Non-Opioid Analgesics & Adjunctive Medications

PEDIATRIC PAIN MANAGEMENT

Ardin S. Berger, D.O.
Department of Anesthesiology & Pain Management
Version 1, revised 11/01/19
Contents

Analgesics by Class
- COX Inhibitors
 - Acetaminophen
 - NSAIDs
- Skeletal Muscle Relaxants
 - Benzodiazepines
- Local Anesthetics
- NMDA Antagonists
- Antidepressants
 - Tricyclic Antidepressants
- Gabapentinoids & Anticonvulsants
- Sympatholytics
- Corticosteroids
- Bisphosphonates

Symptom-Focused
- Pruritus
 - Opioid-Induced
 - Non-Opioid
- Nausea
Approach to Pediatric Pain Management

Multimodal Approach to Management of Pain

- Opioids previously considered foundation of pain management
 ‣ Now a single component of holistic therapeutic planning
COX Inhibitors

Acetaminophen and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

- **Mechanism of Action**
 - Cyclooxygenase (COX, prostaglandin-endoperoxide synthase)
 - Metabolism of arachidonic acid → prostanoids [prostaglandins (inflammation) and thromboxanes (clotting)]
 - Sensitization of peripheral nerve endings
 - Vasodilation: inflammatory response-associated erythema & edema
 - COX-1:
 - Present in both healthy and diseased states. Integral role in mediation of physiologic functions (gastric mucosa protection, renal blood flow regulation, platelet aggregation)
 - Inhibition leads to unwanted effects associated with NSAIDs: gastric ulceration, coagulation disturbance, renal blood flow compromise, bronchoconstriction
 - COX-2:
 - Inducible isozyme produced in response to trauma or inflammation
 - Inhibition → therapeutic effects of COX inhibitors
Acetaminophen

- Most common antipyretic and analgesic medication currently used in pediatrics
 - Higher utilization since ASA found to be known contributor to Reye’s syndrome
 - Low side effect profile; analgesic and antipyretic efficacy
- Para-aminophenol derivative
- Analgesic and antipyretic effects
 - 1° effects via central COX inhibition
 - Prevents COX activation by reducing heme at its peroxidase site without directly binding or inhibiting cyclooxygenase
 - Avoid peripheral side effects of COX inhibition
 - GI ulceration, renal impairment, platelet impairment
 - Lack of peripheral anti-inflammatory action
 - Additional effects via both central & peripheral mechanisms
 - Action on the opioidergic system
 - Altered dynorphin release
 - Kappa receptor function
 - Noradrenergic and serotonergic activity
 - NO inhibition
 - NMDA release inhibition
Acetaminophen

- Therapeutic dosing (results in goal serum levels of 10-20μg/mL)
 - IV dosing lacking evidence for significant benefit over PO aside from specific circumstances (gastrointestinal compromise)

<table>
<thead>
<tr>
<th>Route</th>
<th>Age (weeks PCA)</th>
<th>Dose</th>
<th>Peak Effect</th>
<th>Max Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>28-32</td>
<td>7.5mg/kg q8h</td>
<td>30 minutes</td>
<td>22.5mg/kg/day</td>
</tr>
<tr>
<td></td>
<td>33-36</td>
<td>7.5mg/kg q6h</td>
<td></td>
<td>40mg/kg/day</td>
</tr>
<tr>
<td></td>
<td>37-44</td>
<td>10mg/kg q6h</td>
<td></td>
<td>40mg/kg/day</td>
</tr>
<tr>
<td></td>
<td>>44</td>
<td>15mg/kg q6h</td>
<td></td>
<td>60mg/kg/day</td>
</tr>
<tr>
<td>PO</td>
<td>28-32</td>
<td>10mg/kg q6h</td>
<td>30 minutes</td>
<td>40mg/kg/day</td>
</tr>
<tr>
<td></td>
<td>>33</td>
<td>15mg/kg q6h</td>
<td></td>
<td>60mg/kg/day</td>
</tr>
<tr>
<td>PR</td>
<td>28-32</td>
<td>20mg/kg q12h</td>
<td>2-3 hours</td>
<td>40mg/kg/day</td>
</tr>
<tr>
<td></td>
<td>>33</td>
<td>20mg/kg q8h</td>
<td></td>
<td>60mg/kg/day</td>
</tr>
</tbody>
</table>
Acetaminophen and Acute Hepatic Failure

