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Horwitz GD, Chichilnisky EJ, Albright TD. Cone inputs to
simple and complex cells in V1 of awake macaque. J Neurophysiol
97: 3070 –3081, 2007. First published February 15, 2007;
doi:10.1152/jn.00965.2006. Rules by which V1 neurons combine
signals originating in the cone photoreceptors are poorly understood.
We measured cone inputs to V1 neurons in awake, fixating monkeys
with white-noise analysis techniques that reveal properties of light
responses not revealed by purely linear models used in previous
studies. Simple cells were studied by spike-triggered averaging that is
robust to static nonlinearities in spike generation. This analysis re-
vealed, among heterogeneously tuned neurons, two relatively discrete
categories: one with opponent L- and M-cone weights and another
with nonopponent cone weights. Complex cells were studied by
spike-triggered covariance, which identifies features in the stimulus
sequence that trigger spikes in neurons with receptive fields contain-
ing multiple linear subunits that combine nonlinearly. All complex
cells responded to nonopponent stimulus modulations. Although some
complex cells responded to cone-opponent stimulus modulations too,
none exhibited the pure opponent sensitivity observed in many simple
cells. These results extend the findings on distinctions between simple
and complex cell chromatic tuning observed in previous studies in
anesthetized monkeys.

I N T R O D U C T I O N

At photopic light levels, the sensitivity of visual neurons to
the spectral content of light depends on the input they receive,
via intermediate neurons, from the three classes of cone pho-
toreceptor. Neurons in the lateral geniculate nucleus (LGN)
can be assigned to three groups on the basis of cone inputs,
suggestive of discrete chromatic pathways (Derrington et al.
1984). Whether such neuronal types exist in area V1 is less
clear and the question addressed in this report.

Some studies have assigned V1 neurons to mutually exclu-
sive categories on the basis of spectral sensitivity, for instance
into red/green and blue/yellow categories (Livingstone and
Hubel 1984; Roe and Ts’o 1999; Ts’o and Gilbert 1988). These
studies, however, used relatively few colored stimuli, leaving
open the possibility that the categories thus established resulted
from the small number of stimuli used. These studies did not
estimate cone inputs quantitatively and thus do not reveal
whether these cell groups would have segregated on this basis.

Other studies used wider ranges of visual stimulus patterns
and data analysis techniques designed to estimate cone inputs
quantitatively. These studies found that, for the most part, V1
neurons do not fall into discrete clusters on the basis of cone
weights (Johnson et al. 2001, 2004; Lennie et al. 1990; So-
lomon and Lennie 2005; Solomon et al. 2004). One possibility
is that the apparent disorder in the distribution of cone inputs
to V1 neurons derives from strong assumptions embedded in

data analysis techniques used to estimate cone weights; in
some cases these assumptions may be incorrect. For example,
simple cells have responses that can be described as resulting
from a linear combination of cone inputs followed by a spiking
nonlinearity (Movshon et al. 1978). Cone weight estimates that
ignore this spiking nonlinearity are likely to be distorted.

We estimated cone weights of simple cells using spike-
triggered averaging that is robust to spiking nonlinearities and
provides an unbiased estimate of the linear filter that is as-
sumed to relate the stimulus sequence to a time-varying spiking
probability (Citron and Emerson 1983; de Boer and Kuyper
1968; DeAngelis et al. 1993; Marmarelis and Marmarelis
1978; Reid et al. 1997; Sakai 1992). Complex cells do not sum
cone inputs linearly but can be described as having receptive
fields composed of multiple linear subunits. Because different
subunits may receive distinct types of cone input, the linear
techniques used in previous studies may provide incomplete
descriptions of the chromatic response properties of these cells.
We estimated the cone weights of complex cells by spike-
triggered covariance, which allows estimation of an ensemble
of linear filters and is more precise than spike-triggered aver-
aging for neurons with responses that are invariant to contrast
sign (Aguera y Arcas et al. 2003; de Ruyter van Steveninck and
Bialek 1988; Felsen et al. 2005; Rust et al. 2004, 2005;
Schwartz et al. 2002; Simoncelli et al. 2004; Slee et al. 2005;
Touryan et al. 2002, 2005).

M E T H O D S

Visual stimuli and data collection methods were identical to those
described in Horwitz, Chichilnisky, and Albright (2005). The 158
cells analyzed in that study were also analyzed in this study.

Subjects

Five alert rhesus monkeys (Macaca mulatta), weighing between 8
and 10 kg, served as subjects in these experiments. Four of these
monkeys were used in a previous study (Horwitz et al. 2005).
Experimental protocols were approved by the Salk Institute Animal
Care and Use Committee and conform to US Department of Agricul-
ture regulations and to the National Institutes of Health guidelines for
the humane care and use of laboratory animals.

Animal preparation

Surgical procedures were similar to those described previously
(Dobkins and Albright 1994). In an initial surgery performed under
aseptic conditions and with general anesthesia, each monkey was
implanted with a stainless-steel head post, recording chamber (Crist
Instruments), and monocular scleral search coil. After recovery, mon-
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keys were trained to maintain visual fixation in the presence of a
peripheral visual stimulus. In a second surgical procedure, a craniot-
omy was made inside the recording chamber through which electrodes
could be inserted. All units were isolated from the occipital operculum
(area V1).

Single units were recorded with transdurally inserted platinum/
iridium electrodes (Fredrick Haer) with impedances of 1–3 M� at 1
kHz. Electrical signals were amplified and spikes were sorted by
template matching algorithms either on-line (Alpha-Omega) or off-
line (Plexon).

Behavioral paradigm

Monkeys were trained to maintain their eye position within a 1 �
1° electronically defined window surrounding a 0.2 � 0.2° black
fixation point at the center of the computer screen. Eye movements
within this window were small as shown in Horwitz et al. (2005) and
did not affect the conclusions of this study. Six hundred milliseconds
after fixation, a dynamic, colorful stimulus appeared at the receptive
field (RF) of one, or occasionally two, individually isolated V1
neurons. Stimulus presentation persisted until the monkey broke
fixation or until 10 s had elapsed. Liquid rewards were provided on a
random schedule during periods of stable fixation.

