Ultra High-Field MRI as a Therapeutic Modality for the Treatment of Brain Metastases with Comparison to MR Guided Focused Ultrasound

Joshua de Bever, PhD
Department of Radiology
Stanford University
Overview

• Brain Mets: Motivation and Challenges

• MR guided Focused Ultrasound (MRgFUS)

• Ultra High-Field (UHF) MR Hyperthermia
 • “Focused RF”
Brain Mets: Motivation and Challenges

• Most common type of brain tumors
 • ~200,000 cases per year (USA)
 • > all intracranial tumors

• Treatment options
 • Surgical resection
 • Whole-brain radiation therapy (WBRT)
 • Corticosteroids
 • Stereotactic Radiosurgery (SRS)

• Median overall survival:
 • Untreated: 1 month
 • With treatment: 3-11 months

T1w - Gd
Ultra High-Field MRI

- MRI w Gd leads in BM detection
- 66-75% of patients who present with a single lesion on CT actually have multiple lesions
- Higher Field = More Signal
- Increase: Resolution, speed, etc

Fink et al, SNI, 2013
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

FA error (%)

Local SAR MIP (W/kg)

BIRDCAGE MODE

Sagittal Coronal Axial

Courtesy of: Mehrir Pendse, ISMRM 2015 #573
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

BIRDCAGE MODE

SAR UNAWARE

FA error (%)

Local SAR MIP (W/kg)

Sagittal Coronal Axial

Sagittal Coronal Axial

Grissom, MRM 2012;68:1553–1562

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

BIRDCAGE MODE

SAR UNAWARE

IMPULSE

FA error (%)

Local SAR MIP (W/kg)

Sagittal Coronal Axial

Sagittal Coronal Axial

Sagittal Coronal Axial

Courtesy of: Mehir Pendse, ISMRM 2015 #573

1Grissom, MRM 2012;68:1553–1562
Ultra High-Field MRI: Challenges

SPGR
TR=4000ms
FA = 30°

FA error (%)

Local SAR MIP (W/kg)

Measured ΔT

0.45°C

0.86°C

0.51°C

BIRDCAGE MODE

SAR UNAWARE

IMPULSE

Coronal

5

-100

0

100

-100

Local SAR MIP (W/kg)

Sagittal

Coronal

Axial

Sagittal

Coronal

Axial

Sagittal

Coronal

Axial

Grissom, MRM 2012;68:1553–1562

1Grissom, MRM 2012;68:1553–1562

Courtesy of: Mehir Pendse, ISMRM 2015 #573
Q: Can this undesired heating been turned into something positive?
Overview

• Brain Mets: Motivation and Challenges

• MR guided Focused Ultrasound (MRgFUS)

• Ultra High-Field (UHF) MR Hyperthermia
 • “Focused RF”
• PhD – Robotics
 • NSF IGERT Award

• Dennis Parker
• Robert Roemer
• Doug Christensen
• John Hollerbach
MR Guided Focused Ultrasound

FUS creates *localized* intense heating

MRI provides anatomical imaging and monitoring
Cancer Therapy Wish List: MRgFUS

- ✔ Non-Invasive
- ✔ Free of Ionizing Radiation
- ✔ Free of Toxic Chemicals
- ✔ Monitoring: MR thermometry
MRgFUS Cancer Therapy

• Treatment goals:
 • Kill all cancerous tissue
 • Protect healthy tissue
 • Minimize treatment time

Ultrasound transducer (US) produces localized intense heating.
Treat next location in tumor by electronically steering beam.
Multiple pulses needed to treat entire tumor.
Phased-Array allows 3D focal spot steering *without* physical movement of transducer
MR Thermometry
Robotics

Perception -> Cognition -> Action
Robotics

Perception → Cognition → Action
Robotics

Perception → Cognition → Action
Adaptive Model-Predictive Controller (AMPC)
Control Loop

MRI → Ethernet → Controller (Matlab) → Fiber → US Generator

1. Temperature Measurement
2. US command
Control Challenges

• Protect healthy tissue

• Conform treatment to tumor shape, may be surrounded by complex anatomy

• MRgFUS treatments take a long time

• Faster heating makes control more difficult
Thermal Dose and Tissue Damage

- 240 CEM = Tissue Necrosis
- Dose rate **doubles** every 1°C rise

\[CEM_{43} = \int R^{(T(t)-43)} dt \]

\[\begin{align*}
T \geq 43^\circ C : R &= 2 \\
T \leq 43^\circ C : R &= 4
\end{align*} \]

CEM: Cumulative Equivalent Minutes @ 43°C

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time to Deliver 240 CEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 °C</td>
<td>240 min</td>
</tr>
<tr>
<td>44 °C</td>
<td>120 min</td>
</tr>
<tr>
<td>50 °C</td>
<td>~2 min</td>
</tr>
<tr>
<td>55 °C</td>
<td>~3.5 sec</td>
</tr>
</tbody>
</table>
Treatment Without Prediction

- Haven’t reached 240 CEM target dose. US beam stays on.
- 200 CEM
- 1,000 CEM!
- 2,000 CEM!!

Discrete MR Measurement
True Temp.

