are consistent with a
network model, which posits that Al, a key node of the salience
network, plays a more crucial role in detecting behaviorally
important or salient signals and triggering access to the dorsal
fronto-parietal attentional network (Menon and Uddin 2010). A
previous study also revealed a strong causal influence from a
multisensory processing region to rAl while detecting oddball
signals (Chen et al. 2015). Our findings extend the current
understanding of how rAl and rIFC interact with bottom-up
sensory inputs.

rAl and rIFC Respond Differently to Low-Probability
Inhibitory Cues

Inhibitory control can be modulated not only by task demands
but also by trial-by-trial variations in inhibitory cue anticipa-
tion (Verbruggen and Logan 2009; Cai et al. 2011). The question
of how fronto-operculo-insular inhibitory control regions
dynamically adjust their interactions with sensory cortex in
response to changing subjective inhibitory cue expectations
has not received adequate attention. Our study was designed to
test a key prediction related to previous findings of differential
responses of rAl and rIFC during unsuccessful stop trials (Cai
et al. 2014). It has been shown that participants make more
errors on stop trials when the estimated subjective probability
of stop signals is low (Ide et al. 2013). While rAl and rIFC show
similar levels of activation on successful stop trials, rAl shows
greater activation than rIFC on unsuccessful stop trials (Cai
et al. 2014). Because stop signals occur late and unexpectedly
during unsuccessful stop trials (Logan et al. 1984; Verbruggen
and Logan 2008), greater activation is likely related to detection
of these highly unexpected and salient signals (Ide et al. 2013).
It is therefore likely that this pattern may extend more gener-
ally to trials with low inhibitory cue expectation. Indeed, we
found that rAl shows greater activation than rIFC on successful
stop trials with low relative to high inhibitory cue expectation.
These findings demonstrate that rAl responses can be disso-
ciated from those of rIFC and that rAl sensitivity to less
expected events is important for successful inhibition. They
also suggest a more crucial role for rAl in the bottom-up atten-
tion system during detection of surprising events, consistent
with the hypothesized role of this region within the salience
network (Menon and Uddin 2010; Cai et al. 2014; Uddin 2015).

Causal Influences from rIFC to rAl are Stronger in
Response to High-Probability Inhibitory Cues
The next question we addressed was how dynamic interactions

between rAl, rIFC, and sensory regions are altered by anticipa-
tion of inhibitory cues. We compared the strength of dynamic

interactions on trials with low versus high stop-signal probabil-
ity. We found that the strength of causal influences from rIFC
to rAl was stronger on successful stop trials with high stop-
signal probability. These results point to a “top-down” control
signal from rIFC to rAl when participants believe that stop sig-
nals are more likely to occur, a finding consistent with the
putative role of rIFC in proactive control (Aron 2011). Our find-
ings are consistent with and extend results from previous stud-
ies, which have pointed to the involvement of rIFC in the
preparatory phase of response inhibition (Chikazoe et al. 2009;
Boehler et al. 2010; Jahfari et al. 2010; Swann et al. 2012).
However, these previous studies have not examined the differ-
ential role of rAl or dynamic causal interactions between rAl
and rIFC in proactive control. Our findings demonstrate that
rIFC exerts stronger top-down modulation over rAl when stop-
signal expectation is high, thereby facilitating detection and
inhibition of responses to behaviorally salient inhibitory cues.

Dissociable Roles of rAl and rIFC in Inhibitory Control

Our study provides strong and replicable evidence that rAl and
rIFC play different roles in anticipation and detection of behav-
iorally salient signals in inhibitory control. Analysis of context-
specific dynamic causal interactions, together with comparison
of activation levels, demonstrates that rAl is more involved in
bottom-up salient inhibitory cue detection, especially when
detecting less expected signals. In contrast, rIFC plays a more
important role in top-down modulation of the rAl node of the
salience network when expectation of inhibitory cue is high.
This double dissociation has important implications for advan-
cing our understanding of trial-by-trial variations in stimulus-
driven detection and goal-relevant expectation during inhibi-
tory control. We propose that when inhibitory cue expectation
is low, rAl signals other brain regions in the cognitive control
network to implement inhibitory control in a reactive control
mode. In contrast, when anticipation of a need for inhibitory
control is high, rIFC modulates rAl, thereby facilitating inhibi-
tory cue detection and proactive control.

Our findings help address unresolved issues regarding the
role of rIFC in inhibitory control versus attention capture.
While most previous studies have treated rAl and rIFC subdivi-
sions of FOI as one functionally homogeneous cluster, the pre-
sent findings provide robust evidence for further dissociations
between the functional roles of rAl and rIFC in inhibitory cue
anticipation and detection. Thus, “inhibitory control” should
not be viewed as a unitary construct but rather as a dynamical
process of interactive top-down and bottom-up influences that
vary on a trial-by-trial basis with changing expectations and
surprise.

Limitations and Future Directions

Beyond the FOI, inhibitory control also involves several other
cortical and subcortical regions (Levy and Wagner 2011; Swick
et al. 2011; Cai et al. 2014). Extending analysis of dynamic cau-
sal interactions to a large number of nodes remains an import-
ant challenge for DCM because of the exponential increase in
the number of models to be tested with a linear increase in the
number of nodes. Future studies will need to extend this work
to include pre-supplementary motor area, ACC, and basal gan-
glia to develop a more comprehensive computational model of
the inhibitory control network. Finally, a limitation of DCM is
that Bayesian evidence for the “winning” models may not be
significantly higher than models with the second highest
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evidence. However, the fact that the same winning model was
chosen in multiple tests across 2 different data sets points to
the robustness of our findings. As reproducibility is a major
concern in all of neuroscience and particularly in fMRI studies
(Button et al. 2013), it is more critical to demonstrate reproduci-
bility and stability of causal interactions as we have.

Conclusions

Our findings provide new insights into dynamic causal
mechanisms underlying inhibitory control in the human brain.
We focused on rAl and rIFC, 2 key nodes of the salience and
ventral attentional networks, and demonstrated their distinct
roles in inhibitory control. We found that sensory inputs have a
stronger causal influence on rAl during inhibitory cue detec-
tion. Importantly, we replicated this finding in 2 independent
data sets and in 2 sensory domains. Furthermore, greater
inhibitory cue anticipation is associated with stronger casual
influences from rIFC to rAl. Our findings advance current
knowledge of the functional architecture of neurocognitive sys-
tems involved in cognitive control and have the potential to
inform investigations of cognitive control in disorders, such as
ADHD, autism, and schizophrenia.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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