Visual stimuli

Stimuli were presented on a Sony F500 CRT monitor driven at 100
Hz by a GLoria Synergy graphics card in an IBM compatible personal
computer. On isolating a single unit, RF boundaries were mapped
with bars of light and the stimulus, shown in Fig. 1, was positioned at
the estimated center of the RF. The stimulus was a square 8 � 8
checkerboard grid that subtended 1.8° of visual angle at a viewing
distance of 60 cm. During periods of stable fixation, the color of each
0.22° pixel in the grid changed randomly and independently on every
screen refresh. These color changes were implemented by modulating
phosphor intensities in accordance with quantized and truncated
Gaussian distributions (Horwitz and Albright 2003). The space-time
averaged intensity of each phosphor was equal to its contribution to
the background, which was metameric with an equal-energy white at
65 cd/m2. Fixation breaks suspended data collection and extinguished
the stimulus.

Orientation and spatial frequency tuning were measured for 129
neurons with sinusoidal gratings. Gratings were presented within a
3°-diam circular aperture, had a spectrum identical to the background,
and were modulated in intensity only. Temporal frequency was fixed
at 5 Hz, and spatial frequency varied logarithmically from 0.5 to 8
cycle/°. Responses were averaged across 8–12 stimulus cycles. Grat-

ing responses of three of the 129 neurons tested are presented in this
report.

Data analysis

SPIKE-TRIGGERED AVERAGES. Data were analyzed off-line with
custom software written in Matlab 6.1 (The MathWorks). Stimulus
movies were represented numerically as phosphor intensity differ-
ences from the background at each pixel and frame. Spike trains were
aligned to the stimulus reconstruction, and each spike provided an
index to the stimulus frame on which it occurred. Segments of the
stimulus movie preceding each spike were extracted and averaged to
derive the spike-triggered average stimulus (STA) by the following
formula

STA �
1

N
�

i

N

si (1)

where N is the total number of spikes recorded, and si is the stimulus
preceding the ith spike. In this report, we consider only the 4th–12th
frame preceding each spike because none of the cells we studied had
a response latency of �40 ms and few integrated visual information
over �120 ms. Each si vector therefore had 1,728 elements (3
phosphors � 64 pixels � 9 frames). This representation incorporates
information about color, space, and time.

In the following text, we describe statistics that become noisy when
the number of elements in each si is large. To avoid this source of
noise, we limited most of our analyses to small numbers of stimulus
elements. In Figs. 2–5, our central results are illustrated in the spatial
domain, so for these analyses each si had 192 elements (3 phos-
phors � 64 pixels � 1 frame). Population analyses (Figs. 6–11) were
conducted at a single pixel close to the receptive field center, which
was selected according to the algorithm described in Horwitz et al.
(2005). For these analyses, each si had 27 elements (3 phosphors � 1
pixel � 9 frames). To determine whether the results thus obtained
were robust to the single pixel selection, we performed additional
analyses, shown in Figs. 8B and 10B, in which data were pooled
across all pixels and frames.

If a neuron’s stimulus selectivity can be described as arising from
the output of a linear filter, the STA provides an unbiased estimate of
the filter, irrespective of any static nonlinearity that relates the output
of the filter to a firing rate (Chichilnisky 2001). The shape of such a
static nonlinearity, however, has a profound effect on the signal to
noise ratio of the STA. If the nonlinearity is monotonic, the cell
responds preferentially to stimuli that resemble (have a large projec-
tion onto) the underlying filter, and the STA tends to be relatively
noise-free. A cell with a nonmonotonic nonlinearity, on the other
hand, responds to stimuli that elicit either a large positive or large
negative response from the underlying linear filter. These stimuli
cancel when averaged, leading to a noisy STA. In this case, analysis
of spike-triggered covariance is preferable to spike-triggered averag-
ing (Paninski 2003). The spike-triggered covariance matrix is com-
puted as follows

STC �
1

N � 1 �
i

N

�si � STA� � �si � STA�T (2)

The largest eigenvector of this matrix is the first principal component
(PC1) of the ensemble of spike-triggered stimuli. The second largest
eigenvector is the second principal component (PC2), and so on.

For the purpose of estimating cone inputs, a complex cell can be
modeled as a linear filter followed by a rectifying nonlinearity (Lennie
et al. 1990; Solomon and Lennie 2005; Solomon et al. 2004). Under
this model, the PC1 provides a low-variance, unbiased estimate of the
underlying linear filter (Paninski 2003). Even if the nonlinearity is
monotonic, the PC1 may provide a reasonable estimate of the under-

FIG. 1. Visual stimulus. The visual stimulus was an 8 � 8 grid of 0.22 �
0.22° squares the colors of which changed randomly every 10 ms. Colors were
determined by independent modulation of the 3 monitor phosphors (see
METHODS).
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lying linear filter, although the STA generally has lower variance in
this case.

The STA is preferable to the PC1 for studying simple cells, and the
PC1 is preferable to the STA for studying complex cells. Where
possible in this report, both analyses are performed on every neuron.
Elsewhere, we classify cells into simple and complex categories to
determine the more appropriate analysis. We make this classification
on the basis of a nonlinearity index (NLI), described in the following
text.