Time
Temperature
Adaptive Model-Predictive Control

- Discrete MR Measurement
- Model Prediction

Temperature vs. Time graph with predicted stop times at 180 CEM and 240 CEM.
Adaptive Model-Predictive Controller

• Patient specific model derived and adapted in real-time
 • Reduced setup time, adapts to changing tissue environment

• Protect normal tissue w. configurable temperature constraints

• Conform treatment using any path or treatment scheme
Prediction Model

- Every treatment voxel modeled by:
 - Exponential Heating
 \[
 T_{\text{heat}_i}(t) = A \left(1 - e^{-t/\tau_{\text{Heat}_i}} \right) + C
 \]
 - Exponential Cooling
 \[
 T_{\text{cool}_i}(t) = -A e^{-t/\tau_{\text{cool}_i}} + C
 \]
Adaptive Model-Predictive Control

Predicted Stop Time

Time

Temperature

Discrete MR Measurement

Model Prediction

240 CEM
Normal Tissue Safety

Controller starts US

Controller stops US

43 °C

41 °C

Controller starts US

Controller starts US
Results: Simulation

Prediction saves time!

AMPC can protect healthy tissue
Results: Simulation

- Prediction **Disabled**
 - Median: 886 CEM
 - 44 safety violations

- Prediction **Enabled**
 - Median: 450 CEM
 - 30 safety violations

Prediction delivers target dose more accurately. Improved safety, time saved.
In Vivo: Experiment Setup

Sagittal Slice

Coronal Slice
Results: In Vivo - Efficacy
Transcranial FUS
Transcranial FUS
FUS Through Skull Flap

No Correction

After Phase Correction

Courtesy of Scott Almquist – Univ. Of Utah
Essential Tremor

PRE-TREATMENT

POST-TREATMENT
Treating Brain Metastases
Transcranial FUS
Transcranial FUS: Challenges
Multiple Brain Metastases

Fink, SNI, 2013
Overview

• Brain Mets: Motivation and Challenges

• MR guided Focused Ultrasound (MRgFUS)

• Ultra High-Field (UHF) MR Hyperthermia
 • “Focused RF”
Ultra High-Field MRI: Challenges

BIRDCAGE MODE

SAR UNAWARE\(^1\)

IMPULSE

SPGR
TR=4000ms
FA = 30°

FA error (%)

Local SAR MIP (W/kg)

Measured ∆T

0.45°C

0.86°C

0.51°C

Coronal

Sagittal

Coronal

Axial

Sagittal

Coronal

Axial

Sagittal

Coronal

Axial

Courtesy of: Mehir Pendse, ISMRM 2015 #573

\(^1\)Grissom, MRM 2012;68:1553–1562
Q: Can this undesired heating been turned into something positive?
A: We’re going to find out....
Configuration 1: Dedicated Applicator

Advantages:
- Applicator is close to anatomy; better spatial control
- Thermometry and hyperthermia can occur simultaneously
- Frequency of applicator can be different from imaging frequency

Disadvantages
- More hardware, cables
- Coupling between two transmitters is possible

Courtesy of: Mihir Pendse, ISMRM 2015 #3224
Configuration 2: All-In-One

Advantages
• Single piece of hardware: fewer cables and coupling issues

Disadvantages
• Only possible at ultra-high-fields
 • Need high Larmour frequency to achieve focal heating
• Must interleave hyperthermia & imaging
• Spatial control is limited by size and frequency of pTx coil

pTx coil used as RF applicator

Courtesy of: Mihir Pendse, ISMRM 2015 #3224
Optimize for MAX-SAR instead of MIN-SAR
Max SAR Algorithm: Focused RF

- 8ch pTx coil for 7T (298 MHz)
 - Loop height = 16 cm
 - Loop width = 5 cm
 - Coil diameter = 28.5 cm

Courtesy of: Mihir Pendse, ISMRM 2015 #3224
<table>
<thead>
<tr>
<th>Target 1</th>
<th>SAR Maximum Intensity Projections</th>
<th>W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target 2</th>
<th>SAR Maximum Intensity Projections</th>
<th>W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target 3</th>
<th>SAR Maximum Intensity Projections</th>
<th>W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Complex Channel Weightings
Potential

• FRF has all the positives of MRgFUS
 • Non-invasive, monitoring, free of ionizing radiation, etc.

• Hyperthermia
 • Can improve outcomes of radiation and chemotherapy
 • Treat multiple metastases

• Ablation - Direct cell death
 • May not be possible
 • Increase local SAR via Tumor-Targeted Nanoparticles?

• BBB Opening
Road Map

• Investigate optimal coil designs
 • Sim4Life – Realistic body models

• Simulate treatments
 • Integrate adaptive model-predictive controller

• Experimentally verify simulations with 8-Ch pTx coil on 7 T MRI
Acknowledgements

- Stanford SCIT (NCI)
- NSF IGERT Award# 0654414
- Mark H. Huntsman
 Endowed chair
- NIH grants R01 CA172787 & R01 CA134599
- The Margolis Foundation
- Focused Ultrasound
 Surgery Foundation

Prof. Brian Rutt
Mihir Pendse
Prof. Dennis Parker
Prof. Douglas Christensen
Prof. Robert Roemer
Prof. Allison Payne

Dr. Christopher Dillon
Dr. Henrik Odéen
Robb Merrill
Emilee Minalga
Alexis Farrer
Sara Johnson
Scott Almquist
Bryant Svedin
THANK YOU!