Elevated Anti-Streptococcal Antibodies in Patients with Recent Narcolepsy Onset

Adi Aran, MD1; Ling Lin, MD, PhD2; Sona Nevsimalova, MD2; Giuseppe Piazzì, MD2; Seung Chul Hong, MD3; Karin Weiner, PhD4; Jamie Zeitser, PhD4; Emmanuel Mignot, MD, PhD1

1Center for Sleep Sciences and Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA; 2Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic; 3University of Bologna, Bologna, Italy; 4Department of Psychiatry, St. Vincent’s Hospital, The Catholic University of Korea, Savon, Korea

Study Objectives: Narcolepsy-cataplexy has long been thought to have an autoimmune origin. Although susceptibility to narcolepsy, like many autoimmune conditions, is largely genetically determined, environmental factors are involved based on the high discordance rate (~75%) of monozygotic twins. This study evaluated whether Streptococcus pyogenes and Helicobacter pylori infections are triggers for narcolepsy.

Design: Retrospective, case-control.

Setting: Sleep centers of general hospitals.

Participants: 200 patients with narcolepsy/hypocretin deficiency, with a primary focus on recent onset cases and 200 age-matched healthy controls. All patients were DQB1*0602 positive with low CSF hypocretin-1 or had clear-cut cataplexy.

Measurements and Results: Participants were tested for markers of immune response to β hemolytic streptococcus (anti-streptolysin O [ASO]; anti DNAse B [ADB]) and Helicobacter pylori [Anti Hp IgG], two bacterial infections known to trigger autoimmunity. A general inflammatory marker, C-reactive protein (CRP), was also studied. When compared to controls, ASO and ADB titers were highest close to narcolepsy onset, and decreased with disease duration. For example, ASO ≥ 200 IU (ADB ≥ 480 IU) were found in 51% (45%) of 67 patients within 3 years of onset, compared to 19% (17%) of 67 age matched controls (OR = 4.3 [OR = 4.1], P < 0.0005) or 20% (15%) of 69 patients with long-standing disease (OR = 4.0 [OR = 4.8], P < 0.0005). CRP (mean values) and Anti Hp IgG (% positive) did not differ from controls.

Conclusions: Streptococcal infections are probably a significant environmental trigger for narcolepsy.

Keywords: Narcolepsy, autoimmune, post-streptococcal, Anti Streptolysin O (ASO); Anti DNAse B (ADB), helicobacter pillory

Citation: Aran A; Nevsimalova S; Piazzì G; Hong SC; Weiner K; Zeitser J; Mignot E. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. SLEEP 2009;32(8):979-983.
Sleep centers. Patients were recruited from North America (USA, n = 326), Europe (Czech Republic, n = 50; Italy, n = 12) and South Korea (n = 12). Patients were positive for DQB1*0602 and had hypocretin deficiency (n = 51, with and without clear-cut cataplexy), or were DQB1*0602 positive with clear-cut cataplexy (n = 149); based on prior analysis, DQB1*0602 positive subjects with cataplexy are 98% likely to be hypocretin deficient. Disease duration was defined as time between first symptom and time of blood draw. The sample included 23 patients with a disease duration of less than 1 year (mean age = 12.3 ± 5.4 y, range = 5.6–27 y, 52% females); 44 patients with a disease duration of 1–3 years (mean age = 19.3 ± 13.0, range = 6–79 y, 54% females); 64 patients with a disease duration of 3 to 10 years (mean age 26.3 ± 11.4, range: 8–72.5 y, 50% females); and 69 patients with a disease duration > 10 y (mean age 46.5 ± 17.1, range 15–79 y, 54% females). Most (90.3%) were Caucasians. Each control was selected from a larger pool of subjects to match each patient for age, race and geographic region. Overall control groups were

Figure 1A and B—Anti-Streptococcal Antibodies in Patients with Narcolepsy and Age Matched Controls

A: Anti-streptolysin O (ASO) antibodies

<table>
<thead>
<tr>
<th>Interval from disease onset</th>
<th>ASO values</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 1 year (n=23)</td>
<td>200-400 IU</td>
</tr>
<tr>
<td>age matched controls</td>
<td>400-800 IU</td>
</tr>
<tr>
<td>1-3 years (n=44)</td>
<td>≥800 IU</td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
<tr>
<td>3-10 years (n=64)</td>
<td></td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
<tr>
<td>over 10 years (n=69)</td>
<td></td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
</tbody>
</table>