- Acetaminophen toxicity
 - Most common cause of acute liver failure in US
 - Up to 500 annual cases of unintentional overdose → acute liver failure
 - ~150 deaths per year [Fontana]
 - Acute hepatic failure: severe, acute liver injury with encephalopathy & impaired synthetic function (INR ≥1.5) in patient without cirrhosis or preexisting liver disease & with illness duration <26 weeks

- Hepatic metabolism: primarily non-toxic, inactive metabolites excreted by the kidneys
 - Glucuronidation (45-55%), Sulfate conjugation (20-30%), N-hydroxylation and dehydration, typically followed by glutathione conjugation
 - N-acetyl-p-benzoquinone imine (NAPQI): intermediate toxic metabolite
 - Therapeutic doses: NAPQI detoxified 1° by glutathione conjugation (min. oxidation by cytochrome P450)
 - Overdose: overwhelmed glutathione pathway → enhanced oxidation → high levels of oxidation byproducts → fulminant hepatic failure & necrosis
Acetaminophen and Acute Hepatic Failure

- Dosing in Pediatrics [Dimitropoulos]:
 - Do not exceed 50 to 70 mg/kg in 24 hours
 - Dose-dependent toxicity (toxicity varies according to baseline glutathione levels, etc.)
 - Single dose:
 - Minimal toxic dose of 150 mg/kg
 - Toxicity likely at >250 mg/kg
 - Chronic overdose: minimum toxic threshold 150-175 mg/kg daily over 2-4 days
- Combination opioid formularies often avoided in pediatrics as a result
 - Tylenol #3, Vicodin® [hydrocodone], Percocet® [oxycodone]
Nonselective Nonsteroidal Anti-Inflammatory Drugs

Class
- Acetic acid derivatives
 › Diclofenac
 › Indomethacin
 › Ketorolac
- Propionic acid derivatives
 › Ibuprofen (Motrin®, Advil®)
 › Naproxen (Aleve®, Naprosyn®)
- Salicylates
 › Aspirin
 - Only NSAID to irreversibly inhibit COX-1
 - Reye’s Syndrome

Side Effects
- Inhibition of platelet aggregation
- Increased risk of gastrointestinal ulcers & bleeding
- Note: All NSAIDs increase risk of renal disease & myocardial infarction

Common contraindications
- Allergy
- Aspirin-induced asthma
- Peptic ulcer disease, gastric bleed
- Inflammatory bowel disease
- Renal disease
- Third trimester of pregnancy
- History of gastric bypass surgery
- History of (excludes ASA):
 › Transient ischemic attack or CVA
 › Myocardial infarction
 › Coronary artery disease
 › Congestive heart failure
Aspirin and Reye’s Syndrome

- Use of aspirin or salicylates during viral illness associated with increased risk for Reye’s syndrome
 - Microvesicular hepatic steatosis & acute encephalopathy
 - Results from inhibited oxidative phosphorylation & B-oxidation (fatty acid metabolism)
 - Most commonly influenza or varicella zoster virus
 - Signs and symptoms (3-5 days after viral illness begins)
 - Persistent vomiting
 - Electrolyte abnormalities, dehydration
 - Increased somnolence
 - Lethargy
 - Disorientation, confusion, delirium
 - Seizures
 - Loss of consciousness
 - Death (40% mortality rate)
COX-2 Inhibitors

Cox-2 Selective Nonsteroidal Anti-Inflammatory Medications

- Fewer gastrointestinal effects than nonselective COX inhibitors
- Promotion of thrombosis → increased risk of myocardial infarction and cerebrovascular accidents
 ‣ Selective
 • Celecoxib, rofecoxib, valdecoxib
 ‣ Relatively Selective
 • Nabumetone
 • Meloxicam
 - Higher free fraction in synovial fluid due to decreased albumin
 - Marketed for arthritic pain
 • Diclofenac
 - Oral and topical formularies available
Skeletal Muscle Relaxants

