Classification of Malignant & Benign Peripheral Nerve Sheath Tumors

With an Open Source Feature Selection Platform

Michael Zhang, MD
Mentors: S. Gambhir, K. Yeom, S. Napel
April 22, 2020 – Day 37
Outline

Goal: Develop a binary classifier (Malignant/Benign) with MRI

- Background:
 - Malign and Benign PNST
 - Current Clinical Workflow

- Methods:
 - Feature Selection: QIFP
 - Feature Optimization

- Results

- Future Directions
Malignant and Benign PNST

Peripheral Nerve Sheath Tumors

- **Benign**
 - Neurofibroma
 - Schwannoma
 - Perineuroma
 - Hybrids
 - Ganglioneuroma

- **Malignant**
 - MPNSTs
 - Sarcomas
 - Metastasis
MPNST – Can’t Miss Diagnosis

- Natural History
 - 5-year survival 30-50%
 - 50% occur in Neurofibromatosis (NF1)
 - 5-10% subset of total NF1

- Pathophysiology
 - **Malignant Transformation**
 - NF → Plexiform → Malignancy
 - Invasion and metastasis → morbidity and surgical difficulty
Neurofibromatosis 1 (NF1)

Clinical History

- Criteria (2 of 7)
 - Café-au Lait Spots
 - Axillary/Inguinal Freckling
 - Neurocutaneous Lesions
 - Optic gliomas
 - Iris hamartomas
 - Sphenoid Dysplasia
 - Axillary/Inguinal Freckling
 - First degree relative
Current Approaches

Treatment: Surgical Cure

Diagnosis

- **MRI:**
 - Qualitative features
 - ADC
 - DTI
- **PET:** SUV > 3.5
- **Gold Standard: Surgical Biopsy**

Wasa et al. - MRI Criteria

With 2 of 4 – 61% sens, 90% spec

1. Diameter > 5 cm
2. Peripheral tumor enhancement
3. Perilesional edema
4. Intra-tumoral cyst
Radiographic Ambiguity

MRI T1 with Gad Fat Sat

- Neck – NF1
- Right Thigh – Plexiform with malignant transformation
- Left Thigh – MPNST
- Right RP – MPNST
Additional Tools: PET, Derlin et al.

SUV\text{max} \geq 3.5
- 100% Sensitive
- 54.5% Specific
- 47.4% PPV

MRI comparison
- 66.7% sensitive
- 90% specific
- 75% PPV
Surgical Morbidity

MPNST, Surgical Goal: complete resection without damaging function—total resection is curative

Benign, Schwannoma: simpler procedure involving, single nerve root and displacing uninvolved fascicles

Benign, NF: single or multiple nerves can traverse tumor → possible functional implications
Surgical Morbidity: MPNSTs

- Greater fascicular
- Neighboring tissue involvement
- Wide excisional margins
- Possible seeding
- Repeat surgical encounters
Outline

Goal: Develop a binary classifier (Malignant/Benign) with MRI

- **Background**:
 - Malign and Benign PNST
 - Current Clinical Workflow

- **Methods**:
 - Feature Selection: QIFP
 - Feature Optimization

- **Results**

- **Future Directions**
Workflow

Goal: Identify radiographic imaging features that will correctly classify MPNSTs & Benign PNSTs

- Imaging Segmentation
- Feature
 - Extraction
 - Selection
 - Optimization
- Prediction Analysis
Workflow

Goal: Identify radiographic imaging features that will correctly classify MPNSTs & Benign PNSTs

- **Input**: MRI T1-gad with Fat Suppression
- **Output**: Classification Label
Workflow

- Imaging Segmentation
- Feature
 - Extraction
 - Selection
 - Optimization
- Prediction Analysis
Workflow

- Imaging Segmentation
- Feature
 - Extraction
 - Selection
 - Optimization
- Prediction Analysis

QIFP: Quantitative Imaging Feature Pipeline
Workflow

1. QIFP Feature Extraction
 - 900 features

2. QIFP LASSO
 - glmnet-package
 - 10x Cross Validation

3. QIFP Preliminary model
Workflow

- Imaging Segmentation
- Feature
 - Extraction
 - Selection
 - Optimization
- Prediction Analysis

Random Forest

Gradient Boost

Stanford University
Outline

Goal: Develop a binary classifier (Malignant/Benign) with MRI

- **Background**:
 - Malign and Benign PNST
 - Current Clinical Workflow

- **Methods**:
 - Feature Selection: QIFP
 - Feature Optimization

- **Results**

- **Future Directions**
RF and GBM

- Metrics
 - Similar values between models
 - Confusion matrix without high “Can’t Miss” population
 - Would benefit from higher N and balanced cohorts

- Interpretations
 - Variable Importance ranking is different between models
 - Some features match Radiologists’ methodology
 - Clinical features suggest ”pain” is very predictive as well
Future Directions

MPNST vs BPNST
- Address imbalance, increase MPNST sampling
- Tuning
 - LASSO feature selection by multiple seeds and union
 - GBM n.trees and n.dimensions

Schwannoma vs Neurofibroma
Multinomial - Hybrids
Pediatric Glioblastoma
Acknowledgements

Dr. Sam Gambhir
Professor Sandy Napel
Dr. Kristen Yeom

PNST Team
- Dr. Elizabeth Tong
- Dr. Thomas Wilson
- Dr. Mark Mahan
- Lydia Tam
- Edward Lee

QIFP Team
- Sarah Mattonen
- Dev Gude
- Jarrett Rosenberg
- Tie Jiang

Stanford Neurosurgery
- Dr. Gary K. Steinberg
- Dr. Gerald Grant
- Dr. Gordon Li