Percentages of ASO Positive subjects (ASO ≥ 200)

* OR = 5.6 (up to 1 year); 3.8 (1-3 years), P < 0.01 versus ASO ≥ 200 in age matched controls
‡ OR = 6.1 (up to 1 year); 3.3 (1-3 years), P < 0.01 versus ASO ≥ 200 in patients with > 10 years interval from onset
^ OR = 3.2, P < 0.02 compared to ASO ≥ 200 in patients with 3-10 years interval from onset

B: Anti DNAse B (ADB) antibodies

<table>
<thead>
<tr>
<th>Interval from disease onset</th>
<th>ADB values</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 1 year (n=23)</td>
<td>480-960 IU</td>
</tr>
<tr>
<td>age matched controls</td>
<td>≥960 IU</td>
</tr>
<tr>
<td>1-3 years (n=42)</td>
<td></td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
<tr>
<td>3-10 years (n=64)</td>
<td></td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
<tr>
<td>over 10 years (n=65)</td>
<td></td>
</tr>
<tr>
<td>age matched controls</td>
<td></td>
</tr>
</tbody>
</table>

Percentages of ADB Positive subjects

* OR = 9.2 (up to 1 year); 2.8 (1-3 years), P < 0.05 versus ADB ≥ 480 in age matched controls
‡ OR = 5.0 (up to 1 year); 4.1 (1-3 years), P < 0.01 versus ADB ≥ 480 in patients with > 10 years interval from onset
^ OR = 3.0 (up to 1 year); 2.5 (1-3 years), P < 0.05 versus ADB ≥ 480 in patients with 3-10 years interval from onset
also balanced by sex with each patient group, thus mean age, range and percentage of females were identical to patient groups described above. All subjects gave written informed consent for the study, which was approved by Institutional Review Boards at all locations. The presence or absence of DQB1*0602 was determined using DQB1 exon-2 sequence-specific primers.

Assays

As β hemolytic streptococcus and Helicobacter pylori are known triggers of autoimmunity, we measured antibodies against streptolysin O (ASO) and DNAse B (ADB) as serologic markers of post-streptococcal status and DNAse B as a marker of H. pylori infection. C-reactive protein (CRP) was used as measure of general inflammation. These markers were assessed using commercially available kits (SeraTest ASO, Remel KS, USA; Streptoscreen-B, Wampole Laboratories, NJ, USA; HP IgG ELISA, BioCheck Inc, CA, USA and CRP ELISA, Alpha Diagnostic International, TX, USA) according to the manufacturer’s instructions.

Statistical Analysis

Data is presented as mean ± SD or %. Group comparisons were primarily made using Pearson χ² or Student t-tests. In selected cases, multivariate analyses were used to control for possible covariates of interest (e.g., body mass index, age, gender, season, HLA). The statistical package SYSTAT (SPSS, Evanston, IL, USA) was used for these analyses.

RESULTS

β Hemolytic Streptococcus

Titters of antistreptococcal antibodies were higher in patients with narcolepsy (n = 200) versus age-matched, healthy controls (n = 200) for both ASO (ASO ≥ 200 IU in 34.5% vs. 18.5%, OR = 2.3, P = 0.0003) and ADB (ADB ≥ 480 IU in 28% vs. 16%, OR = 2.0, P = 0.005), in the overall sample (which was purposely enriched in recent onset cases). Further stratification by disease duration revealed higher titters only in cases with onset within 3 years, when compared to controls. Similarly, we found that recent onset patients had significantly higher titters than subjects with longstanding disease (Figure 1, Table 1). No difference in season of blood draw (evenly distributed across 12 months and the 4 seasons) was noted across different groups of patients and with age-matched controls (4- and 12-way χ²).

Further, although % ASO ≥ 200 was slightly higher in March to June included (in controls only), it was not significantly so. Similarly, the percentage of ADB ≥ 480 in controls was slightly higher in March to August included, but not significantly.

