Nuclear Medicine Faculty and Staff

Stanford Faculty

- **Andrei Iagaru, MD**
 Section Co-Chief (Acting)
 Assistant Professor of Radiology (Nuclear Medicine)
 Residency Program Director

- **Andrew Quon, MD**
 Section Co-Chief (Acting)
 Assistant Professor of Radiology (Nuclear Medicine)
 Fellowship Program Director

- **Sanjiv Sam Gambhir, MD, PhD**
 Chairman, Department of Radiology
 Professor of Radiology and Bioengineering
 Professor of Materials Science and Engineering (by courtesy)
 Director, Molecular Imaging Program at Stanford (MIPS)

- **Michael L. Goris, MD, PhD**
 Professor Emeritus of Radiology (Nuclear Medicine)

- **Craig S. Levin, PhD**
 Professor of Radiology, Physics, and Electrical Engineering
 Director, Molecular Imaging Instrumentation Laboratory
 Core Member, Molecular Imaging Program at Stanford

- **L. Ross McDougall, MD, PhD**
 Professor of Radiology and Medicine, Emeritus (Nuclear Medicine)

- **Erik Mittra, MD, PhD**
 Clinical Instructor of Radiology (Nuclear Medicine)

- **Joseph Wu, MD, PhD**
 Associate Professor of Medicine (Cardiology) and Radiology

- **George Segall, MD**
 Professor of Radiology (Nuclear Medicine)
 Chief, Nuclear Medicine Service VA Palo Alto

- **Minal Vasanawala, MD**
 Clinical Assistant Professor of Radiology (Nuclear Medicine)

- **Jeffrey Tseng, MD**
 Clinical Assistant Professor (Affiliated) of Radiology (Nuclear Medicine)

VA Faculty

- **Christine Keeling, MD**
 Clinical Associate Professor (Affiliated)
 of Radiology (Nuclear Medicine)

Adjunct Clinical Faculty

- **Kent Hutchings**
 NMTTP Director

- **Julie Loero**
 CNMT

Administration

- **Lindee Burton**
 Research Coordinator

- **Ming Chou**
 Division Manager

- **Sofia Gonzales**
 Residency and Fellowship Coordinator

- **Elizabeth Gill**
 Administrative Associate

- **Sondra Horn**
 Finance Manager

- **Eundia Jonathan**
 Research Coordinator

- **Donna Niernberger**
 Administrative Associate

- **Mary Troyer**
 Administrative Associate

CyClotron Radiochemistry Facility

- **Frederick T. Chin, PhD**
 Instructor, Radiology (Nuclear Medicine)
 Head, Cyclotron Radiochemistry

- **Sandeep Apte, PhD**
 Postdoctoral Fellow

- **Amit Hetsron, MS**
 Radiochemistry Research Assistant

- **Aileene Hoehne, PhD**
 Postdoctoral Fellow

- **Michelle L. James, PhD**
 Postdoctoral Fellow

- **So–Hee Kim, MS**
 Radiochemistry Research Assistant

- **Zheng Miao, PhD**
 Postdoctoral Fellow

- **George Montoya**
 Cyclotron Production Technician

- **Mohammed Namavari, PhD**
 Radiochemistry Senior Scientist

- **Arutselvan Natarajan, PhD**
 Instructor, Radiology

- **Bin Shen, PhD**
 Postdoctoral Fellow

- **Murugesan Subbarayan, PhD**
 Radiochemistry Senior Research Associate

VA PAHCS

- **Paulo Castaneda**
 CNMT

- **Christabel Chavez**
 CNMT

- **Elizabeth Farmer**
 CNMT

- **Christine Fujii**
 CNMT

- **Matthew Gabriele**
 CNMT

SUMC

- **Julie Loero**
 CNMT

- **Nora Gurevich**
 CNMT

- **Shawna Kinsella**
 CNMT

- **Luan Nguyen**
 CNMT

- **Jayesh Patel**
 Technical Manager

VA Medicine Technologists

- **Luan Nguyen**
 CNMT

- **Shawna Kinsella**
 CNMT

- **Matthew Gabriele**
 CNMT

- **Christabel Chavez**
 CNMT

- **Elizabeth Farmer**
 CNMT

- **Christine Fujii**
 CNMT

- **Murugesan Subbarayan, PhD**
 Radiochemistry Senior Research Associate
Nuclear medicine involves the use of small amounts of radioactive materials (or tracers) to help diagnose and treat a variety of diseases. Nuclear medicine determines the cause of the medical problem based on the function of the organ, tissue or bone. This is how nuclear medicine differs from an x-ray, ultrasound or any other diagnostic test that determines the presence of disease based on structural appearance.

