Better Be Business Wired.

Business Wire is the leading source for press releases, photos, multimedia and regulatory filings from companies and groups throughout the world.
At Least 34 Research Jobs at Stanford Medical School from Stimulus Funds

STANFORD, Calif.--(BUSINESS WIRE)--Sean Mackey, MD, PhD, has been studying the roots of pain in the brain, applying last year for a grant from the National Institutes of Health to continue his imaging studies in the field. But the grant was held up by a shortage of cash at the federal agency.

Now, thanks to the national economic stimulus program, Mackey, an associate professor of anesthesia and pain management at the Stanford University School of Medicine, will receive $318,000 to expand his work, in which he is using functional magnetic resonance imaging to control brain activities in real time. The research not only will help in pain management but may also shed light on addiction, cognitive development, depression and brain injury, he said. And the funds will enable him to hire two full-time employees, in addition to providing faculty salary support for him and his collaborators in radiology, psychiatry and psychology, he said.

"It's a wonderful opportunity," Mackey said. "We expect the resources from this grant will ultimately benefit a number of groups beyond our lab. There's much interest in real-time fMRI across the campus."

Mackey is among at least 45 researchers at the School of Medicine who have been helped by the national stimulus package, which was signed into law in February and includes $8.2 billion in extramural funding for the NIH. That's an additional 28 researchers since June 16 when the last total was made public.

To date, the total of the grants to the medical school through the stimulus program is more than $18 million for projects on a wide range of topics, including studies on eye disease, cancer, tissue engineering and transplantation. Based on a survey of 21 of the grant recipients, at least 34 positions have been created or retained as a result of the money.

While giving a boost to the economy, the federal funds are being used to advance medical science in a variety of ways. In some cases, they are supporting projects that were deemed highly worthy but didn't get money before because of NIH budget shortfalls. They are also a source of grant supplements or a means for multiyear projects to move forward, with stimulus money covering the first two years and other agency funds to be identified in the future to support the later years. Some of the money, such as an $87,000 award to the bioinformatics group at Stanford, is specifically directed to train graduate students, who might otherwise be unable to continue with their studies. A small portion is designated for equipment purchases.

These grants are an example of how the NIH has moved quickly to inject funds into the economy. While the agency considers thousands of new grant proposals for specific programs created under the stimulus act, it has in the meantime awarded some of the dollars for a plethora of other projects that had prior authorization and that could immediately put the money to use.

"Until it was announced that the stimulus program would include research funding, our medical school faculty and their colleagues across the country were increasingly distraught that scientific advances were being undermined by the downturn in NIH funding that began in 2003," said Philip Pizzo, MD, dean of the Stanford School of Medicine. "Great ideas that missed the bar for the ever-decreasing, peer-reviewed funding priorities from the NIH meant that faculty were laying off staff, shrinking their efforts and shelving promising opportunities to bring new knowledge to improve the health of our nation."

Pizzo noted that regardless of how economic pressures lead to health-care reform, the biggest savings will come from new discoveries and advances that will lead to more effective ways to treat and prevent disease.

"In addition to the program's support for new ideas, the money means that prior work and investments in research and discovery won't go unfulfilled and that important ideas and opportunities, just recently shelved, can be sources for true reinvestment and recovery of America's health," he said.

In almost all cases, the funds will enable departments to retain or hire workers, including research assistants and postdoctoral scholars who might otherwise go without jobs.

"The grant came at the right time," said Ching-Pin Chang, MD, PhD, assistant professor of cardiovascular medicine whose funding for a postdoc was just about to run out. "This is a difficult time. It's hard to find resources for postdocs."

Chang received a $343,000 grant this year to continue his work on a common congenital heart disease that can cause heart failure and infection in children. In the disease, a fetal arterial passageway that shunts blood away from the lungs to the heart fails to close after birth, when it's no longer needed. Infants then develop breathing problems and enlarged hearts. Chang has