NLI. The NLI is based on an analysis developed by Pillow and
Simoncelli (2006), which uses the STA and the STC to find the
maximally informative stimulus dimension under a multivariate
Gaussian assumption. For each cell, we calculate the maximally
informative stimulus dimension at the pixel selected for analysis. We
then project the stimuli shown in the experiment onto this dimension
and bin the projections, excluding the upper and lower 5% to avoid the
influence of outliers. We calculate the average firing rate across the
stimuli within each bin to estimate the static nonlinearity (also called
the “feature contrast-response function”) (Chichilnisky 2001; Rust et
al. 2005; Touryan et al. 2005). The relationship between firing rate
and stimulus projection was fit with three regression equations

ylinear � b0 � b1x (3)

yquadratic � b0 � b1x
2 (4)

yfull � b0 � b1x � b2 x2 (5)

The goodness of fit of each regression was quantified by the R2

statistic. The nonlinearity index is defined as

NLI �
Rquadratic

2 � Rlinear
2

Rfull
2 (6)

The NLI attains its theoretical maximal value of 1 when the inclusion
of a linear term does not improve the regression fit as would be the
case for a linear cell with a quadratic output nonlinearity. It attains its
theoretical minimum value of �1 when the inclusion of a quadratic
term does not improve the regression fit as would be the case for a
purely linear cell. Importantly, the results described in this manuscript
are robust to the particulars of this index: similar results were obtained
when cells were sorted on the basis of a Quadratic Index of Nonlin-
earity (Nykamp 2003) or on the basis of the ratio of the squared,
summed STA elements to the squared, summed spike-triggered vari-
ance elements. For the sake of readability, we use the terms “simple”
and “complex” to refer to cells with NLI �0 and NLI �0, respec-
tively, with the acknowledgment that these definitions may not agree
perfectly with classifications based on other criteria.

TESTS OF STATISTICAL SIGNIFICANCE. The statistical significance of
principal components was assessed with nonparametric randomization
tests (Rust et al. 2005). To test the significance of the PC1, we
randomly shifted spike trains in time, recalculated the spike-triggered
covariance matrix, and recorded the largest eigenvalue. This proce-
dure was performed 2,000 times. If the largest eigenvalue from the
nonrandomized data exceeded 95% of the largest eigenvalues from
the randomized datasets, the PC1 was deemed significant at the 0.05
level. To test the significance of the PC2, we projected the spike-
triggered stimuli into the subspace orthogonal to the PC1 and per-
formed the randomization test described in the preceding text. This
procedure was repeated for each PC (projecting onto progressively
lower dimensional subspaces) until significance was no longer at-
tained. Small eigenvalues were not tested for statistical significance
because the goal of this procedure was to characterize complex cells,
which can be well characterized by the PCs with large eigenvalues
(Felsen et al. 2005; Rust et al. 2005; Touryan et al. 2002, 2005).

CALCULATION OF CONE WEIGHTS. Red, green, and blue monitor
phosphors modulated independently in the checkerboard stimulus, and

these independent modulations produced correlated activity in the L-,
M-, and S-cones. The covariance matrix of the stimulus in cone space
is provided in Table 1. These correlations would have led to inaccu-
rate cone weight estimates had the spike-triggered stimuli been
transformed to cone activations prior to calculation of the STAs or
PCs. Instead, STAs and PCs were computed in the space of monitor
phosphors, and then converted to cone weights by the following
procedure.

The STA (or PC) was represented as a 3 � n matrix, M. The three
rows of M corresponded to phosphor intensity relative to the back-
ground level. In the single-pixel analyses and the multiple-pixel
analysis of PC1s, the nine columns of M corresponded to frames
preceding a spike. In the multiple-pixel analysis of the STA, the
columns corresponded to all 576 (� 9 � 64) possible combinations of
frames and pixels. We then modeled M as the product of a color-
weighting function and a temporal (or spatiotemporal) weighting
function using least-squares regression (singular-value decomposi-
tion)

M̂ � � R
G
B
� � f�t� (7)

where f(t) is the temporal (or spatiotemporal) weighting function, and
[R,G,B]T is the color-weighting function. This method implicitly
assumes color/time separability, which was approximately true for
STAs and PC1s calculated at single pixels in the checkerboard
(0.22 � 0.22°) but is not true when the stimulus is large with respect
to the receptive field (Cottaris and De Valois 1998; Horwitz et al.
2004). The color-weighting function is the triplet of gun intensity
values that best describes M in the mean squared error sense, and
thereby provides an estimate of the cell’s preferred color direction.
We converted [R,G,B]T to cone weights by the following formula

	L,M,S
 � �AT��1 � � R
G
B
� (8)

where A is a 3 � 3 matrix with elements that are the pairwise inner
products of 10° cone fundamentals (Stockman et al. 1993) and
phosphor emission spectra measured from the monitor. Note that A is
the matrix that converts phosphor intensities to cone excitations, but
Eq. 8 uses (AT)-1, because STAs and PCs are interpreted as visual
mechanisms, which exist in the dual space of lights and are trans-
formed accordingly (Knoblauch and D’Zmura 2001).

The resultant [L,M,S] vector provides the cone weight estimates. To
compare cone weights across cells, we express each weight as a
fraction of total cone weight to a given cell by the following formulas
(Lennie et al. 1990)

l �
L

�L� � �M� � �S�
m �

M

�L� � �M� � �S�
s �

S

�L� � �M� � �S�
(9)

Cell screening

Early in the data collection we recorded preferentially from cells
with clear STAs and thus were biased against sampling complex cells.

TABLE 1. Covariance matrix of stimulus modulations in cone
space

L M S

L 0.82 0.78 0.24
M 0.78 0.79 0.33
S 0.24 0.33 1.00

Matrix entries have been multiplied by a common factor such that the largest
element (the variance of S cone excitation) is 1.
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Importantly, however, the complex cells we recorded are an unbiased
sample of those we encountered. The proportion cone-opponent neu-
rons in the dataset is also artificially inflated beyond the biases
expected of extracellular recording because we often moved past
relatively common nonopponent cells to find rarer “chromatically
interesting” cells.