Millions of nuclear medicine tests are performed each year in the United States alone. Nuclear medicine tests (also known as scans, examinations, or procedures) are safe and painless. In a nuclear medicine test, the radioactive material is introduced into the body by injection, ingestion, or inhalation. Different tracers are used to study different parts of the body. The amount of tracer used is carefully selected to provide the least amount of radiation exposure to the patient while still ensuring an accurate test. A special camera (scintillation or gamma camera) is used to take pictures of your body. The camera does this by detecting the tracer in the organ, bone or tissue being imaged and then records this information on a computer screen or on film. Generally, nuclear medicine tests are not recommended for pregnant women because unborn babies have a greater sensitivity to radiation than children or adults. If you are pregnant or think that you are pregnant, your doctor may order a different type of diagnostic test.

PET is a powerful diagnostic test that is having a major impact on the diagnosis and treatment of disease. Because disease is a biological process and PET is a biological imaging examination, PET can detect and stage most cancers, often before they are evident through other tests. PET can also give physicians important early information about heart disease and many neurological disorders, like Alzheimer’s. A PET scan examines the body’s chemistry. Most common medical tests, like CT and MR scans, only show details about the structure of your body. PET is different. It also provides information about function. With a single PET procedure, physicians can collect images of function throughout the entire body, uncovering abnormalities that might otherwise go undetected.

For example, a PET scan is the most accurate, non-invasive way to tell whether a tumor is benign or malignant, sparing patients expensive, often painful diagnostic surgeries and suggesting treatment options earlier in the course of the disease. And although cancer spreads silently in the body, PET can inspect all organs of the body for cancer in a single examination! PET is able to detect extremely small cancerous tumors and very subtle changes of function in the brain and heart. This allows physicians to treat these diseases earlier and more accurately. The earlier the diagnosis, the better the chance for treatment.
EDUCATIONAL PROGRAMS

HTTP://NUCLEARMEDICINE.STANFORD.EDU/EDUCATION/

The Division of Nuclear Medicine and Molecular Imaging offers several programs for medical students and residents and fellows all of which feature a mixture of traditional didactics with strong clinical exposure. Our residents and students service three main hospital facilities: The VA Palo Alto, Lucile Packard Children’s Hospital, and Stanford University Hospital. There are ample clinical research opportunities at the Medical Center and more basic science oriented projects can be found in the Molecular Imaging Program based at the Clark Center.

NUCLEAR MEDICINE RESIDENCY PROGRAM
Program Director: Andrei Iagaru, MD

The Division of Nuclear Medicine and Molecular imaging is training the next generation of world-wide leaders in academic and clinical Nuclear Medicine. We offer a three year residency approved by the American Board of Nuclear Medicine and the Accreditation Council for Graduate Medical Education. The Nuclear Medicine Residency program combines training in basic nuclear instrumentation technology, molecular imaging, and clinical nuclear medicine. We offer a clinical program centered at Stanford University with a Nuclear Medicine satellite that includes the VA Hospital. Training in conventional Nuclear Medicine and PET/CT are provided. A strong basic science program in molecular imaging is also a unique feature of the program.

PET/CT FELLOWSHIP PROGRAM
Program Director: Andrew Quon, MD

The clinical fellowship focuses on all aspects of clinical PET/CT imaging and includes clinical research projects that evaluate emerging molecular imaging technologies related to PET. Clinical duties include helping with the PET/CT service and joint Nuclear Medicine/Radiology read-outs. Features include intensive training in the interpretation of FDG PET/CT, the formulations of imaging protocols, and the daily management of the PET/CT scanner. Training from both Radiology and Nuclear Medicine faculty allow for a unique learning experience not available in most programs. The fellowship lasts one year and is renewable at the end of each academic year.