HLA

All patients were DQB1*0602 positive per inclusion criteria. Of 200 controls, 28.5% were HLA positive, as expected from a largely Caucasian sample. The percentage of HLA positive subjects was similar in all 4 subgroups of age-stratified controls (26%, 34%, 22%, and 31%) as matched to patients with < 1 y, 1–3 y, 3–10 y; and > 10 y of disease duration. Further, percentage of ASO ≥ 200 did not differ between DQB1*0602 positive and negative controls (22% versus 17%, OR = 1.4, P = 0.32), although ADB ≥ 480 was found in 26% of the HLA positive controls compared to 12% of HLA negative controls (OR = 2.6, P = 0.02, independent of season and age). The difference in % ADB between recent onset patients and age-matched controls was however still as significant when controlled for HLA status. New onset patients still had significantly higher % ADB ≥ 480 when compared to aged matched HLA positive controls (OR = 4.8, P = 0.002).

CRP

CRP values were not more elevated in patients close to disease onset (≤ 3 years, n = 67, mean value = 17 ± 32) compared to age matched controls (n = 67, mean value = 19 ± 42). Narcoleptic subjects with longer disease duration (> 3 y), however, had significantly higher CRP levels (n = 133, mean value = 42 ± 44) compared to age matched controls (n = 133, mean value = 27 ± 38), a difference that disappeared when controlled for BMI in this group (data not shown). Increased CRP in long standing narcolepsy was thus a reflection of secondary obesity (increased BMI) in longstanding disease, as previously reported, and not inflammation at onset.

Helicobacter pylori

Among 200 narcolepsy patients, 9.5% of narcolepsy patients were positive for antibodies against H. pylori (Anti Hp IgG > 20 IU/mL), as were 10.5% of controls (n = 200) suggesting no role for this bacteria in the pathogenesis of narcolepsy and strengthening the specific role of Streptococcus.

DISCUSSION

Streptococcal infections are usually benign and self-limited. Invasive diseases and post-infectious immune mediated seque-
Table 2—Narcolepsy in Comparison with Established Post-Streptococcal Diseases

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Interval to Symptoms</th>
<th>Increased ASO titers*‡</th>
<th>Increased ADB titers*‡</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic fever</td>
<td>3-8 weeks</td>
<td>P 68% (n = 786)</td>
<td>P 69% (n = 100)</td>
<td>24</td>
</tr>
<tr>
<td>Arthritis/ carditis</td>
<td>3-8 weeks</td>
<td>P 68% (n = 100)</td>
<td>P 69% (n = 100)</td>
<td>25</td>
</tr>
<tr>
<td>Isolated Sydenham chorea</td>
<td>1-8 months</td>
<td>P 75% (n = 71)</td>
<td>P 10% (n = 71)</td>
<td>26</td>
</tr>
<tr>
<td>Post-streptococcal glomerulonephritis</td>
<td>1-2 weeks</td>
<td>P 48% (n = 79)</td>
<td>P 68% (n = 73)</td>
<td>27</td>
</tr>
<tr>
<td>Narcolepsy</td>
<td>Weeks to months?</td>
<td>P 51% (n = 67)</td>
<td>P 45% (n = 65)</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 11% (n = 67)</td>
<td>C 17% (n = 65)</td>
<td></td>
</tr>
</tbody>
</table>

Interval from infection to symptom onset and anti-streptococcal antibody status at diagnosis is reported, % ASO and ADB positive in patients (P), versus healthy controls (C). * Of note, in rheumatic fever and post-streptococcal glomerulonephritis, evidence of preceding streptococcal infection is part of established diagnostic criteria, causing an obvious inclusion biased toward higher titers. ‡ ASO and ADB positivity cutoffs were upper limit normal 20% (ULN-20, where 20% controls had higher titers), or, more questionably, as determined by the authors if no controls were included.