R E S U L T S

We recorded from 244 V1 neurons with RFs ranging in
eccentricity from 1.6 to 7.9° (mean: 5.6°). One hundred and
fifty-eight of these neurons provided the data set for a previous
study (Horwitz et al. 2005); the additional 86 neurons were
recorded subsequently. Below we present data from three
example cells, emphasizing similarities and differences in their
stimulus tuning. As illustrated with these cells, simple and

complex cells require different analyses: spike-triggered aver-
aging reveals structure in the light responses of simple cells
and spike-triggered covariance is preferable for complex cells.
To select the more appropriate analysis for each cell, we
introduce a nonlinearity index to quantify the complexity of the
neural response and thereby classify cells as simple or com-
plex. We then show that the distributions of cone weights are
nonrandom and that some complex cells respond to stimulus
modulations in multiple color directions.

Spatial receptive field

EXAMPLE CELL 1. The STA of a representative V1 neuron
appears in Fig. 2A. The STA suggests that the preferred
orientation of this cell was slightly clockwise from vertical and
that the preferred spatial frequency was �1 cycle/°. Both
predictions were confirmed by direct measurement with drift-
ing gratings (Fig. 2, B and C).

Two features of these data suggest a “simple” classification
for this cell. First, the cell was excited by increases in light
intensity in one portion of the RF (bright pixels) and by
decrements in light intensity in the flanking regions (dark
pixels) unlike the sign-invariant response expected of complex

FIG. 2. Example cell 1. A: single frame from the spike-triggered average
stimulus (STA). STA indicates sensitivity to near-vertical orientations and
spatial frequencies near 1 cycle/°. B: orientation tuning curve. As predicted by
the STA, this neuron preferred orientations near 80°. C: spatial frequency
tuning curve. In rough agreement with the STA, this cell preferred gratings of
0.5 and 1 cycle/°. Bars in B and C indicate the SE calculated over repeated
cycles. Insets: peristimulus time histograms averaged across repeated stimulus
cycles. This cell was closely tuned to luminance; the colored appearance of the
subunits in A reflects the fact that the photopic luminous efficiency function
peaks in the middle of the visible spectrum, which appears green to human
observers. Thus luminance-ON subunits appear greenish and luminance-OFF
subunits appear reddish (or “not greenish”) when rendered.

FIG. 3. Example cell 2. Conventions are as in Fig. 2. This neuron had a
small, horizontally oriented STA (A) that accurately predicted a preference for
horizontal gratings (B) of 2 cycles/° (C).
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cells (Hubel and Wiesel 1962). Second, the response of this
cell modulated at the temporal frequency of the drifting grating
as evidenced by the single peak and trough in the peri-stimulus
time histograms over repeated stimulus cycles (Fig. 2, B and C,
insets) (Skottun et al. 1991).

EXAMPLE CELL 2. Data from a second example cell appear in
Fig. 3. This cell’s STA, shown in Fig. 3A, reveals a preference
for horizontal edges and a spatial frequency of �2 cycle/°.
Both predictions were confirmed with drifting gratings (Fig. 3,
B and C). Like the cell in Fig. 2, this cell gave a modulated
response to the drifting grating, consistent with a “simple”
classification.

EXAMPLE CELL 3. Data from a final example cell are shown in
Fig. 4. This cell responded vigorously to the white noise
stimulus, firing 120 spike/s during stimulation over a baseline
of only 1 spike/s. The STA in A is unstructured, however,
demonstrating that spike-triggered averaging is not a useful
technique for analyzing the stimulus selectivity of this cell.
When tested with gratings, this cell was well tuned for orien-
tation and spatial frequency, as shown in Fig. 4, B and C,
respectively, and had a sustained, unmodulated response con-
sistent with a “complex” classification (insets).

Spike-triggered covariance analysis

The STA of a complex cell stimulated with white noise is
uninformative. Previous studies have used spike-triggered co-
variance (eigenvector decomposition of the spike-triggered
covariance matrix) to measure the direction selectivity (Rust et
al. 2005; Touryan et al. 2002) and spatial selectivity (Touryan
et al. 2005) of V1 complex cells. Here we use it to measure the
spatial and spectral tuning of the three example cells.

STAs from the three example cells have been replotted in
Fig. 5, top, to facilitate comparison. The middle row of panels
shows the first principal components of the spike-triggered
stimuli (PC1s). PC1s of example cells 1 and 2 resembled noisy
versions of their STAs, consistent with their classification as
simple cells (see METHODS). The PC1 of example cell 3, how-
ever, contained important structure that was not apparent in
the STA.

The unstructured STA and structured PC1 of example cell 3
are expected of a linear cell with a static nonlinearity that rises
for both positive and negative contrast. Such a cell responds to
two complementary classes of stimuli—those that elicit a
positive response from the underlying filter and those that elicit
a negative response. Because these classes of stimuli are mirror
images of each other, they cancel when averaged, accounting
for their absence in the STA. This canceling is also reflected in
the quadratic component of the NLI (see METHODS).

The preferred orientation and spatial frequency of cell 3
(Fig. 4, B and C) were not predictable from the STA but were
predictable from the PC1. The PC1 revealed spatially offset
ON-OFF subregions the spatial configuration and widths of
which were roughly consistent with the observed preferred
orientation of 60° and the observed preferred spatial frequency
of �0.5 cycle/°.

Figure 5, bottom, shows the second principal component of
the spike-triggered stimuli (PC2) for each of the three example
cells. PC2s of cells 1 and 2 were unstructured, but the PC2 of
cell 3 revealed sensitivity to obliquely oriented edges as did the
PC1. The PC1 and PC2 of cell 3 have the same spatial
orientation, but they differ in spatial phase. This relationship
between PCs suggests that the cell would respond to an edge of

FIG. 5. STAs, 1st principal components (PC1s), and 2nd principal compo-
nents (PC2s) for the 3 example cells from Figs. 2–4. Cells 1 and 2 had
structured STAs and PC1s that closely resembled their STAs as expected of
simple cells. Cell 3, on the other hand, had a poorly structured STA but highly
structured PC1 and PC2 as expected of a complex cell. White squares in the top
row indicate the pixels at which cone weights were estimated.