CLERKSHPIS

Diagnostic Radiology and Nuclear Medicine Clerkship

This clerkship is designed to familiarize medical students with the interpretation of medical images and nuclear medicine studies. The clerkship consists of four weeks of combination seminar and lecture sessions of approximately 3.5 hours per day, with special emphasis on methods used in interpreting chest radiographs, cardiac series, abdominal films, bone films and routine nuclear medicine investigations. Introductory sessions concerning ultrasound, CT and MRI examinations, and mammography are also included. Emphasis of the clerkship is on correlating radiographic or nuclear medicine findings and clinical data in order to arrive at differential diagnoses. Indications for various examinations and radiographic and clinical methods of further exploration of suspected abnormalities are stressed.

Nuclear Medicine Clerkship

This clerkship acquaints students with the basic principles of nuclear medicine, the instrumentation used, the gain of procedures available, and the judgments used to select specific diagnostic or therapeutic procedures and interpret results. The experience should be especially helpful for students planning a career in diagnostic radiology, nuclear medicine, cardiology, or oncology. The student experience includes instruction in radiologic physics, instrumentation, responsibility for selected isotopic procedures, daily teaching rounds for review of all cases studies, and special conferences.

Clinical Elective in Diagnostic Radiology & Nuclear Medicine

Provides an opportunity for a student in the clinical years to have a clinical experience in Diagnostic Radiology or Nuclear Medicine, quality and duration to be decided upon by the student and a faculty preceptor in the Department.

RESEARCH

MOLECULAR IMAGING PROGRAM AT STANFORD (MIPS)
http://mips.stanford.edu/

The Molecular Imaging Program at Stanford (MIPS) was established as an inter-disciplinary program to bring together scientists and physicians who share a common interest in developing and using state-of-the-art imaging technology and developing molecular imaging assays for studying intact biological systems. A multimodality approach using imaging technologies such as positron emission tomography (PET), single photon emission computed tomography (SPECT), digital autoradiography, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), optical bioluminescence, optical fluorescence, and ultrasound are all technologies under active development and investigation. The goals of the program are to fundamentally change how biomedical research is performed with cells in their intact environment in living subjects and to develop new ways to diagnose diseases and monitor therapies in patients. Areas of active investigation are cancer research, microbiology/immunology, developmental biology and pharmacology.

The program consists of over 120 scientists and is directed by Sanjiv Sam Gambhir, MD, PhD

MULTIMODALITY MOLECULAR IMAGING LAB
Sanjiv Sam Gambhir, MD, PhD
http://mips.stanford.edu/research/mmil.html

This laboratory is developing imaging assays to monitor fundamental cellular/molecular events in living subjects including patients. Technologies such as micro positron emission tomography (microPET), bioluminescence optical imaging, fluorescence optical imaging, micro computerized axial tomography (microCAT), ultrasound, and photoacoustics are all being actively investigated in small animal models. Our goals are to marry fundamental advances in molecular/cell biology with those in biomedical imaging to advance the field of molecular imaging. We have a particular interest in cancer biology and gene therapy. Research in early cancer detection and pharmaceutical therapy assessment is also being performed.

Figure 1 Multimodality Imaging of Mesenchymal Stem Cells in Swine Heart

Assays to interrogate cells for mRNA levels, cell surface antigens, intracellular proteins and protein-protein interactions are under active development. We are also extending many of these approaches for human clinical applications using optical and PET/CT technologies.

http://mips.stanford.edu/research/mmil.html

http://mips.stanford.edu/education/
Research

MOLECULAR IMAGING INSTRUMENTATION LAB
Craig Levin, PhD
http://miil.stanford.edu

Dr. Levin’s laboratory focuses on advancing instrumentation and algorithms for positron emission tomography (PET). The figure below depicts one of the lab’s projects which is to develop the world’s first 1 mm resolution clinical PET system which can focus in on spots and organs of interest. If successful, this system will be able to visualize and quantify a fewer number of diseased cells, with a goal to achieve earlier detection of diseases such as breast cancer. (a) The system is configured as two detector panels that collect and position incoming 511 keV photons with 1 mm resolution; (b) The thousands of miniscule scintillation detectors are read out with sensitive readout electronics integrated with an advanced data acquisition system; (c) The detector employs a “3-D positioning” scintillation detector concept that helps to realize ultra-high spatial resolution, high contrast resolution, and high photon sensitivity everywhere between the two panels; (d) Test results with individual detectors yield < 1 mm resolution, but the goal for the full system is 1 mm resolution.