- Antispasmodics
 - Decrease skeletal muscle spasm
- Antispastics
 - Act centrally to reduce spasticity
Skeletal Muscle Relaxants

- Methocarbamol (15mg/kg PO or IV q8h)
 - Relatively decreased sedation when compared to other relaxants
 - Contraindicated if history of renal failure and seizure disorder
- Cyclobenzaprine
 - Similar pharmacodynamics to tricyclic antidepressants
 - Contributor to serotonin syndrome
 - Muscle relaxation via central serotonin antagonism (5-HT2A and 5-HT2C)
- Benzodiazepines
 - GABA_A agonism
- Tizanidine
 - Central α-2 adrenergic agonism
 - Presynaptic inhibition of spinal motor neurons
- Baclofen
 - GABA_B agonism
- Dantrolene
 - Ryanodine receptor antagonist
 - Decreased intracellular calcium concentration
 - Depressed excitation-contraction coupling in skeletal muscle
Skeletal Muscle Relaxants

- Baclofen Withdrawal Syndrome
 - Signs and Symptoms
 - Increased spasticity
 - Hyperthermia
 - Delirium
 - Respiratory depression
 - Rhabdomyolysis
 - Multi-organ failure
 - Death
 - Treatment
 - Urgent re-initiation of therapy
Benzodiazepines

- **Beneficial effects**
 - Muscle relaxation
 - Anxiolysis
 - Anxiety-related nausea & vomiting

- **Mechanism of Action**
 - Binds GABA$_A$ receptor complex → enhanced interaction between receptor & chloride ion channel
 - Muscle relaxant effects by central potentiation of GABA release

- **When given concurrently with sedating medications, risk of profound respiratory depression**
 - Do not administer within one hour of sedating medications

- **Commonly-used**
 - **Diazepam (PO, IV)**
 - 0.05-0.1mg/kg (PO, IV)
 - Intravenous formulation with severe pain on injection
 - **Lorazepam (PO, IV)**
 - 0.01-0.02 mg/kg IV
 - **Clonazepam (PO)**
 - 0.02-0.06 mg/kg PO

- **Reversal: Flumazenil**
 - 0.01mg/kg over 15 seconds

- **Contraindications**
 - Anticholinergic signs, tachycardia, wide QRS on EKG, seizure history, chronic benzodiazepine use
Local Anesthetics - Lidocaine

- Lidocaine (IV)
 - Proposed effects
 - Analgesia
 - Prevention of 2° hyperalgesia & central sensitization
 - Mechanisms
 - Sodium channel blockade
 - NMDA antagonism
 - G protein uncoupling
 - Reduction of circulating inflammatory cytokines
 - Intravenous dosing
 - 1-2mg/kg bolus
 - 1.5-2.5mg/kg/hr infusion
 - Target serum levels from 1.5-4 mcg/mL
 - Toxicity may occur at 5mcg/mL
NMDA Antagonists - Ketamine

- **Indications**
 - Treatment of therapy-resistant neuropathic pain
 - Prevention of chronic pain with perioperative dosing

- **Proposed Sites of Action [Sleigh]**
 - NMDA channels
 - HCN1 channels
 - Acetylcholine channels
 - Opioid agonism & potentiation
 - Nitric oxide cGMP system
 - Non-NMDA glutamate receptors
 - Reduction in cholinergic neuromodulation
 - Increased dopamine and norepinephrine release

- **Potential Side Effects**
 - Psychedelic symptoms
 - Hallucinations
 - Memory deficit
 - Panic attack
 - Nausea and vomiting
 - Somnolence
 - Cardiovascular stimulation
 - Hepatotoxicity