FIG. 4. Example cell 3. Conventions are as in Fig. 2. Although its STA was
almost completely unstructured (A), this neuron was well tuned for orientation
(B) and spatial frequency (C).
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the appropriate orientation, irrespective of contrast polarity or
precise position in the RF as expected of a complex cell (Rust
et al. 2005; Touryan et al. 2005).

Cone weight estimation

In the rendering of Fig. 5, the STA of cell 1 and the PC1 of
cell 3 have similar colors, and this color differs from that of the
STA of cell 2. Qualitatively, this implies that cells 1 and 3 had
similar cone weights and that these cone weights differed from
those of cell 2. To estimate cone weights quantitatively, we
calculated the STA of cells 1 and 2 and the PC1 of cell 3 at a
single pixel across nine frames including the one shown in Fig.
5. Cone weights for the three example cells are provided in
Table 2. Cells 1 and 3 were nonopponent (all of their cone
weights had the same sign), but cell 2 was cone-opponent (2
cone weights differed in sign).

Quantifying nonlinearity

Spike-triggered averaging is a useful tool for studying sim-
ple cells, and spike-triggered covariance is a superior tool for
analyzing complex cells. Classifying cells into simple and
complex categories is therefore useful for determining the
more appropriate analysis.

We defined a NLI that has a value of �1 for a purely linear
cell and 1 for a linear cell with a quadratic output nonlinearity.
The value of the index indicates which regression model, linear
or a quadratic, better describes a cell’s “output nonlinearity” or
“feature contrast response function” (Chichilnisky 2001;
Touryan et al. 2005). The quality of the regression fits is
expressed relative to the fit of a full model that contains both
linear and quadratic terms. The full model fit the data quite
well: the average R2

full was 0.95 � 0.06 (SD). Means and SDs
of the estimated output nonlinearities are shown for the 183
simple cells (NLI � 0) in Fig. 6A and for the 61 complex cells
(NLI � 0) in Fig. 6B. As expected, output nonlinearities of
cells with low NLI values are roughly linear, and output
nonlinearities of cells with high NLI values are roughly qua-
dratic.

Figure 7A shows the distribution of NLI values across the
dataset. The prevalence of simple cells in the data set is likely
a result of our recording bias toward cells with clear STAs.
NLI values for example cells 1–3 were �0.90, �0.87, and
0.96, respectively.

Measurements of luminance tuning

Example cell 1 had nonopponent cone weights and thus a
preferred color direction close to photometric luminance. Ex-
ample cell 2 had opponent cone weights of similar magnitude
and thus a preferred color direction further from luminance. To
examine the prevalence of luminance tuning across the data
set, a preferred color direction was calculated from the each

cell’s STA and correlated with the color direction given by
photometric luminance.

The correlation coefficient is the cosine of the angle between
the two color directions, and this angle depends on the color
space in which the analysis is performed. In most color spaces,
errors are correlated across color channels, complicating inter-
pretation of the analysis (e.g., the transformation from phos-
phor weights to cone weights forces a negative correlation
between estimated L- and M-cone weights). This analysis was
thus performed in the space of monitor phosphors, in which
sampling errors are independent across color channels (because
the phosphors modulated independently). In what follows, we
do not draw conclusions that depend on this arbitrary choice.

Results of the analysis appear in Fig. 7B. Positive numbers
on the y axis indicate ON responses and negative numbers
indicate OFF responses. Luminance tuning was common among
simple cells as indicated by the clusters of points at the left of
the plot near 1 or �1 on the y axis; 88/183 (48%) of simple
cells had �STA�lum� � 0.8. Nevertheless, an appreciable num-
ber of simple cells were tuned for color directions other than
luminance, as indicated by the points near 0 on the y-axis;
95/183 (52%) of simple cells had �STA�lum� � 0.8. We
conclude that the cells we identified as simple are tuned for a

TABLE 2. Normalized cone weights for three example cells

L-Cone Weight M-Cone Weight S-Cone Weight

Cell 1 0.39 0.49 0.13
Cell 2 �0.19 0.48 0.33
Cell 3 0.21 0.72 0.07

FIG. 6. Static nonlinearities (feature contrast-response functions) estimated
for 183 cells with nonlinearity index (NLI) values �0 (A) and for 61 cells with
NLI values �0 (B). Vertical bars are �1 SD. For description of how these
nonlinearities were computed see METHODS.
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variety of color directions, including directions close to pho-
tometric luminance.

Cells with large NLI values are nonlinear, so their STAs
provide unreliable estimates of preferred color direction. For
these cells, analysis of the PC1 is preferable to analysis of the
STA. Figure 7C shows the results of an analysis that is
identical to that shown in B but is based on PC1s instead of
STAs. Importantly, we never observed a cell with a large NLI
value that had a PC1 indicating anything other than luminance
tuning.

Cone weight estimation

SIMPLE CELLS. The representation of color preferences in Fig.
7 is incomplete because luminance is a single dimension of a
fundamentally three-dimensional color space. Ideally, we
would show estimated cone weights and NLI values for each
cell in a single plot, but such a plot would require an unwieldy
multidimensional data representation. Thus for the sake of
figure clarity, we assigned cells to simple and complex cate-
gories on the basis of the NLI. Cone weights of simple cells

were derived from STAs, and cone weights of complex cells
were derived from PC1s.

Figure 8 shows the distribution of normalized L- and M-
cone weights across the population of simple cells. A shows
results from a single pixel analysis, and B shows results from
an analysis in which every pixel contributed to cone weight
estimation. S-cone weights are indicated by the distance of
each point from the origin and whether it is filled or open (see
legend). Interestingly, two more-or-less discrete groups of
neurons emerged. One group had nonopponent L- and M-cone
weights (top-right and bottom-left edges). Using a criterion of
�l 
 m� � 0.8, 64/183 (35%) of simple cells belonged to this
group. The second group had approximately equal and oppo-
site L- and M-cone weights (bottom-right and top-left edges).