Table 3—Sensitivity and specificity of DQB1*0602 positivity in combination with anti-streptolysin O (ASO) ≥ 200 IU and/or anti DNAse B (ADB) ≥ 480 IU

<table>
<thead>
<tr>
<th>Interval from onset of symptoms</th>
<th>ASO and HLA positive</th>
<th>ASO or ADB and HLA positive</th>
<th>ASO and ADB and HLA positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1 year (n = 23)</td>
<td>Sensitivity 61%</td>
<td>Sensitivity 65%</td>
<td>Sensitivity 43%</td>
</tr>
<tr>
<td></td>
<td>Specificity 96%</td>
<td>Specificity 91%</td>
<td>Specificity 100%</td>
</tr>
<tr>
<td>1-3 years (n = 42)</td>
<td>Sensitivity 45%</td>
<td>Sensitivity 57%</td>
<td>Sensitivity 33%</td>
</tr>
<tr>
<td></td>
<td>Specificity 92%</td>
<td>Specificity 86%</td>
<td>Specificity 95%</td>
</tr>
</tbody>
</table>

In 1 year of onset, a rate slightly lower than found in rheumatic fever, and similar to that reported in isolated Sydenham chorea. The similarity with isolated Sydenham chorea is not surprising, considering the relatively long interval between infection and diagnosis/onset in both cases. Unlike tics and obsessive-compulsive disorder, increased ASO in narcolepsy clearly correlated with disease onset, thus strongly suggesting a pathophysiological link.

A limitation of this study was our inability to demonstrate an actual streptococcal infection and subsequent increasing antibacterial titers. We attempted to culture Streptococcus in 10 early onset cases, but could not recover positive cultures. This is not surprising, as even in rheumatic fever, cultures are usually (90%) negative even though it occurs only a few weeks after the reported infection. More intriguing was the fact that anti-streptococcal titers were still elevated in a group of narcoleptic patients collected 1–3 years after onset. In uncomplicated infections, anti-streptococcal antibodies are reported to increase after 2 weeks, to peak at 2–4 months, and decrease thereafter. The long-lasting antibody response in narcolepsy may thus reflect the special genetic background of these subjects and/or a sustained narcolepsy-related immune reaction. A similar pattern of slow ASO titer decrease lasting several years, with moderately increased titers up to 3 years from diagnosis, was found in acute rheumatic fever, despite supervised administration of penicillin, every 3 weeks after diagnosis. The HLA-DQB1*0602 specific background could also be involved. This particular subtype protects against septic shock due to streptococcal infection, suggesting better immune response against this bacteria. Further, we found slightly higher

SLEEP, Vol. 32, No. 8, 2009

982

Post-Streptococcal Narcolepsy—Aran et al
titers of ADB in controls with DQB1*0602, suggesting a more sustained response to streptococcus. As DQB1*0602 is protective against rheumatic fever,22 it is also possible that different HLA haplotypes dictate phenotype expression of various post-streptococcal syndromes.

As the prevalence of anti-streptococcal antibodies varies significantly across populations, additional replications are needed in other settings and ethnic groups. If confirmed, our results will have implications for the prevention, diagnosis and treatment of patients with new onset narcolepsy, especially when cataplexy has not yet developed (most cases develop cataplexy within one year of sleepiness onset). Indeed, diagnosis of these cases is difficult, and it is unclear how the MSLT or CSF hypocretin-1 predicts narcolepsy so close to the onset. In contrast, the sensitivity and specificity of HLA positivity in combination with anti-streptococcal antibodies should be highest the closest to the onset (Table 3). The current treatment of narcolepsy is symptomatic, with a controversial immunomodulation trial with IVIG in patients diagnosed within 6 months of onset.23 Whether such cases should be treated with antibiotics as currently done in rheumatic fever is open for debate.

ACKNOWLEDGMENTS

We are indebted to all the participants of thestudy, most notably narcoleptic patients and thank James B. Dale (Memphis Medical Center, Veterans Administration Medical Center) for helpful discussions. This study was supported primarily by the National Institutes of Neurological Disease and Stroke grant P50 NS23724. And also by research project MSM 0021620849 (Ministry of Education, Czech Republic). E. Mignot is an HHMI supported investigator.

DISCLOSURE STATEMENT

This was not and industry supported study. Dr. Mignot has consulted for Jazz, Actelion, and Cephalon; is on the advisory board of Eli Lilly and Actelion; has participated in speaking engagements for Roche; and owns stock in ResMed. The other authors have indicated no financial conflicts of interest.

REFERENCES
