Synchronized firing in the retina
Jonathon Shlens1,2, Fred Rieke3 and EJ Chichilnisky1

Synchronized firing in neural populations has been proposed to constitute an elementary aspect of the neural code, but a complete understanding of its origins and significance has been elusive. Synchronized firing has been extensively documented in retinal ganglion cells, the output neurons of the retina. However, differences in synchronized firing across species and cell types have led to varied conclusions about its mechanisms and role in visual signaling. Recent work on two identified cell populations in the primate retina, the ON-parasol and OFF-parasol cells, permits a more unified understanding. Intracellular recordings reveal that synchronized firing in these cell types arises primarily from common synaptic input to adjacent pairs of cells. Statistical analysis indicates that local pairwise interactions can explain the pattern of synchronized firing in the entire parasol cell population. Computational analysis reveals that the aggregate impact of synchronized firing on the visual signal is substantial. Thus, in the parasol cells, the origin and impact of synchronized firing on the neural code may be understood as locally shared input which influences the visual signals transmitted from eye to brain.

Addresses
1 The Salk Institute, La Jolla, CA, USA
2 University of California, Berkeley, CA, USA
3 University of Washington, Seattle, WA, USA

Corresponding author: Shlens, Jonathon (shlens@salk.edu)

More than the sum of its parts

The collective function of neurons in a circuit is typically not predictable on the basis of recordings from individual neurons. Instead, in many circuits — including the olfactory bulb [1], hippocampus [2], retina [3,4], somatosensory [5], auditory [6], and visual cortices [7] — neural activity exhibits striking interactions, specifically the firing of one neuron is not statistically independent of the firing of others. These interactions make it difficult to understand the activity of the entire network, one of the great challenges in neuroscience. A complete understanding of neural interactions in a circuit requires that one understand their impact on patterned neural activity, their underlying mechanisms, and their role in information processing. This article reviews recent progress in the retina, an experimentally tractable neural circuit with known biological function.

Visual information is transmitted from the eye to the brain in the spiking activity of populations of retinal ganglion cells (RGCs) [3,4]. RGCs frequently exhibit synchronized firing, that is, a tendency for two or more cells to fire nearly simultaneously more often than expected by chance [8–15,16,17–19,20,21,22]. In some cases, a majority of the action potentials generated by a RGC are synchronized with those of other nearby RGCs [23]. Synchronized firing patterns can include at least 10 RGCs [23,24,25], although their full extent is unknown.

Although synchronized firing is widespread among RGCs, its impact on patterned activity, its mechanistic origin, and its functional role remain incompletely understood. First, few studies have explored synchronized firing in more than two cells. Second, multiple mechanisms, including direct and indirect gap junction coupling and common synaptic input, have been implicated [26,14,27]. Finally, previous work supports a wide range of interpretations of the impact of synchronized firing on visual function: communicating a unique visual signal to the brain [21,23], introducing redundancy in visual signals [28], or producing a negligible impact on downstream processing [22].

One way to achieve a more unified understanding is to focus on a single, tractable, and functionally important cell population. In the primate retina, roughly 20 distinct types of RGCs independently sample visual space, receive unique synaptic inputs, and project to distinct targets in the brain [29]. Recently, substantial progress has been made on understanding synchronized firing in two cell types, the ON-parasol and OFF-parasol cells, which form the dominant input to the dorsal stream pathway in the central visual system [30]. Individual parasol cells can be identified readily by their morphology [27], entire populations of parasol cells can be recorded using new technologies [31], and parasol cell light responses can be captured accurately using newly developed models [32,33]. These advances set the stage for understanding the full pattern of synchronized firing, the mechanisms subserving it, and its impact on visual signaling. Hopefully, larger lessons about neural interactions in other types of RGCs and other neural circuits can be gleaned from examining this thoroughly characterized neural population.
Synchronized firing in parasol cells of primate retina

Synchronized firing among RGCs has been documented in many species (e.g. goldfish [10], salamander [21,12,24*,34*], frog [16*], rat [14], mouse [22], rabbit [11,8,15,13,9], guinea pig [24*,34*], cat [17–19,35,36], and monkey [25*]). In macaque monkey, multielectrode recordings reveal a tendency for nearby parasol cells to fire synchronously (Figure 1, top, asterisks). The magnitude and time scale of this synchronized firing can be summarized in the cross-correlogram, which shows the firing rate of one cell as a function of time relative to the occurrence of a spike in a second cell (Figure 1, bottom panels) [37]. For cells that fire independently, the cross-correlogram should be flat. Instead, the cross-correlograms for nearby parasol cells of the same sign (ON or OFF) show a pronounced peak near the origin, even when the visual stimulus is unchanging over time. In the case of Figure 1 (bottom left), the peak represents a threefold increase in firing rate of the reference cell within ±5 ms of a spike in an adjacent cell in the mosaic.