Equipment

CYCLOTRON RADIOCHEMISTRY FACILITY
http://mips.stanford.edu/public/lucas.adp

The radiochemistry facility is located on the first floor of the Lucas Expansion building. The heart of the radiochemistry facility is a GE PETtrace cyclotron, which is used for the production of radioisotopes for clinical and research use. Surrounding the cyclotron are an FDG production lab and research hot labs. The hot labs, fully equipped with hot cells and shielded fume hoods, are used for the production of research radiopharmaceuticals as well as to provide space for radiochemistry research to develop new radiopharmaceuticals. These radiopharmaceuticals are used to support both clinical and research PET studies at the Stanford University Medical Center and the Stanford Center for Innovation in In-Vivo Imaging (SCI3).

PHILIPS SKYLIGHT
The Skylight dual head spect camera is a gantry free camera which creates an open floor design. This design allows for easier transfer of patients and in some cases, allows for imaging studies to be done in patient beds. At Stanford, we use the Skylight as our primary cardiac camera.

GE INFINIA HAWKEYE SPECT/CT
The Infinia dual head spect camera is a combination whole body and spect gamma camera combined with a registered CT scanner. This feature allows for more precise organ and lesion localization. At Stanford, we use the Infinia as our primary oncology imaging camera.

DIGIRAD (MOBILE SPECT)
The Digirad mobile camera uses solid state technology to acquire images. It has a smaller field of view which allows more flexibility in imaging smaller organs in the body or imaging of pediatric patients. The portable feature of the camera allows imaging of critically ill patients at bedside. At Stanford, we use the Flexibility of the Digirad camera to increase our productivity and offer greater patient comfort to our in-patients and smaller patients.

D-SPECT
The D-SPECT™ Cardiac Imaging System can complete a Gated SPECT study in only 2 minutes. This is a significant improvement over current technologies that require 12-20 minutes. This incredibly fast, high quality acquisition can be achieved through a novel camera technology. The seated position also allows for significantly greater patient comfort and compliance.

GE DISCOVERY D600/D690
The GE PET/CT scanner combines two powerful diagnostic tools. Overlaying the PET scan data with the CT scan data allows physicians to quickly and more accurately diagnose, plan treatment and monitor treatment. At Stanford, we use PET/CT scanning for all three of these important functions.
Recent Clinical Awards

YEAR 2009

Dr. Joseph Wu received the 2009 Douglas P. Zipes Distinguished Young Scientist Award
Dr. Andrei Iagaru received the Alavi-Mandell Award from the Society of Nuclear Medicine
Drs. Andrei Iagaru, Erik Mittra and Michael Goris received the 2009 SNM Image of the Year
Drs. Craig Levin, Angela Foudray and Frezghi Habte authors of Top Ten Cited Papers in Physica Medica
Dr. Sam Gambhir received the 2009 RSNA Outstanding Research Award
Dr. Andrei Iagaru received a Developmental Cancer Research Award in Translational Science from Stanford's Cancer Center
Dr. Andrei Iagaru received the 2009 Scientist Award, Western Regional SNM Annual Meeting

YEAR 2010

Dr. Joseph Wu received the Presidential Early Career Award for Scientists and Engineers
Dr. Andrei Iagaru received the 2010 SNM/ACNM Mid-Winter Conference Best Essay Award
Dr. Andy Quon received the Society of Nuclear Medicine’s Correlative Imaging Council Walter Wolf Young Investigator Award
Dr. Ross McDougall received the Albion Walter Hewlett Award

YEAR 2011

Dr. Andrei Iagaru received the Best Essay Award at the 2011 Mid-Winter SNM/ACNM Annual Meeting
Dr. Andrei Iagaru received the Best Presentation by a Young Professional at the 1st Sino-American Conference on Nuclear Medicine
Dr. Andrei Iagaru received the 2nd place Nuclear Oncology Council Young Investigator Award at the 58th SNM Annual Meeting
Dr. Andrew Quon received the 2011 SNM Image of the Year Award
Dr. Joseph Wu received the California Institute of Regenerative Medicine Basic Biology Award
Dr. Sam Gambhir received SNM’s 2011 Georg Charles de Hevesy Nuclear Pioneer Award

Segall GM. A New Paradigm to Increase Utilization of PET/CT. *Journal of Nuclear Medicine*. 2008; 49(6): 53N-56N.
