Image-guided ultrasound facilitated drug delivery into tumors: optimization of treatment strategy based on quantitative measurement of cavitation

Presenter: Tzu-Yin Wang

Mentors: Juergen Willmann
 Kim Butts-Pauly

Department of Radiology
Molecular Imaging Program at Stanford
School of Medicine, Stanford University
Background

- **Cavitation**: expansion, contraction, collapse of air encapsulated microbubbles

- **Sonoporation**: cavitation \(\rightarrow\) cell/vessel disruption \(\rightarrow\) delivery of therapeutics into target cells/tissues
Goal

• Optimize treatment strategies for US-assisted delivery into tumor
 – Effects of acoustic and microbubble parameters
 – *In vivo* treatment platform
 – Image guidance of treatment
Phantom study: Experimental setup

- L7-4 probe \rightarrow ACTIVE cavitation monitoring
- P4-1 probe \rightarrow cavitation
- MB injection
- Active/passive cavitation detector
- Cavitation generation
- MBs
Passive cavitation detection (PCD)

- Incident US
- Scattered US
- Bubble response
- Power spectrum
- Frequency [MHz]
- Norm magnitude [dB]
- Time [µs]
- Pressure [MPa]
- Bubble radius [µm]
Quantification of cavitation

Temporal integral ➔ inertial cavitation dose (ICD)

(2) Duration of cavitation

(3) Mean RMS value during onset of cavitation
Active cavitation detection

Molecular Imaging Program at Stanford

Presence of MBs \rightarrow high image intensity and acoustic shadowing

US \rightarrow destruction of MBs

Destruction of MBs \rightarrow reduced image intensity

B-mode image intensity \downarrow \rightarrow MB destruction
Experimental series

Total treatment time = 2 sec (200 pulses).

<table>
<thead>
<tr>
<th>Series</th>
<th>Frequency (MHz)</th>
<th>P- Pressure (MPa)</th>
<th>PD (cycles)</th>
<th>PRF (Hz)</th>
<th>MB (BR38) (count/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1</td>
<td>1.8</td>
<td>0.6 – 5.4</td>
<td>5</td>
<td>100</td>
<td>1×10^8</td>
</tr>
<tr>
<td>Series 2</td>
<td>1.8</td>
<td>2.4</td>
<td>3, 5, 7, 10, 15</td>
<td>100</td>
<td>1×10^8</td>
</tr>
<tr>
<td>Series 3</td>
<td>1.8</td>
<td>3.0</td>
<td>5</td>
<td>10, 20, 50, 100</td>
<td>1×10^8</td>
</tr>
<tr>
<td>Series 4</td>
<td>1.8</td>
<td>3.0</td>
<td>5</td>
<td>100</td>
<td>$4 \times 10^6 \sim 2 \times 10^8$</td>
</tr>
</tbody>
</table>
Passive cavitation detection in tissue phantoms

- Pressure (MPa) vs. ICD (V·s)
- Pulse length (cycles) vs. ICD (V·s)
- PRF (Hz) vs. ICD (V·s)
- MB concentration (count/mL) vs. ICD (V·s)
Active cavitation detection in tissue phantoms

5.4 MPa

1.8 MPa

MB destruction zone
Active cavitation detection in tissue phantoms

Post-treatment image magnitude

Bubble destruction zone (width)

Image magnitude (A.U.)

Pressure (MPa)

Bubble destruction zone (mm)

Pressure (MPa)

N=4 for each

MIPS: Molecular Imaging Program at Stanford

Stanford University
Department of Radiology & BIO-X, School of Medicine
In vivo treatment platform

- MBs: PFC core, lipid shelled MBs
- Tumor model: Subcutaneous tumor on mice
- Model drugs:
 - 40nm polymer NPs
 - 130nm PLGA NPs
Active cavitation detection \textit{in vivo}

MB destruction @ 3 MPa
Active cavitation detection

- Treatment monitoring

MB destruction @ 3 MPa
Control: tail vein injection, 4hrs

Penetration depth <2 cell layers near the vessels

Small amount of leakage due to EPR
Penetration at least 3 cell layers with high dose
Ultrasound + microbubble, 24 hrs

Penetration depth: 5 cell layers with high dose
Summary

• Ultrasound image-guided drug delivery platform in vivo allows for treatment monitoring in real-time.
• Successful microbubble cavitation was achieved in phantoms and in vivo.
• Detectable delivery of 40-nm polymer nanoparticles into tumors with US and MB treatments.
Future work

• Effects of acoustic parameter, MB parameters, scanning protocol in drug delivery in vivo
• Spatial extent of drug distribution
• Maximum deliverable size of drugs