All pairs of neighboring parasol cells of the same sign exhibit clear synchronized firing on a ±5 ms time scale [25*]. The degree of synchrony, measured by the peak of the cross-correlogram, falls off systematically as a function of the distance between cells, such that cells separated by more than a few receptive field diameters are essentially independent. On average, ~20% of the spikes generated by an individual ON-parasol cell contribute to synchronous activity patterns over and above what would be expected by chance. Synchrony is stronger in ON cells than in OFF cells; this difference could be caused by differences in the circuitry producing synchronized firing or by differences in the signals traversing otherwise similar circuitry.

Structure of synchronized firing

The cross-correlogram reveals the interactions between a pair of cells, but not in larger groups of cells. Firing events consisting of more than two cells occur far more frequently than expected from statistical independence (Figure 2) (see [23]), raising the possibility that synchronized firing in pairs of cells is merely a window onto more
complex patterns of activity in the population [38,23]. However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise interactions between adjacent cells, and thus does not imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and C), each of which fires a spike (e.g. A = 1) or does not (e.g. A = 0). Suppose that \(P(A, B, C) \) represents the frequency of all eight possible patterns of firing in these three cells. The simplest model is that any given pattern of firing, for example all three cells firing simultaneously, occurs with a frequency predicted from statistical independence, for example \(P(A = 1, B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1) \).

This model fails. This is not surprising because it fails to describe activity in just two cells, for example \(P(A = 1, B = 1) \neq P(A = 1)P(B = 1) \) (see Figure 1).

Given that the independent model fails, the next simplest model is a pairwise model, in which firing patterns in all pairs of cells, that is \(P(A, B), P(A, C), \) and \(P(B, C) \), are sufficient to predict the full pattern of activity in all three cells, \(P(A, B, C) \). However, as stated, the pairwise model is mathematically underconstrained, because
\(P(A, B), P(A, C), \) and \(P(B, C) \) do not provide a unique prediction of \(P(A, B, C) \). To solve this problem, one can select the model distribution \(P(A, B, C) \) with the highest entropy, or randomness, given the observed pairwise probabilities [39]. One can then empirically test whether the pairwise model accounts for the observed patterns of activity in all three cells. This maximum entropy approach can also be used to probe the patterns of firing in larger groups of cells. Two recent studies indicate that a pairwise model explains the observed patterns of activity in up to 7–10 cells with high accuracy [25*,24*]. Furthermore, in groups of up to seven parasol cells, over 99% of synchronized firing structure is predicted from a pairwise model which is determined purely by the interactions between adjacent cells in the mosaic [25*], arguably the simplest possible pairwise model. A limitation of these studies is that synchronized firing patterns can extend to more than 7–10 cells (see Figure 2) and it is unclear whether these larger activity patterns are captured by a pairwise model.

The above findings suggest that higher order interactions contribute minimally if at all to synchronized firing, and that the aggregate effect of pairwise interactions on patterned activity in the population can be powerful. Indeed, some multi-neuronal firing patterns can occur with a frequency more than one million times higher than expected on the basis of independent firing, while other patterns occur hundreds of times less frequently than expected [24*]. If such large patterns could be predicted from pairwise measurements, then the firing patterns displayed by the network may be highly constrained, perhaps even affording error-correcting properties [24*] (but see [40,41]).

Mechanisms of synchronized firing

The observation that higher order correlations are negligible suggests that understanding the biophysical mechanisms of synchronized firing in a pair of adjacent cells might suffice to explain the patterns of activity of the complete population. In principle, synchronized firing could be produced by two broad classes of mechanisms: reciprocal coupling, wherein activity in one cell influences activity in another, or common input, wherein the two cells receive input from a shared set of presynaptic cells (Figure 3a). These classes of mechanisms suggest different functions: reciprocal connections may imply redundant signals [20*], while common inputs could produce a multiplexed code [38].

![Mechanisms underlying synchronized firing in primate retinal ganglion cells.](image-url)
Experiments using tracer injection [42,26,15] and electrical stimulation [20**,15,14] support the role of reciprocal connections via gap junctions in several species. Bimodal cross-correlograms — indicating that spikes in two cells are frequently separated by a stereotyped delay consistent with signal propagation — also suggest reciprocal connections [20**,15]. In rabbit, OFF but not ON alpha cells are reciprocally connected [15], one of several interesting asymmetries between ON and OFF cells of the same type (e.g. [43]). In primate, adjacent ON-parasol and OFF-parasol cells are tracer-coupled, perhaps via intermediate amacrine cells [26], but only ON-parasol cells exhibit bimodal cross-correlograms at fine time scales (Figure 3b and c).