FIG. 8. Normalized cone weights derived from STAs for 183 simple cells
in the LM plane. Cone weights were estimated from a single pixel close to the
receptive field center (A) or from all the pixels (B). The magnitude of
normalized S-cone weight is implicit: cells with small S-cone weights appear
near the edge of the bounding box and cells with large S-cone weights appear
near the middle. F and Œ, cells with positive S-cone weights; E and ‚, cells with
negative S-cone weights. Œ and ‚, cells classified as blue/yellow opponent
neurons in Horwitz et al. (2005). Four relatively discrete clusters of cells can
be seen: ON and OFF nonopponent clusters (top-right and bottom-left) and L-M
and M-L opponent clusters (bottom-right and top-left).

FIG. 7. A: distribution of NLI values. An NLI value of �1 indicates a
purely linear response and an NLI value of 1 indicates a rectified (quadratic)
response. B: relationship between the correlation coefficient between the
characteristic color of the STA and the prediction from pure luminance tuning
(y axis) and NLI (x axis). C: relationship between the characteristic color of the
PC1 and the prediction from pure luminance tuning (y axis) and NLI (x axis).
The sign of the PC1 is arbitrary, so by convention, all correlations in C are
nonnegative. Marginal histograms of the correlation coefficients appear to
the right of B and C.
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Using a criterion of �l 
 m� � 0.2, 61/183 (33%) of simple cells
belonged to this group.

Neurons classified as blue/yellow opponent in Horwitz et al.
(2005) are shown as Œ and ‚ in Fig. 8. These neurons have
S-cone weights the sign of which is opposite that of a weighted
sum of L- and M-cone weights, and they have STAs that
appear either blue or yellow when rendered on a CRT. In Fig.
8, L- and M-cone weights are shown separately for these
neurons. By this analysis, most of these neurons exhibited LM
opponency, with S- and M-cone weights having the same sign.
They did not have the S-(L
M) cone weight signature char-
acteristic of blue/yellow neurons in the retina and lateral
geniculate nucleus, but appear to be tuned more closely to a
perceptual blue/yellow axis (DeValois et al. 2000b; Werner
and Wooten 1979; Wuerger et al. 2005). Note, however, that
because these neurons are not linear (see Horwitz et al. 2005),
the cone weights shown in Fig. 8, which were derived from
their STAs only, are incomplete descriptions of their color
tuning.

The spread of data points along the upper-right and lower-
left edges of Fig. 8 is consistent with the idea that LM
nonopponent cells receive a diverse balance of L- and M-cone
input. Alternatively, this spread may simply reflect random
errors in estimated cone weights. To measure the variability of
estimated cone weights, we computed standard errors by boot-
strap as a function of angle in the LM plane for each cell.
Spline fits delimiting 1 SE are shown for 20 example neurons
in Fig. 9.

Measurement error in the proportion of L- to M-cone weight
for nonopponent cells was large, as evidenced by the fact that
cells at the top-right and bottom-left edges of the plot had long
and obliquely oriented standard error regions parallel to the
edges of the bounding box. This variability stems from the fact
that L- and M-cone spectral absorption functions are very
similar, so positively weighted sums of these functions are

difficult to distinguish. Weighted differences between L- and
M-cone spectral absorption functions, on the other hand, de-
pend steeply on relative cone weight so long as the weights are
of similar magnitude. For this reason, cells exhibiting L-M
antagonism (those near the top-left and bottom-right edges of
Figs. 8 and 9) yielded relatively reliable L- and M-cone weight
estimates.

COMPLEX CELLS. To estimate the cone weights of complex
cells, we examined PC1s in the same way that we examined the
STAs of simple cells. Results of this analysis are shown in Fig.
10A. Figure 10B shows the results of a closely related analysis
in which spike-triggered covariance matrices were computed
within, and then averaged across, all 64 pixels prior to eigen-
vector decomposition. As presaged by the analysis in Fig. 7C,
nearly every complex cell we studied had nonopponent L- and
M-cone weights.

This result appears to conflict with previous studies that have
reported that V1 complex cells are dominantly (Lennie et al.

FIG. 10. Normalized cone weights derived from PC1s for 61 complex cells
in the LM plane. Cone weights were estimated from a single pixel close to the
receptive field center (A) or from all the pixels (B). In both panels, each point
is plotted twice to reflect the fact that the sign of the PC1 is arbitrary. F, cells
with positive S-cone weights; E, cells with negative S-cone weights. U, data
from Fig. 8A.

FIG. 9. SE regions for the normalized cone weights of 20 cells from Fig.
8A. For each cell, we sampled from the collection of spike-triggered stimuli
with replacement and computed normalized cone weights (2,000 resamples).
The resultant cloud of cone weight estimates was fit with an angular cubic
spline, so that the distance from the point estimate to the fitted contour
indicates the expected magnitude of error in each direction. 1 and 2 indicate
example cells 1 and 2.
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1990) or partially (Gouras and Kruger 1979; Johnson et al.
2004) cone-opponent. How can we resolve this apparent dis-
crepancy? If the cone inputs to a complex cell can be summa-
rized as a single set of cone weights, these weights can be
derived from the PC1. It is easy to imagine, however, that this
“single mechanism” hypothesis could be wrong: some complex
cells may respond to modulations in several different directions
in color space that are not predictable from a single linear
combination of cone signals.

