In-line MRI-linac Configuration

Dragoș E. Constantin†

†Radiological Sciences Laboratory
Department of Radiology
Stanford University

RSL Meeting
Stanford - March 7, 2012
1 Introduction
 - In-line MRI-linac Configuration
 - Methods and Materials
 - Previous Results

2 Linac Components
 - The Electron Gun
 - The Accelerating Waveguide
 - The Treatment Head

3 Concluding Remarks
 - Passive Magnetic Shielding
 - Generalization of the In-line MRI-linac Configuration
 - Magnet Design Constraints
In-line MRI-linac Configuration

Sources:
Methods and Materials

0.5T GE Signa SP (mrT) - Side View

Electron Gun Model with Solution (0T)

References:

- **Software**: Scala, COMSOL, SuperFish, Parmela, Matlab, Python

Varian 600C Waveguide Model (0.13T)
Simulation Model

- COMSOL Multiphysics: MRI magnet fringe field
- SCALA: space charge simulation
- PARMELA: beam transport
- Geant4: radiation simulation
- COMSOL: RF fields

MATLAB, Python, FORTRAN, C++, Bash: data sharing and post-processing

In-line MRI-linac Configuration

Dragoș E. Constantin
GE Signa SP (mrT) MRI Scanner - Magnetic Fringe Field

- mrT Scanner - Sketch
- mrT Scanner Model with Field Lines
- mrT Fringe Field - Radial Component
- mrT Fringe Field - Axial Component
\[\gamma m_0 r^2 \dot{\theta} + \frac{e_0}{2\pi} \Phi_B = \text{const (Bush Theorem)} \]

- The particle trajectory is a helix along the field lines
- An electron beam is magnetically confined close to the axis of symmetry of the system
- As the field increases the radius of confinement decreases

Current dependence on magnetic field

Anode Currents

Cathode characteristics
- Type-M ($\phi = 1.8$ eV) with flat surface
- Workload $4A/cm^2 \Rightarrow R_C = 1.7$mm
- $T = 1189$ K $\Rightarrow I = 0.361$A

Twiss parameters
$\varepsilon_{rms} = 0.4\pi$ mm mrad, $\alpha_{rms} = 4.9$ (0T)
$\varepsilon_{rms} = 0.9\pi$ mm mrad, $\alpha_{rms} = 16.1$ (0.19T)

Solution at 0.19T ($\alpha = 85^\circ$, $d = 5$mm)

Optimized geometry for $B=0.19$T
- $d = 4$mm – 6mm, $\alpha = 80^\circ – 90^\circ$
- Emittance at 0.19T ($\alpha = 85^\circ$, $d = 5$mm)
Linac Capture Efficiency Dependence on Beam Injection Position

![Graph showing the capture efficiency of a linear accelerator as a function of beam injection position. The graph includes a marked experimental value at Z = 15 mm.]
COMSOL - Full Waveguide Solution

- Finite Elements: 594,772
- DOF: 11,488,251
- Memory: ~ 1.4 TB

- Frequency: 2998.812 MHz
- Solution Time: 8102 s
COMSOL - Ez along linac axis
PARMELA - Phase space and beam profile (B=0)
PARMELA - Phase space and beam profile (B=0.15-0.25 T)
PARMELA - Capture Efficiency

\[\varepsilon = 0.395 \text{ mm}\cdot\text{mrad} \]
Electron Gun Passive Magnetic Shielding

![Graph showing field homogeneity versus magnetic field strength for different shield thicknesses and lengths.](image)
Robotic Linac Adaptation (RLA) Configuration

Fringe field lines

Off axis linac position

On axis linac position

MRI magnet poles

BIG QUESTION: Can the active shield be designed such that the fringe field has a higher degree of homogeneity?
Acknowledgments:

- Prof. Rebecca Fahrig (Stanford University)
- Prof. Kim Butts-Pauly (Stanford University)
- Dr. James Clayton (Varian Medical Systems)
- Prof. Steve Conolly (Stanford University)
- Dr. Michael Green (Varian Medical Systems)
- Prof. Paul Keall (The University of Sydney)
- Prasheel Lillaney (Stanford University)
- Prof. Norbert Pelc (Stanford University)
- Prof. Amit Sawant (The University of Texas)
- Prof. Greig Scott (Stanford University)
- Prof. Lei Xing (Stanford University)

Funding Support: NIH grant T32-CA09695