Although the evidence for reciprocal coupling is strong, several results indicate that it is not sufficient to explain synchronized firing. First, cross-correlograms can show structure on several time scales [17–19], with the slowest components sensitive to blockade of chemical synaptic transmission [12]. Second, the probability that a spike elicited in one cell produces a spike in the second cell varies from 1–3% in cat [19] to 20% in rabbit [15]. The efficiency observed in cat is not sufficient to explain the observed peak in the cross-correlogram. More directly, recent paired voltage-clamp recordings indicate that reciprocal coupling is weak in ON-parasol cells and absent in OFF-parasol cells [44]. OFF-parasol cells, despite their apparent lack of reciprocal connectivity, exhibit clear synchronized firing (see also [25**]). This synchrony can be explained by strongly correlated synaptic input that is present in adjacent parasol cells of both signs, with a time scale and magnitude matching those of synchronized firing (Figure 3d and e).

Impact on visual signals

Does synchronized firing alter the signaling of visual information from the eye to the brain [45]? Some studies have approached this problem by computationally reconstructing the stimulus from the activity of pairs of neurons, and comparing the fidelity of the reconstructed stimulus to that obtained from independent, single neuron responses [28,22,46–48]. This strategy has fostered the development of new analytical methods, but it has been limited to analyzing pairs of cells, largely because of prohibitive data requirements. Because synchronized firing extends across larger groups of neurons (Figure 2b and d), this technical limitation leaves open the larger question of how interactions in the entire network influence visual signals.

To overcome this limitation, a recent study employed a parametric statistical model (generalized linear model) of the population response of ON-parasol and OFF-parasol cells that captures all synchronized firing, spike train structure, and stimulus dependencies in the entire population [49,50]. The model is unusually tractable in that all model parameters can be inferred from experimental data using standard techniques (Figure 4a). Importantly, because the model contains a tractable mathematical expression for the population activity, one can effectively invert it to decode optimally the stimulus from the population activity (Figure 4b). In the case of collections of ON-parasol and OFF-parasol cells completely covering a region of
visual space, 20% more information about the stimulus was extracted from spike trains when synchronized firing was exploited in the process of decoding [33*]. Thus, the impact of synchronized firing on the visual signal in parasol cells is significant.

Conclusions and future directions

RGCs, like neurons in many other circuits, exhibit substantial synchronized firing. Synchronized firing in primate ON-parasol and OFF-parasol cells is dictated by their regular common synaptic organization: cells fire in tandem with surrounding cells largely as a consequence of common synaptic input. Synchronized firing in small groups of cells can be predicted from the interactions between immediately adjacent pairs of cells in the mosaic, and can substantially affect the visual signal transmitted to the brain. These observations have advanced our understanding of the structure, origin, and impact of synchronized firing in two important cell types, and may provide a framework for examining other neural circuits. They also raise many questions.

Pairwise interactions between adjacent cells can account for the patterns of activity in up to seven parasol cells. Can the structure of synchronized firing in the entire parasol cell population be accounted with the same simple model? In some species, specific stimulus features such as motion reversal [34*] and looming [16*] can elicit strong synchronous activity, potentially revealing a specialized circuit and a unique symbol in the neural code of the retina [38]. Can synchronous activity elicited by such stimuli be accounted for by the pairwise model? More generally, can the pairwise model explain the interaction of synchronized firing with the visual signal encoded by spike trains?

Synchronized firing in parasol cells arises largely from common synaptic input to neighboring cells. This raises the possibility of multiplexed coding, wherein signals from the source of common input are encoded by synchronized activity in RGCs [21,23]. How does synchronization depend on receptive field or dendritic field overlap, and what does this dependence indicate about underlying circuitry? How does synchronized synaptic input interact with reciprocal coupling to produce synchronized firing?

Modeling work indicates that 20% more visual information is available to the brain when synchronized activity is taken into account in interpreting the retinal output. Does the improvement in decoding suggest a synergistic neural code, or does it reflect compensation for redundancy in the code [28]? What mechanisms could downstream structures use to exploit synchronized firing in reconstructing the stimulus (see [51–53])? Does the additional information in synchronized firing reflect particular stimulus features, and can it be attributed to specific circuit elements?

Acknowledgements

The authors were supported by Miller Institute for Basic Research in Science, University of California, Berkeley (JS), NIH grants EY017736 (EJC) and EY11850 (FMR), and the Howard Hughes Medical Institute (FMR).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

This is a review of seminal papers documenting synchronized firing in cat. Author discusses cell type specificity and potential mechanisms of synchronized firing.

Sensory systems

This study demonstrates that synchronized firing in salamander selectively signals motion reversal. Motion reversal response arises from nonlinear processing in RGC receptive fields.