Different models of cone signal integration predict qualita-
tively different outcomes from the spike-triggered covariance
analysis. A cell that sums linear inputs with different cone
weights prior to rectification will have a PC1 that reflects the
weighted average of these inputs and will have higher-order
PCs that are uninformative. On the other hand, a cell that
receives individually rectified linear inputs, each of which has
a different set of cone weights, will have a PC1 dominated by
the mechanism that drives the cell most strongly and higher-
order PCs that are dominated by the mechanisms that drive the
cell more weakly.

To test the single mechanism hypothesis, we examined
every significantly large PC from each nonlinear cell (nested
randomization tests, P � 0.05). Results of this analysis appear
in Fig. 11. Most of the complex cells we studied (52/61, 85%)
had two or more significant large PCs, and seven cells had
more than four. Most (74/97, 76%) of the higher-order PCs had
nonopponent LM weights, like the PC1s did. Nineteen cells,
however, had at least one significant cone-opponent PC with
normalized L- and M-cone weights of similar magnitude (l 

m � 0.5). These cells thus had multiple preferred directions in
color space, inconsistent with the single linear mechanism
hypothesis and consistent with nonlinear combination of dis-
tinct cone-opponent and nonopponent inputs.

Fixational eye movements

Monkeys in this study were trained to maintain stable visual
fixation, and trials were aborted if the eye position left a 1 �
1° electronically defined window surrounding the fixation
point. Within this window, however, small eye movements
occurred frequently. We recorded eye position with high tem-
poral and spatial precision and attempted to compensate for
changes in eye position by shifting the reconstructed stimulus
patterns relative to each other during off-line analysis. This
approach failed because over the duration of a typical experi-
ment eye position measurements became contaminated by slow
drifts in the eye coil signal that were unrelated to actual eye
movements (Horwitz et al. 2005; Read and Cumming 2003;
Tsao et al. 2003).

Fortunately, eye movements tended to be small relative to
the size of the pixels in the stimulus (as shown in Horwitz et al.
2005). Within individual trials, the SD of eye position was
0.06° in the horizontal channel and 0.09° in the vertical
channel, which is small relative to an individual stimulus pixel
(0.22 � 0.22°). Changes in eye position across trials were more
difficult to measure due to slow drifts, but, even including this
source of variability, fixation positions on sequential trials
tended to be fairly consistent: the difference in median eye
position between subsequent trials was inside the single pixel
boundary 90% of the time. These analyses, in conjunction with
the observation many of the RFs we studied had clearly
resolvable and distinct subunits (e.g., Fig. 5) suggest that eye
movements were not a significant source of spatial blurring.

D I S C U S S I O N

We estimated cone inputs to V1 neurons in awake macaques
with white noise analysis techniques. Both simple and complex
cells responded to cone-opponent and nonopponent modula-
tions, complex cells responded particularly well to nonoppo-
nent modulations, and a large population of simple cells had L-
and M-cone weights with roughly equal magnitude and oppo-
site sign. These results are largely consistent with those ob-
tained previously using periodic stimuli in anesthetized mon-
keys.

We obtained two unexpected results. First, the cone weights
of simple cells were more clearly clustered than has been
reported previously: one cluster had roughly equal and oppo-
nent L- and M-cone weights (and a variety of S-cone weights)
and another cluster had nonopponent cone weights the magni-
tude of which could not be estimated precisely. Second, none
of the complex cells we studied was purely cone-opponent. In
what follows, we compare our findings to those in the litera-
ture, and we speculate on the significance of our results for
visual function.

Simple cells

Cone weight estimates based on strict linear assumptions are
distorted by nonlinearities that follow cone signal summation.
Standard regression analyses are based on such strict linear
assumptions. In contrast, the spike-triggered analyses used in
this study are robust to these nonlinearities (Chichilnisky
2001). We speculate that the robustness to nonlinearities was
important for revealing clusters of cells in cone weight space.
Other factors that distinguish our study from previous studies

FIG. 11. Normalized cone weights derived from all significant PCs for 61
complex cells in the LM plane. PC1s are indicated with a 1, PC2s are indicated
with a 2, and so on. Each symbol is plotted twice to reflect the fact that the sign
of the PCs is arbitrary. Large font indicates positive S-cone weight and small
font indicates negative S-cone weight. Almost all (135/158, 85%) significant
PCs indicated sensitivity to nonopponent LM modulation (symbols at top-right
and bottom-left edges). 19/61 cells had higher-order significant PCs indicating
sensitivity to cone-opponent modulation (symbols at bottom-right and top-left
edges).
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include the use of awake monkeys and spatiotemporally broad-
band visual stimuli.

Additional nonlinearities (beyond a static output nonlinear-
ity) undoubtedly distorted our cone weights estimates. We
have shown previously that some cone-opponent neurons re-
spond to luminance contrast of either polarity, a nonlinear
response that distorts cone weight estimates based solely on the
STA (Horwitz et al. 2005). Cells with this response property
are neither purely simple nor complex (in fact, their existence
reveals the inadequacy of the simple/complex dichotomy), but
for the sake of this study, we needed a parsimonious, if
incomplete, description of their cone inputs. All but one of
these cells had NLI values �0 and were thus classified as
simple, so we calculated their cone weights from their STAs.

Many V1 neurons are suppressed by stimuli appearing
outside their classical RFs, and potentially inside their classical
RFs as well (Albrecht and Geisler 1991; Heeger 1992; So-
lomon and Lennie 2005; Solomon et al. 2004; Wachtler et al.
2003). This suppression could distort cone weight estimates
based on the STA if the cone weights of a rectified linear
suppressive mechanism differ from those of the center mech-
anism (Solomon and Lennie 2005; Solomon et al. 2004). In
fact, some of the dominantly linear cells we studied had highly
structured, small principal components with cone weights that
differed clearly from those estimated from the STA, consistent
with a rectified suppressive mechanism (Rust et al. 2005;
Schwartz et al. 2002).

