Investigating the use of Ultra High-Field MRI as a Theranostic Thermal Therapy Platform

Joshua de Bever, PhD
Department of Radiology
Stanford University
Brain Mets: Motivation and Challenges

• Most common type of brain tumors
 • ~200,000 cases per year (USA)
 • > all intracranial tumors
 • Primary cancers: Lung, Breast, Melanoma

• Treatment options
 • Surgical resection
 • Whole-brain radiation therapy (WBRT)
 • Corticosteroids
 • Stereotactic Radiosurgery (SRS)

• Median overall survival:
 • Untreated: 1 month
 • With treatment: 3-11 months
One Solution: MR Guided Focused Ultrasound (FUS)
FUS Through Skull Flap

No Correction

After Phase Correction

Courtesy of Scott Almquist – Univ. Of Utah
Multiple Brain Metastases

Fink, SNI, 2013
Ultra High-Field MRI

- MRI w Gd leads in BM detection
- 66-75% of patients who present with a single lesion on CT actually have multiple lesions
- Higher Field = More Signal
- Increase: Resolution, speed, etc

Fink et al, SNI, 2013
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

Local SAR MIP (W/kg)

FA error (%)

Sagittal Coronal Axial

BIRDCAGE MODE

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

BIRDCAGE MODE

FA error (%)

Local SAR MIP (W/kg)

SAGITTAL
CORONAL
AXIAL

SAGITTAL
CORONAL
AXIAL

SAR UNAWARE

Grissom, MRM 2012;68:1553–1562

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

BIRDCAGE MODE

SAR UNAWARE¹

IMPULSE

FA error (%)

Local SAR MIP (W/kg)

Sagittal Coronal Axial

Sagittal Coronal Axial

Sagittal Coronal Axial

¹Grissom, MRM 2012;68:1553–1562

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Ultra High-Field MRI: Challenges

SPGR
- TR = 4000 ms
- FA = 30°

<table>
<thead>
<tr>
<th>FA error (%)</th>
<th>Local SAR MIP (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

ΔT
- 0.45°C
- 0.86°C
- 0.51°C

BIRDCAGE MODE

SAR UNAWARE

IMPULSE

Grissom, MRM 2012;68:1553–1562

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Q: Can this undesired heating been turned into something positive?
Focused RF (FRF)
Hardware Configurations

#1: Dedicated RF Applicator

Magnet

Dedicated RF applicator

#2: All-In-One

Magnet

pTx Coil Used as RF Applicator & Imaging
FRF Design Study
SPEAG Sim4Life

• FDTD Electromagnetic simulations

• Virtual Family – Realistic body models

• Working with SPEAG on accelerating simulations
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
ElemeD Design

- Can vary multiple parameters:
 - Width
 - Height
 - Conductor width
 - Radius of corner curvature
 - Cuts on horizontal rungs
 - Cuts on vertical rungs
 - Cut width
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
Element Tuning Simulation
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
Simulation Time

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Sim. Time Per Chan. [Hours]</th>
<th>8 Chan Sim. Time [Hours]</th>
<th>32 Chan Sim. Time [Hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>26.6</td>
<td>212 (8.8 days)</td>
<td>851 (35 days)</td>
</tr>
<tr>
<td>GTX 670</td>
<td>4.08</td>
<td>32.7</td>
<td>130.6 (5.4 days)</td>
</tr>
<tr>
<td>Titan Black x2</td>
<td>1.23</td>
<td>9.8</td>
<td>39.4 (1.6 days)</td>
</tr>
</tbody>
</table>
Sherlock Computing Cluster

- Sherlock – 48 GPUs
 - 2 * 8x Tesla 20X
 - 3 * 8x Titan Black
 - 1 * 8x K80

- Collaborating with SPEAG S4L

- Granted us a special multi-GPU license
Simulation Time

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Sim. Time Per Chan. [Hours]</th>
<th>8 Chan Sim. Time [Hours]</th>
<th>32 Chan Sim. Time [Hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>26.6</td>
<td>212 (8.8 days)</td>
<td>851 (35 days)</td>
</tr>
<tr>
<td>GTX 670</td>
<td>4.08</td>
<td>32.7</td>
<td>130.6 (5.4 days)</td>
</tr>
<tr>
<td>Titan Black x2</td>
<td>1.23</td>
<td>9.8</td>
<td>39.4 (1.6 days)</td>
</tr>
</tbody>
</table>
Simulation Time

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Sim. Time Per Chan. [Hours]</th>
<th>8 Chan Sim. Time [Hours]</th>
<th>32 Chan Sim. Time [Hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>26.6</td>
<td>212 (8.8 days)</td>
<td>851 (35 days)</td>
</tr>
<tr>
<td>GTX 670</td>
<td>4.08</td>
<td>32.7</td>
<td>130.6 (5.4 days)</td>
</tr>
<tr>
<td>Titan Black x2</td>
<td>1.23</td>
<td>9.8</td>
<td>39.4 (1.6 days)</td>
</tr>
<tr>
<td>Sherlock: K80 x8</td>
<td>0.48</td>
<td>3.8</td>
<td>15.4</td>
</tr>
</tbody>
</table>
FRF Coil Design Study

1. Set Element Design
2. Simulate Element Tuning
3. Generate Array Coil
4. Full n-Chan EM Simulation
5. Targeting with Max-SAR
6. Simulate Temperature Rise
Complex Channel Weightings

SAR Maximum Intensity Projections

Target 1

Target 2

Target 3

Complex Channel Weightings
Potential

• FRF has all the positives of MRgFUS
 • Non-invasive, monitoring, free of ionizing radiation, etc.

• Hyperthermia
 • Can improve outcomes of radiation and chemotherapy
 • Treat multiple metastases

• Ablation - Direct cell death
 • May not be possible

• BBB Opening
Conclusion & Next Steps

• Design study of FRF coils using S4L
 • Realistic body models
 • Built automated tools for generating arrays

• Simulations working on Sherlock GPU Cluster
 • Design study would be very difficult otherwise
 • Has application to real-time Min-SAR pTx pulses

• Experimentally verify simulations in simple phantom
Acknowledgements

• Stanford SCIT (NCI)
 – Prof. Brian Rutt
 – Dr. Riccardo Stara
 – Mihir Pendse
 – Scott Almquist

– SPEAG sim4life
THANK YOU!