- **Dosing**
 - 0.15-0.35 mg/kg/hr IV infusion
NMDA Antagonists - Methadone

- Diphenylheptane opioid
- Mechanisms
 - NMDA (via d-isomer/S-met)
 - Opioid (via l-isomer/R-met)
 - MAOI
- High gastrointestinal uptake
 - 80% bioavailability
- Fecal and renal excretion
 - Along with fentanyl and sufentanil, typically considered safe in renal patients
 - Prolonged administration with renal insufficiency may require dose adjustment
- Dosing
 - Interval
 - Q6-12h for analgesia
 - Q24h for opioid withdrawal
 - Simple conversion of oral morphine to oral methadone
 - 30-90 MED, ratio of 4:1
 - 90-300 MED, ratio of 8:1
 - >300 MED, ratio of 12:1
- Potential Side Effects
 - QTC Prolongation
 - Monitor EKG
Gabapentinoids - Gabapentin

- Mechanism of Action
 - \(\alpha-2\delta\) subunits of voltage-gated calcium channels
 - Voltage-dependent Na channels
 - Peripheral and central action
- 60% oral bioavailability
- Absorption via LAT1 transporter saturable (dose-dependent pharmacokinetics)
 - Delayed peak levels and diminished bioavailability at high doses
- Peak plasma concentrations 2-3 hours
- Half life 4-22 hours
- No appreciable metabolism; renal excretion
 - Adjust for renal patients, including post-dialysis supplemental dose

<table>
<thead>
<tr>
<th>Renal Function Creatinine Clearance (mL/min)</th>
<th>Total Daily Dose Range (mg/day)</th>
<th>Dose Regimen (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 60)</td>
<td>900-3600</td>
<td>300 TID 400 TID 600 TID 800 TID 1200 TID</td>
</tr>
<tr>
<td>(>30-59)</td>
<td>400-1400</td>
<td>200 BID 300 BID 400 BID 500 BID 700 BID</td>
</tr>
<tr>
<td>(>15-29)</td>
<td>200-700</td>
<td>200 QD 300 QD 400 QD 500 QD 700 QD</td>
</tr>
<tr>
<td>15(^a)</td>
<td>100-300</td>
<td>100 QD 125 QD 150 QD 200 QD 300 QD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Hemodialysis Supplemental Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodialysis</td>
</tr>
</tbody>
</table>
Gabapentinoids - Pregabalin

- **Mechanism of Action**
 - α-2 δ subunits of voltage-gated calcium channels
 - Analgesic (2-4x more potent than gabapentin)
 - Anticonvulsant (3-10x more potent than gabapentin)
 - Anxiolytic

- **Pharmacokinetics**
 - Absorption: LAT1 and multiple other transporters
 - Linear pharmacokinetics (no saturation of absorption)
 - Oral bioavailability >90% across dosing ranges
 - Little to no metabolism; excreted unchanged via renal excretion
 - Peak plasma concentrations ½-3 hours, depending on fasted or fed state
 - Half life 6 hours; dosing interval BID to TID
 - Therapeutic dosing 75-300mg daily for patients of adult weight
 - Renal dosing: decreased based on function; include supplemental post-dialysis dose
Antiepileptics - Topiramate

Mechanisms of Action

- GABA_A receptor augmentation
- Sodium channel blockade
- Carbonic anhydrase inhibition
- Glutamate receptor antagonism
 › AMPA/kainate subtype
- Possible serotonin receptor activity
 › 5-HT_2C receptors

Potential Side Effects

- Acute angle closure glaucoma
- Cognitive slowing, word-finding difficulty
 › Na channel blockade
 › GABA_A augmentation
- Paresthesias, metabolic acidosis, nephrolithiasis (calcium phosphate crystals)
 › Carbonic anhydrase inhibition
- Appetite suppression, weight loss
- At high doses, can decrease plasma concentration of estrogen and progestins (OCP therapy)
Tricyclic Antidepressants

- Fused 3-ring moiety used as an analgesic and antidepressant
- Mechanism of Action
 - Block norepinephrine and serotonin uptake into axon terminals
 - Analgesic effects primarily via norepinephrine reuptake mechanism
 - May block some subtypes of serotonin, adrenergic, and histamine receptors
- Narrow therapeutic index
- Analgesic dose substantially lower than antidepressant dose
- Discontinuation syndrome: wean over weeks to months