Most of the LM nonopponent simple cells we studied re-
ceived significant S-cone input with the same sign as L- and
M-cone inputs. This result is consistent with the idea that
macaques are more sensitive to short wavelength light than
predicted by the human photopic luminous efficiency function
(Conway and Tsao 2006; DeValois 1965; Dobkins and Al-
bright 1994) and may be related to evidence that S-cones
contribute to responses in neurons in the magnocellular layers
of the LGN (Chatterjee and Callaway 2002; but see Sun et al.
2006) and in area MT (Barberini et al. 2005; Seidemann et al.
1999).

Cone-opponent neurons tended to have S-cone weights with
the same sign as M-cone weights (and thus of opposite sign to
L-cone weights). This tendency was noted previously by Con-
way (2001) and Conway and Livingstone (2006), who sug-
gested that these cells may implement a red/cyan axis. Cone
weight signs, however, do not define a color direction
uniquely, and the range of directions in cone space consistent
with cone weight signs –L, 
M, 
S are associated with a
variety of hues (Conway and Livingstone 2005). Indeed, many
of the cells we described as blue/yellow in a previous report
had these cone weight signs, in qualitative agreement with the
�130L 
95M 
35S blue/yellow mechanism postulated by
DeValois and DeValois (1992). Conway (2001) and Conway
and Livingstone (2006) also found that many cone-opponent
V1 neurons had a double-opponent receptive field organiza-
tion, and this was true in our data set as well (Fig. 3 and data
not shown).

S-cone weights reported in this paper are larger than those
reported by others (Johnson et al. 2001, 2004; Lennie et al.
1990; Solomon and Lennie 2005; Solomon et al. 2004; but see
DeValois et al. 2000a). Several factors likely contribute to this
discrepancy. First, V1 neurons have nonlinear contrast-re-
sponse functions, so traditional cone weight estimates depend

on the experimenters’ choice of stimulus intensities. The tech-
nique we used, in contrast, is immune to nonlinearities follow-
ing cone signal summation. Second, no universally accepted
convention exists for scaling the cone fundamentals, and dif-
ferent conventions lead to different cone weight estimates. The
cone fundamentals we used in this study were scaled to equal
peak sensitivity (and therefore unequal integral). Third, the
model on which our analysis is based asserts that each V1
neuron takes a weighted sum of cone signals after their respec-
tive means have been subtracted. A slightly more complex
model assumes that each V1 neuron takes a weighted sum of
cone contrast signals (assuming a specific form of Von Kries
adaptation). Cone weights calculated under this model are
simply the cone weights reported in this manuscript multiplied
by the background excitation of each cone type, which in
arbitrary units are: L:1, M:0.8, S:0.6. This multiplication re-
duces the magnitude of S-cone weights relative to L- and
M-cone weights. Fourth, nonlinearities beyond a static output
nonlinearity play significant roles in the responses of some
cone-opponent V1 neurons, and for these neurons, the linear
model may be a sufficiently poor approximation that different
linear analysis methods provide grossly dissimilar cone weight
estimates.

We speculate that the neurons classified as red/green or
blue/yellow in qualitative studies of color tuning in V1 had L-
and M-cone weights of opposite sign and/or S-cone weights
that were strong relative to L- and M-cone weights. Our data
did not reveal distinct populations of red/green and blue/yellow
V1 neurons based on these criteria.

Complex cells

By the single-pixel analysis, none of the complex cells we
studied responded exclusively to opponent modulations. By the
multiple pixel analysis, a few complex cells appeared to be
more clearly cone opponent. This result may be related to the
fact that some complex cells exhibit an enhanced cone-oppo-
nent response when stimulated with stimulus patches that are
large with respect to the RF (data not shown). On the other
hand, it may simply be due to statistical noise: incorporating
pixels that did not impinge on the RF increases the error in the
estimate of preferred color direction, and the transformation
from phosphor space to cone space causes these errors to
manifest as LM opponency.

The dominance of nonopponent signals in complex cells is
consistent with some other studies (Johnson et al. 2004; Lennie
et al. 1990) but is inconsistent with reports of pure color-
opponent complex cells (Michael 1978). We cannot exclude
the possibility that some of the complex cells we studied that
appeared exclusively nonopponent carried an opponent signal
that was below our statistical threshold.

Cells that responded to both opponent and nonopponent
stimulus features cannot be characterized by a single set of
cone weights; at least two sets are required. Studies that have
assumed a single set of cone weights for each complex cell
have reported a range of preferred color directions (DeValois et
al. 2000a; Johnson et al. 2004; Lennie et al. 1990). This
heterogeneity may arise in part from the single linear mecha-
nism assumption. For instance, a complex cell that receives
both opponent and nonopponent rectified inputs could respond
to a wide array of chromatic and achromatic stimuli. In a
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classical stimulation paradigm, this breadth of tuning could
lead to a poorly constrained linear model fit and thus a variable
estimate of preferred color direction. These cells may belong to
the class of “universal edge detectors” that have been described
previously (Gouras and Kruger 1979; Hubel and Livingstone
1990; Thorell et al. 1984; Yoshioka et al. 1996). A rigorous test
of this hypothesis will require stimulating these neurons with
bars or gratings that vary in luminance and chromaticity.

Functional significance of nonopponent complex cells

The prevalence of luminance tuning in complex cells is
appropriate for a role in scene segmentation. Two abutting
objects, or two objects in occlusion, form an edge between
them the polarity of which (bright to dark, or dark to bright)
depends on the position of the light source and the relative
positions of the objects. These factors, although important for
a complete three-dimensional reconstruction of the scene, are
unimportant for delimiting object boundaries. Thus dropping
the sign of luminance differences provides an invariance that is
useful for finding edge positions. Some of the complex cells
that we studied may be involved in such a computation.
Dropping the sign of a chromatic difference is less useful
because spatial chromatic differences are largely invariant to
the depth order of objects and their position relative to the light
source. It is thus reasonable that V1 may not contain purely
cone-opponent complex cells.
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