- Anticholinergic effects prominent with tertiary amine TCAs
 - Amitriptyline, doxepin, imipramine
 - Less commonly with nortriptyline and desipramine, secondary amines
 - Urinary retention, dry mouth
 - Confusion, hallucinations
 - Hypotension
 - Glaucoma exacerbation
 - Cardiac dysrhythmias
 - Sinus tachycardia
 - IV conduction delay
 - QRS prolongation
 - PR, QT interval prolongation
Alpha-2 Agonists

Clonidine

- **Uses**: analgesia, anxiety, withdrawal (opioid, benzodiazepine, alcohol)
- **Common routes**
 - Intrathecal, epidural, transdermal, intravenous, oral
- **Mechanisms**
 - Central (α-2 agonism at dorsal horn of spinal cord)
 - Inhibition of substance P and nociceptive neurons
 - Stimulation of nitric oxide synthesis
 - Peripheral
 - Release of enkephalin-like substance
- **CNS depression, respiratory depression, bradycardia, transient hypertension followed by mild hypotension**
 - More profound side effects noted with dexmedetomidine
- **Elimination half-life 20-25 hours**
Corticosteroids

Glucocorticoid (Methylprednisolone, triamcinolone, betamethasone)

- Inhibition of phospholipase A, inhibiting production of multiple inflammatory genes which encode:
 - Cyclooxygenase
 - Lipoxygenase
 - Cytokine genes
 - Leukotrienes
 - Proinflammatory enzymes
 - Bradykinin
 - Neuropeptides
 - TNF, IL-1, 6, 8
 - C Reactive Protein
 - Leukocyte adhesion molecules

- Note: Due to risk for intravascular injection with resultant neurological deficits, cervical and thoracic epidurals to be performed with non-particulate steroid (dexamethasone)
Bisphosphonates

Alendronate (PO, IV), Neridronate, Pamidronate, Clodronate, and Ibandronate

- Primary mechanism: osteoclastic inhibition —> bone resorption
- Secondary mechanism: interference with inflammatory and nociceptive pathways affecting sympathetically mediated pain

› Inhibition of osteoclasts decreases responsive acidification of extracellular milieu which otherwise leads to:
 - Activation of acid-sensing nociceptive receptors
 - Release of pro-inflammatory cytokines

› Inhibition of macrophage activation prevents the overexpression of NGF which causes neurogenic inflammation

- Neridronate improvement of quality of life and VAS in CRPS type I

- Potential Side Effects
 - Arthralgia, myalgia, fever, flu-like reaction, headache, diarrhea, dermatitis, hypocalcemia
 - Oral: Nausea, dysphagia, GERD, esophagitis, gastric ulcers
Pruritus

Opioid-Induced

- Nalbuphine
 - Low-dose with anti-pruritic activity while avoiding loss of analgesic benefit from opioid agonist therapy: 0.05mg/kg IV or PO q4-6 hours
 - Note: Analgesic dosage: 0.1mg/kg q6h
- Naloxone
 - 0.25-1 μg/kg/h intravenous infusion
 - Doses >2 μg/kg/h likely to reverse opioid analgesia
- Ondansetron (5-HT₃)
 - 0.1mg/kg PO/IV q6h

Non-Opioid Related Pruritus

- Diphenhydramine (H₁ antagonism) 0.5-1mg/kg IV
- Aprepitant (neurokinin-1 receptor antagonist)
 - Inhibition of substance P
 - Three day treatment course with up to weeks of relief from pruritus
 - 3mg/kg on initial treatment day; 2mg/kg on days two and three
Nausea & Vomiting

Origin

- Medullary Chemoreceptor Trigger Zone
 - D2, 5HT3, ACH, Mu2
- Cerebral Cortex
 - 5HT3, ACH
- Periphery
 - D2 (stomach), 5HT3
- Vestibular Region
 - Histamine, ACH

Treatments

- Serotonin Antagonists (5-HT3)
 - Ondansetron 0.1mg/kg q6h
- NK-1 Antagonists (Inhibition of Substance P)
 - Aprepitant
- Steroids
 - Dexamethasone ~0.05mg/kg as effective as larger doses \[\text{DeOliveira}\]
- Dopamine Antagonists
- Benzodiazepines (GABA$_A$)
- Cannabinoids (CB1)
- Antacids
Bibliography

